苑宏英,王 亭,王小佩,牛四芳,祁 麗
(天津城建大學(xué) a. 環(huán)境與市政工程學(xué)院;b. 天津市水質(zhì)科學(xué)與技術(shù)重點(diǎn)實(shí)驗(yàn)室,天津 300384)
環(huán)境與市政
酸堿調(diào)節(jié)過(guò)程中剩余污泥的特性變化
苑宏英a,b,王 亭a,b,王小佩a,b,牛四芳a,b,祁 麗a,b
(天津城建大學(xué) a. 環(huán)境與市政工程學(xué)院;b. 天津市水質(zhì)科學(xué)與技術(shù)重點(diǎn)實(shí)驗(yàn)室,天津 300384)
采用5個(gè)反應(yīng)器(1#,2#,3#,4#和5#),其中1#為單獨(dú)酸(pH3.0)調(diào)節(jié),2#為單獨(dú)堿(pH10.0)調(diào)節(jié),3#,4#為酸堿聯(lián)合調(diào)節(jié),3#為先酸(pH3.0)后堿(pH10.0)調(diào)節(jié),4#為先堿(pH10.0)后酸(pH3.0)調(diào)節(jié),5#為pH不調(diào)的對(duì)比試驗(yàn),對(duì)比分析了不同的酸堿調(diào)節(jié)過(guò)程中剩余污泥比阻值的變化.結(jié)果表明,污泥經(jīng)先酸后堿調(diào)節(jié)(3#反應(yīng)器)后比阻值比其他調(diào)節(jié)方式的更小,說(shuō)明這種調(diào)節(jié)方式更利于污泥脫水;同時(shí)研究了先酸后堿調(diào)節(jié)(3#反應(yīng)器)過(guò)程中,污泥上清液的濁度、Zeta電位和平均粒徑的變化情況,結(jié)果表明,濁度、Zeta電位、平均粒徑分別在3.18~149,NTU、-13.4~-0.899,mV、6.11~9.18,μm之間變動(dòng),且由酸調(diào)節(jié)為堿時(shí),濁度明顯減小,Zeta電位明顯增高.
剩余污泥;酸堿調(diào)節(jié);脫水性能;濁度;Zeta電位
活性污泥法是污水處理廠的核心技術(shù),產(chǎn)生大量的剩余活性污泥.污泥的含水率高,體積大,性質(zhì)不穩(wěn)定,極易腐化并產(chǎn)生臭氣,不利于運(yùn)輸和處置[1].如何實(shí)現(xiàn)污泥的無(wú)害化、穩(wěn)定化、減量化和資源化,成為污水廠面臨的重大難題.污泥脫水能有效地減小污泥的體積,有利于后續(xù)污泥的無(wú)害化、穩(wěn)定化處理以及綜合利用.剩余污泥由親水性帶負(fù)電荷的膠體顆粒組成,比阻值大,脫水困難,而在污泥脫水前進(jìn)行污泥調(diào)理,可以使比阻(SRF)值處在適合機(jī)械脫水的范圍內(nèi)[2],有利于進(jìn)一步的處理處置.
目前常用的化學(xué)調(diào)理方法主要有絮凝劑調(diào)節(jié)、酸堿處理、臭氧法等[3-6].例如,Chen等人[7]對(duì)酸調(diào)節(jié)剩余污泥脫水性能進(jìn)行了研究,結(jié)果表明,pH值越低脫水效率越高,濾餅含水率下降3%~5%.Zhang等人[8]指出,隨著pH值的升高,污泥比阻增大,脫水性能變差.本文研究了單獨(dú)酸堿調(diào)節(jié)、酸堿聯(lián)合調(diào)節(jié)過(guò)程中剩余污泥比阻(SRF)的變化以及先酸后堿調(diào)節(jié)時(shí)污泥上清液的濁度、Zeta電位、平均粒徑的變化情況.
1.1 試驗(yàn)裝置與運(yùn)行
試驗(yàn)采用5個(gè)直徑為120,mm,高為300,mm的有機(jī)玻璃反應(yīng)器,其有效體積為2.5,L(見(jiàn)圖1).1#為單獨(dú)酸(pH3.0,16,d)調(diào)節(jié),2#為單獨(dú)堿(pH10.0,16,d)調(diào)節(jié);3#,4#為酸堿聯(lián)合調(diào)節(jié),3#為先酸(pH3.0,8,d)后堿(pH10.0,8,d)調(diào)節(jié),4#為先堿(pH10.0,8,d)后酸(pH3.0,8,d)調(diào)節(jié);5#為pH不調(diào)(16,d)的對(duì)比試驗(yàn).
圖1 試驗(yàn)裝置示意圖
試驗(yàn)采用天津市歐諾儀器儀表有限公司生產(chǎn)的電動(dòng)攪拌器對(duì)污泥進(jìn)行攪拌,攪拌速度控制在70~90,r/min,使污泥能夠攪拌均勻但不產(chǎn)生漩渦.試驗(yàn)為一次投料、長(zhǎng)期水解酸化的間歇式運(yùn)行方式.試驗(yàn)溫度為室溫,使用30%的HCl或20%的NaOH溶液進(jìn)行pH值調(diào)節(jié).從裝置中的上、中、下3個(gè)取樣口分別取樣,混合均勻后首先采用布氏漏斗法測(cè)定污泥的比阻,然后測(cè)濁度、Zeta電位和平均粒徑等指標(biāo).
1.2 剩余污泥來(lái)源與特性
剩余污泥取自天津某污水處理廠的回流污泥泵房,污泥取回后靜置24,h,排出上清液后使用.試驗(yàn)所用剩余污泥初始特性如下:pH值為6.77~7.01,比阻(SRF)為2.23×1013,~2.28×1013,m/kg,濁度為3.18,NTU,Zeta電位是-0.90,mV,平均粒徑為6.16,μm.
1.3 測(cè)定方法
pH值采用雷磁PHS-25型pH計(jì)測(cè)定;比阻(SRF)采用布氏漏斗法(真空度為0.07,MPa)測(cè)定.濁度采用HACH 2100,Q便攜式濁度儀測(cè)定;Zeta電位采用Nano-ZS型Zeta電位分析儀測(cè)定;平均粒徑采用LS-C(I)激光粒度分析儀測(cè)定.
2.1 酸堿調(diào)節(jié)對(duì)污泥脫水性能的影響
比阻(SRF)是表征污泥脫水性能的重要指標(biāo),它在數(shù)值上等于黏度為1,Pa·s的流體以1,m/s的平均流速通過(guò)厚度為1,m的顆粒床層時(shí)所產(chǎn)生的壓強(qiáng)降[9].比阻越大,說(shuō)明過(guò)濾時(shí)污泥的阻力越大,越難脫水.一般認(rèn)為污泥的比阻值在(0.1~0.4)× 1013,m/kg之間時(shí),進(jìn)行機(jī)械脫水較為適宜[10].水解過(guò)程中,5個(gè)反應(yīng)器中的污泥比阻的變化情況見(jiàn)表1.
表1 不同調(diào)節(jié)方式下SRF的變化 m/kg
從表1可以看出,SRF的變化基本上表現(xiàn)為3#<1#<4#<5#<2#,說(shuō)明先酸后堿調(diào)節(jié)最利于污泥脫水,且單獨(dú)酸調(diào)節(jié)優(yōu)于單獨(dú)堿調(diào)節(jié).究其原因可能是:1#調(diào)節(jié)為酸后,H+與污泥相結(jié)合,改變了污泥的表面電荷特性,促進(jìn)了污泥絮體間的進(jìn)一步絮凝,減少了污泥結(jié)合的水含量,從而改善了脫水效果.根據(jù)Tian等人[11]的研究,酸處理能使胞外聚合物(EPS)脫離活性污泥顆粒的表面,使污泥更易于聚集,從而降低污泥脫水后的含水率.在2#堿調(diào)節(jié)過(guò)程中,由于污泥絮體和微生物細(xì)胞壁的破壞,使有機(jī)質(zhì)大量流出[12],泥液呈黏稠狀,分離較困難,導(dǎo)致比阻變大,脫水性能降低.3#反應(yīng)器中,污泥在酸調(diào)節(jié)轉(zhuǎn)為堿調(diào)節(jié)時(shí)處于相對(duì)較易脫水階段,Lee等人[13]也闡明了當(dāng)初始污泥為酸性時(shí),進(jìn)一步的堿處理有利于污泥混凝.4#污泥經(jīng)堿處理,再調(diào)為酸性后,污泥的性質(zhì)和結(jié)構(gòu)被嚴(yán)重破壞,導(dǎo)致在酸環(huán)境中有利于脫水的部分特性失效,使得最終脫水效果欠佳.5#污泥隨著水解時(shí)間的延長(zhǎng),比阻變大,原因可能是由于有機(jī)質(zhì)的釋放速率大于降解速率,使得兩者的濃度逐漸升高,有機(jī)質(zhì)的部分基團(tuán)對(duì)水的親和力增加,結(jié)合的水含量相應(yīng)增加,從而比阻值不斷增大,脫水性能變差;當(dāng)有機(jī)質(zhì)的釋放速率小于降解速率時(shí),脫水性能會(huì)稍有改善.
2.2 酸堿聯(lián)合調(diào)節(jié)下污泥的指標(biāo)變化情況
2.2.1 濁度的變化
濁度是由于水中含有泥沙、黏土、有機(jī)物、無(wú)機(jī)物、浮游生物和微生物等懸浮物質(zhì)所造成的,可使光散射或吸收.濁度值是指水中懸浮物對(duì)光線透過(guò)時(shí)所發(fā)生的阻礙程度.反應(yīng)過(guò)程中,3#和5#反應(yīng)器中濁度的變化情況見(jiàn)圖2.
圖2 不同方式下濁度的變化
如圖2所示,兩個(gè)反應(yīng)器中濁度的變化表現(xiàn)為:整體上酸階段的濁度為先酸后堿>空白,堿階段的濁度為空白>先酸后堿.對(duì)于先酸后堿調(diào)節(jié),濁度值在3.18~149,NTU之間變動(dòng),酸調(diào)節(jié)第一天,濁度值從初始的3.18,NTU劇增到121,NTU,在酸調(diào)節(jié)的4,d里濁度逐漸增加,第五天調(diào)為堿性后濁度從149,NTU驟減到5.98,NTU,在之后的堿調(diào)節(jié)階段趨于穩(wěn)定,在3.40~5.98,NTU之間變動(dòng),對(duì)照組的濁度則在27.6~50.4,NTU之間浮動(dòng).試驗(yàn)結(jié)果和其他文獻(xiàn)一致,Dash等人[14]研究表明pH增加時(shí)上清液濁度降低.聯(lián)系前面的結(jié)果,污泥調(diào)節(jié)轉(zhuǎn)為堿調(diào)節(jié)時(shí)污泥上清液濁度驟降,污泥的脫水性能變好.堿調(diào)節(jié)污泥處理的依據(jù)是EPS的破裂,網(wǎng)捕污泥顆粒凝聚成絮體[15],堿調(diào)節(jié)后懸浮物對(duì)光線透過(guò)時(shí)所產(chǎn)生的阻礙程度低,在圖2顯示為濁度值降低,在表1顯示為比阻減小,說(shuō)明污泥由酸調(diào)節(jié)轉(zhuǎn)為堿調(diào)節(jié)而又保持酸的特性未消盡時(shí)有利于脫水.
2.2.2 Zeta電位的變化
Zeta電位是表征膠體分散系穩(wěn)定性的重要指標(biāo).對(duì)于兩種不同的帶電粒子體系,Zeta電位(絕對(duì)值)較高的體系,顆粒間排斥力較大,不易發(fā)生聚沉,處于相對(duì)穩(wěn)定狀態(tài);而Zeta電位較低的體系,質(zhì)點(diǎn)間排斥力較小,不穩(wěn)定,容易發(fā)生聚沉;在等電點(diǎn)即Zeta電位為零時(shí),質(zhì)點(diǎn)間排斥力最小,膠體穩(wěn)定性最低,也最容易發(fā)生聚沉[16].反應(yīng)過(guò)程中,3#和5#反應(yīng)器中Zeta電位的變化見(jiàn)圖3.
圖3 不同方式下Zeta電位的變化
由圖3可以看出,污泥電位呈負(fù)值,整體上,先酸后堿調(diào)節(jié)和空白對(duì)照組污泥上清液的Zeta電位(絕對(duì)值)幾乎都呈增高的趨勢(shì),但是先酸后堿調(diào)節(jié)過(guò)程中污泥上清液的Zeta電位一直低于空白.在先酸后堿調(diào)節(jié)的整個(gè)過(guò)程中,污泥上清液的Zeta電位在-13.400~-0.899,mV之間變動(dòng),在酸調(diào)節(jié)階段,Zeta電位相對(duì)穩(wěn)定在-5~0,mV的范圍內(nèi);轉(zhuǎn)為堿調(diào)節(jié)階段時(shí),Zeta電位急劇增高,Zeta電位值從-2.04,mV變?yōu)椋?1.7,mV,然后穩(wěn)定在-13.4~-10.5,mV的范圍內(nèi),污泥在酸調(diào)節(jié)轉(zhuǎn)為堿調(diào)節(jié)時(shí)處于一種不穩(wěn)定的狀態(tài),容易發(fā)生凝聚,在表1表示為此時(shí)污泥脫水性能變好,這和許多研究者的結(jié)論一致.Yuan等人[17]研究表明污泥表面的Zeta電位隨著pH值的增加而增高.
2.2.3 平均粒徑的變化
污泥顆粒的大小也是影響污泥脫水的關(guān)鍵因素,反應(yīng)過(guò)程中,3#和5#反應(yīng)器中污泥的平均粒徑的變化見(jiàn)圖4.
圖4 不同方式下平均粒徑的變化
由圖4可以看出,整體上,空白對(duì)照組污泥的平均粒徑幾乎是一直大于先酸后堿調(diào)節(jié)組,先酸后堿調(diào)節(jié)組污泥的平均粒徑在6.16~9.18,μm之間浮動(dòng),污泥調(diào)節(jié)為酸性后污泥上清液中的平均粒徑由6.16,μm增加到8.84,μm然后減小到7.70,μm,調(diào)節(jié)為堿性后,平均粒徑先減小至6.11,μm后增加至9.18,μm,結(jié)合表1分析可得,平均粒徑的變化趨勢(shì)與SRF的變化趨勢(shì)一致,說(shuō)明平均粒徑越小,SRF值就越小,越有利于污泥脫水,在先酸后堿調(diào)節(jié)為堿性的第一天時(shí)平均粒徑最小,為6.11,μm.分析其原因,可能與酸堿調(diào)節(jié)改變污泥中微生物種類與數(shù)量有關(guān).Owen等人[18]的研究指出,在酸性條件下絲狀菌膨脹過(guò)量生長(zhǎng),導(dǎo)致污泥絮體的平均粒徑增大,并且呈現(xiàn)雙峰分布,絮體分形維數(shù)較低,結(jié)構(gòu)松散;在中性條件下,無(wú)明顯絲狀菌生長(zhǎng),絮體平均粒徑減小,分形維數(shù)較高,結(jié)構(gòu)致密;偏堿性條件下,雖然沒(méi)有大量絲狀菌出現(xiàn),但絮體平均粒徑較中性條件略有增大,分形維數(shù)相應(yīng)減?。?/p>
目前,有很多研究者研究粒徑分布與污泥脫水之間的關(guān)系,如Vaxelaire等人[19]指出污泥粒徑是影響污泥脫水的一個(gè)重要影響因素.Houghton等人[20]論證了污泥粒徑分布也是控制污泥脫水性能的關(guān)鍵因素,因?yàn)槲勰嘀蠩PS的含量可以改變污泥粒徑的分布,使污泥脫水變得困難.Eskicioglu等人[4]指出,污泥經(jīng)預(yù)處理后污泥固體顆粒的粒徑明顯減小,筆者的研究結(jié)果也顯示在污泥脫水較好的時(shí)間段污泥粒徑較?。?/p>
對(duì)污泥進(jìn)行單獨(dú)酸(pH3.0)、單獨(dú)堿(pH10.0)、先酸(pH3.0)后堿(pH10.0)和先堿(pH10.0)后酸(pH3.0)調(diào)節(jié)過(guò)程中,先酸后堿有利于污泥脫水;在先酸后堿調(diào)節(jié)過(guò)程中,由酸調(diào)節(jié)轉(zhuǎn)為堿調(diào)節(jié)時(shí),污泥上清液的濁度值從120~149,NTU減小到3.40~5.98,NTU;Zeta電位由-1.71~-3.88,mV增高(絕對(duì)值)到-10.5~-13.4,mV,且濁度和Zeta電位都在酸調(diào)為堿時(shí)出現(xiàn)較大變動(dòng),堿調(diào)節(jié)使得濁度減小以及Zeta電位增高;整個(gè)酸堿調(diào)節(jié)過(guò)程中平均粒徑在6.11~9.18,μm之間變動(dòng).
[1] NEYENS E,BAEYENS J,DEWIL R. Advanced sludge treatment affects extracellular polymeric substances to improve activated sludge dewatering[J]. Journal of Hazardous Materials,2004,106(2):83-92.
[2] CHEN Y,YANG H,GU G,. Effect of acid and surfactant treatment on activated sludge dewatering and settling[J]. Water Research,2001,35(11):2615-2620.
[3] NEYENS E,BAEYENS J,CREEMERS C. Alkaline thermal sludge hydrolysis[J]. Journal of Hazardous Materials,2003,97(1):295-314.
[4] ESKICIOGLU C,KENNEDY K J,DROSTE R L. Characterization of soluble organic matter of waste activated sludge before and after thermal pretreatment[J]. Water Research,2006,40(20):3725-3736.
[5] ZHU J,ZHENG H,JIANG Z,et al. Synthesis and characterization of a dewatering reagent:cationic polyacrylamide(P(AM-DMC-DAC))for activated sludge dewatering treatment[J]. Desalination and Water Treatment,2013,51(13/15):2791-2801.
[6] QI Y,THAPA K B,HOADLEY A F. Application of filtration aids for improving sludge dewatering properties–a review[J]. Chemical Engineering Journal,2011,171(2):373-384.
[7] CHEN Y,CHEN Y,GU G,. Influence of pretreating activated sludge with acid and surfactant prior to conventional conditioning on filtration dewatering[J]. Chemical Engineering Journal,2004,99(2):137-143.
[8] ZHANG X,LEI H,CHEN K,et al. Effect of potassium ferrate(K2,FeO4)on sludge dewaterability under different pH conditions[J]. Chemical Engineering Journal,2012,210:467-474.
[9] HOUGHTON J L,QUARMBY J,STEPHENSON T. Municipal wastewater sludge dewaterability and the presence of microbial extracellular polymer[J]. Water Science & Technology,2001,44(2/3):373-379.
[10] 何品晶,顧國(guó)維,李篤中. 城市污泥處理與利用[M].北京:科學(xué)出版社,2003.
[11] TIAN Y,ZHENG L,SUN D. Functions and behaviors of activated sludge extracellular polymeric substances (EPS):a promising environmental interest[J]. Journal of Environmental Sciences,2006,18(3):420-427.
[12] WEEMAES M P,VERSTRAETE W H. Evaluation of current wet sludge disintegration techniques[J]. Journal of Chemical Technology and Biotechnology,1998,73(2):83-92.
[13] LEE D,JING S,LIN Y. Using seafood waste as sludge conditioners[J]. Water Science & Technology,2001,44(10):301-307.
[14] DASH M,DWARI R K,BISWAL S K,et al. Studies on the effect of flocculant adsorption on the dewatering of iron ore tailings[J]. Chemical Engineering Journal,2011,173(2):318-325.
[15] DIGNAC M,URBAIN V,RYBACKI D,et al. Chemical description of extracellular polymers:implication on activated sludge floc structure[J]. Water Science and Technology,1998,38(8):45-53.
[16] WANG L,WANG L,REN X,et al. pH dependence of structure and surface properties of microbial EPS[J]. Environmental Science & Technology,2012,46(2):737-744.
[17] YUAN D,WANG Y. Effects of solution conditions on the physicochemical properties of stratification components of extracellular polymeric substances in anaerobic digested sludge[J]. Journal of Environmental Sciences,2013,25(1):155-162.
[18] OWEN J,LEBLANC S,TONER P,et al. Evaluation of fresh and aged clam processing wastes as potential agri-cultural liming materials for coastal area vegetable production soils[J]. Canadian Journal of Soil Science,2008,88(4):559-569.
[19] VAXELAIRE J,CéZAC P. Moisture distribution in activated sludges:a review[J]. Water Research,2004, 38(9):2215-2230.
[20] HOUGHTON J I,STEPHENSON T. Effect of influent organic content on digested sludge extracellular polymer content and dewaterability[J]. Water Research,2002,36(14):3620-3628.
Characteristic Change of Wasted Sludge in the Course of Acid-base Regulation
YUAN Hong-yinga,b,WANG Tinga,b,WANG Xiao-peia,b,NIU Si-fanga,b,QI Lia,b
(a. School of Environmental and Municipal Engineering;b. Tianjin Key Laboratory of Aquatic Science and Technology,Tianjin Chengjian Unirersity,Tianjin 300384,China)
Five reactors(1#,2#,3#,4#and 5#)were set up to analyze the effect of different acid-base regulations on the specific resistance to filtration(SRF)of wasted sludge. pH was controlled with only acidic regulation(pH 3.0)for Reactor No.1 and only alkalinity regulation(pH 10.0)for Reactor No.2. Reactors No.3 and No.4 are acid-alkali joint regulations,namely the pH of Reactor No.3 changed from acidity(pH 3.0)to alkalinity(pH 10.0)while pH of Reactor No.4 was transformed from alkalinity(pH 10.0)to acidity(pH 3.0). The control experiment without any regulation was conducted in Reactor No.5. The results show that the SRF of sludge in the third reactor was the minimum,so the third regulation was more beneficial to sludge dewatering. Then the changes of turbidity,Zeta potential and average particle size of sludge supernatant at the acid-alkali joint adjustment stage of the third reactor was also studied. The results show that the values of turbidity,Zeta potential and average particle size were changed between 3.18~149NTU,-13.4~-0.899mV,6.11~9.18 μm respectively,and when the sludge was regulated from acid to alkalinity,the turbidity decreased and Zeta potential increased distinctly.
wasted sludge;acid-base regulation;dewaterability;turbidity;Zeta potential
X705
A
2095-719X(2014)05-0332-05
(編輯校對(duì):胡玉敏)
2014-07-14;
2014-09-15
天津市科技計(jì)劃項(xiàng)目(13ZCZDGX03100);天津市濱海新區(qū)科技計(jì)劃項(xiàng)目(2011-BH14003)
苑宏英(1974—),女,山西大同人,天津城建大學(xué)教授,博士.