摘要 鏈環(huán)投影圖與符號平圖有著一一對應關系,這種對應被應用于構造鏈環(huán)圖表.研究平圖對應的鏈環(huán)分支數,是研究通過平圖的中間圖構造所對應的鏈環(huán)的基本問題之一.給出了關于交錯三角格圖的鏈環(huán)分支數的進一步結論.
關鍵詞 交錯三角格圖; Reidemeister變換; 鏈環(huán)分支數
中圖分類號 O157.5 文獻標識碼 A 文章編號 1000-537(2014)01-086-4
參考文獻:
[1]GODSIL C, ROYLE G. Algebraic graph theory[M]. New York: SpringerVerlag, 2001.
[2]JIN X A, DONG F M, TAY E G. Determining the component number of links corresponding to lattices[J]. J Knot Theor Ramif, 2009,18(12):17111726.
[3]SHANK H. The theory of leftright paths[M]. Berlin: SpringerVerlag, 1975.
[4]PISANSKI T, TUCKER T W, ZITNIK A. Straightahead walks in Eulerian graphs[J]. Discrete Math, 2004,281(13):237246.
[5]JIN X A, DONG F M, TAY E G. On graphs determining links with maximal number of components via medial construction[J]. Discrete Appl Math, 2009,157(14):30993110.
[6]ENDO T. The link component number of suspended trees[J]. Graph Combinator, 2010,26(4): 483490.
[7]JIANG L P, JIN X A, DENG K C. Determining the component number of links corresponding to triangular and honeycomb lattices[J]. J Knot Theor Ramif, 2012,21(2):1250018.
[8]林躍峰.交錯三角格的鏈環(huán)分支數的幾個結論[J].湖南師范大學自然科學學報, 2013, 36(1):1216.
[9]LIN Y F, NOBLE S D, JIN X A, et al. On plane graphs with link component number equal to the nullity[J]. Discrete Appl Math, 2012,160(9):13691375.
[10]湯自凱,侯耀平.恰有兩個主特征值的三圈圖[J].湖南師范大學自然科學學報, 2011,34(4):712.
[11]袁名焱,羅秋紅,湯自凱.由星補刻畫的一類廣義線圖[J].湖南師范大學自然科學學報, 2012,35(1):1320.
[12]JIANG L P, JIN X A. Enumeration of leftright paths of square and triangular lattices on some surfaces [J]. 數學研究, 2011,44(3): 257269.
[13]林躍峰.包含子圖K4的無割點次極大圖的唯一性[J].數學的實踐與認識, 2013, 43(10):156160.
[14]NOBLE S D, WELSH D J A. Knot graphs[J]. J Graph Theor, 2000,34(1):100111.
(編輯沈小玲)
摘要 鏈環(huán)投影圖與符號平圖有著一一對應關系,這種對應被應用于構造鏈環(huán)圖表.研究平圖對應的鏈環(huán)分支數,是研究通過平圖的中間圖構造所對應的鏈環(huán)的基本問題之一.給出了關于交錯三角格圖的鏈環(huán)分支數的進一步結論.
關鍵詞 交錯三角格圖; Reidemeister變換; 鏈環(huán)分支數
中圖分類號 O157.5 文獻標識碼 A 文章編號 1000-537(2014)01-086-4
參考文獻:
[1]GODSIL C, ROYLE G. Algebraic graph theory[M]. New York: SpringerVerlag, 2001.
[2]JIN X A, DONG F M, TAY E G. Determining the component number of links corresponding to lattices[J]. J Knot Theor Ramif, 2009,18(12):17111726.
[3]SHANK H. The theory of leftright paths[M]. Berlin: SpringerVerlag, 1975.
[4]PISANSKI T, TUCKER T W, ZITNIK A. Straightahead walks in Eulerian graphs[J]. Discrete Math, 2004,281(13):237246.
[5]JIN X A, DONG F M, TAY E G. On graphs determining links with maximal number of components via medial construction[J]. Discrete Appl Math, 2009,157(14):30993110.
[6]ENDO T. The link component number of suspended trees[J]. Graph Combinator, 2010,26(4): 483490.
[7]JIANG L P, JIN X A, DENG K C. Determining the component number of links corresponding to triangular and honeycomb lattices[J]. J Knot Theor Ramif, 2012,21(2):1250018.
[8]林躍峰.交錯三角格的鏈環(huán)分支數的幾個結論[J].湖南師范大學自然科學學報, 2013, 36(1):1216.
[9]LIN Y F, NOBLE S D, JIN X A, et al. On plane graphs with link component number equal to the nullity[J]. Discrete Appl Math, 2012,160(9):13691375.
[10]湯自凱,侯耀平.恰有兩個主特征值的三圈圖[J].湖南師范大學自然科學學報, 2011,34(4):712.
[11]袁名焱,羅秋紅,湯自凱.由星補刻畫的一類廣義線圖[J].湖南師范大學自然科學學報, 2012,35(1):1320.
[12]JIANG L P, JIN X A. Enumeration of leftright paths of square and triangular lattices on some surfaces [J]. 數學研究, 2011,44(3): 257269.
[13]林躍峰.包含子圖K4的無割點次極大圖的唯一性[J].數學的實踐與認識, 2013, 43(10):156160.
[14]NOBLE S D, WELSH D J A. Knot graphs[J]. J Graph Theor, 2000,34(1):100111.
(編輯沈小玲)
摘要 鏈環(huán)投影圖與符號平圖有著一一對應關系,這種對應被應用于構造鏈環(huán)圖表.研究平圖對應的鏈環(huán)分支數,是研究通過平圖的中間圖構造所對應的鏈環(huán)的基本問題之一.給出了關于交錯三角格圖的鏈環(huán)分支數的進一步結論.
關鍵詞 交錯三角格圖; Reidemeister變換; 鏈環(huán)分支數
中圖分類號 O157.5 文獻標識碼 A 文章編號 1000-537(2014)01-086-4
參考文獻:
[1]GODSIL C, ROYLE G. Algebraic graph theory[M]. New York: SpringerVerlag, 2001.
[2]JIN X A, DONG F M, TAY E G. Determining the component number of links corresponding to lattices[J]. J Knot Theor Ramif, 2009,18(12):17111726.
[3]SHANK H. The theory of leftright paths[M]. Berlin: SpringerVerlag, 1975.
[4]PISANSKI T, TUCKER T W, ZITNIK A. Straightahead walks in Eulerian graphs[J]. Discrete Math, 2004,281(13):237246.
[5]JIN X A, DONG F M, TAY E G. On graphs determining links with maximal number of components via medial construction[J]. Discrete Appl Math, 2009,157(14):30993110.
[6]ENDO T. The link component number of suspended trees[J]. Graph Combinator, 2010,26(4): 483490.
[7]JIANG L P, JIN X A, DENG K C. Determining the component number of links corresponding to triangular and honeycomb lattices[J]. J Knot Theor Ramif, 2012,21(2):1250018.
[8]林躍峰.交錯三角格的鏈環(huán)分支數的幾個結論[J].湖南師范大學自然科學學報, 2013, 36(1):1216.
[9]LIN Y F, NOBLE S D, JIN X A, et al. On plane graphs with link component number equal to the nullity[J]. Discrete Appl Math, 2012,160(9):13691375.
[10]湯自凱,侯耀平.恰有兩個主特征值的三圈圖[J].湖南師范大學自然科學學報, 2011,34(4):712.
[11]袁名焱,羅秋紅,湯自凱.由星補刻畫的一類廣義線圖[J].湖南師范大學自然科學學報, 2012,35(1):1320.
[12]JIANG L P, JIN X A. Enumeration of leftright paths of square and triangular lattices on some surfaces [J]. 數學研究, 2011,44(3): 257269.
[13]林躍峰.包含子圖K4的無割點次極大圖的唯一性[J].數學的實踐與認識, 2013, 43(10):156160.
[14]NOBLE S D, WELSH D J A. Knot graphs[J]. J Graph Theor, 2000,34(1):100111.
(編輯沈小玲)