王東凱,任雪姣,盧丹丹,任雷鳴
(1.河北醫(yī)科大學(xué)中西醫(yī)結(jié)合學(xué)院,河北石家莊 050017;2.河北醫(yī)科大學(xué)第四醫(yī)院,河北石家莊 050011)
牽拉對毒蕈堿受體和5-羥色胺受體介導(dǎo)大鼠離體胃平滑肌收縮功能的影響
王東凱1?,任雪姣2?,盧丹丹1,任雷鳴1
(1.河北醫(yī)科大學(xué)中西醫(yī)結(jié)合學(xué)院,河北石家莊 050017;2.河北醫(yī)科大學(xué)第四醫(yī)院,河北石家莊 050011)
目的 研究牽拉對毒蕈堿(M)受體及5-羥色胺(5-HT)受體介導(dǎo)大鼠離體胃平滑肌收縮功能的影響。方法 大鼠離體胃底、胃體、胃竇、賁門和幽門環(huán)行肌標本分別給予1.0,1.5,2.0,2.5和3.0 g的前負荷,除胃竇環(huán)肌給予單濃度卡巴膽堿(CCh)(0.3 μmol·L-1)外,其余標本采用累積給藥法給予CCh 0.001~30 μmol·L-1,5-HT 0.0001~30 μmol·L-1,記錄收縮反應(yīng)。結(jié)果 大鼠胃底、胃體和幽門環(huán)肌在1.0 g前負荷下,CCh誘發(fā)收縮反應(yīng)的-Log EC50值最大,-Log EC50值隨前負荷升高而顯著減小(P<0.05,P<0.01);5-HT誘發(fā)胃底環(huán)行肌收縮反應(yīng)結(jié)果類似。與1.0 g前負荷相比,3.0 g前負荷時CCh和5-HT誘發(fā)賁門環(huán)肌收縮反應(yīng)的 Emax值分別增大117.4%和75.7%;5-HT誘發(fā)胃體環(huán)肌收縮反應(yīng)的 Emax值亦增大115.9%。CCh誘發(fā)各環(huán)行肌收縮的Emax值(g)分別為:賁門10.453±2.956(3.0 g前負荷)、胃底13.878± 2.618(2.5 g前負荷)、胃體10.244±1.843(2.5 g前負荷)、幽門2.585±1.098(2.5 g前負荷)。5-HT誘發(fā)各環(huán)肌收縮的Emax值(g)分別為:賁門4.363±1.705(3.0 g前負荷)、胃底3.931±0.615(3.0 g前負荷)、胃體3.161±0.680(3.0 g前負荷)。結(jié)論 0.5 g或1.0 g前負荷不適于研究M受體和5-HT受體介導(dǎo)的大鼠離體賁門、胃底、胃體和幽門環(huán)肌的收縮反應(yīng),2.0 g前負荷可能是研究M受體和5-HT受體介導(dǎo)大鼠離體胃環(huán)肌收縮反應(yīng)的理想條件。
受體,毒蕈堿;受體,5-羥色胺;牽拉;胃體;胃底;賁門;幽門
胃平滑肌條是醫(yī)學(xué)研究中的常用實驗標本,受體激動劑誘發(fā)收縮反應(yīng)的半數(shù)有效量(EC50)和最大反應(yīng)(Emax)是2個關(guān)鍵參數(shù)。國內(nèi)文獻報道,大鼠離體胃平滑肌條常施予1.0 g前負荷[1-3];國外文獻中,前負荷差異較大,0.5 g[4],1.0 g[5-8]和2.0 g[9-10]均有報道,但未注明前負荷選擇的理由。國外曾有報道,不同前負荷能影響人支氣管平滑肌[11]和犬冠狀動脈平滑肌[12]標本的收縮效能;Ren等[13]報道,在兔離體血管環(huán)肌標本,不同程度牽拉對α1受體介導(dǎo)收縮的EC50值有顯著影響,推測不同前負荷對不同受體介導(dǎo)平滑肌收縮的影響不同。
哺乳動物大約95%的5-羥色胺(5-hydroxy-tryptamine,5-HT)存在于胃腸道[14];5-HT1A和5-HT1D受體激動劑可調(diào)節(jié)胃動力。舒馬曲坦激活5-HT1B/1D受體,對功能性消化不良患者可松弛胃底(延遲胃排空),改善胃的順應(yīng)性,減輕胃脹和早飽感[15]。乙酰膽堿(acetylcholine,ACh)是副交感神經(jīng)的遞質(zhì),能激動各類膽堿受體,興奮胃腸平滑肌。
本研究以卡巴膽堿(carbachol,CCh)和5-HT作為胃平滑肌收縮劑,分析不同牽拉程度對M受體和5-HT受體介導(dǎo)收縮的影響,各激動劑產(chǎn)生收縮時藥物EC50值和Emax值的變化規(guī)律。
1.1 藥品、實驗動物和儀器
CCh購自德國ABCR GmbH&Co KG公司,5-HT購自日本Kasei Kogyo Co Ltd公司。K-H液成分(mmol·L-1):NaCl 133、KCl 4.7、MgSO40.61、NaH2PO41.35、CaCl22.52、NaHCO316.3、葡萄糖7.8,pH 7.2,均購自美國Sigma公司。30只健康雄性Wistar大鼠,體質(zhì)量 250~300 g,許可證號SCXK(冀)2013-1-003,由河北省實驗動物中心提供。PowerLab 8/35型數(shù)據(jù)采集系統(tǒng)(包括Octal Bridge Amp、張力換能器)由澳大利亞AD Instruments Pty Ltd生產(chǎn);CP213型電子天平是美國Ohaus Corporation公司產(chǎn)品。
1.2 離體胃平滑肌標本的制備
大鼠禁食不禁水12 h,烏拉坦1.5 g·kg-1皮下注射麻醉后頸動脈放血處死,取全胃。沿胃大彎剪開,以95%O2+5%CO2、4℃改良K-H液中漂洗干凈,沿環(huán)肌方向切取腹側(cè)胃底、胃體、胃竇、賁門和幽門環(huán)肌5個部位[16-17]。每只大鼠取胃底環(huán)肌2條、胃體環(huán)肌2條以及胃竇、賁門和幽門環(huán)肌各1條,分別長約2 mm×8 mm,去除黏膜。標本一端固定于支架上,另一端接張力換能器,置于(37±0.5)℃的K-H液浴槽中。
胃底、胃體、胃竇、賁門和幽門環(huán)肌分別給予1.0,1.5,2.0,2.5和3.0 g的前負荷。在各自前負荷下平衡1 h(每15 min換1次K-H液)后開始實驗。胃底、胃體、賁門和幽門環(huán)肌采用累積給藥法給予CCh(0.001~30 μmol·L-1);5種標本均累積給予 5-HT(0.0001~30 μmol·L-1)。預(yù)實驗顯示,<0.3 μmol·L-1時,胃竇環(huán)肌的節(jié)律性收縮與強直性收縮區(qū)分不明顯,難以分析數(shù)據(jù);>0.3 μmol·L-1時,收縮的節(jié)律紊亂。故胃竇環(huán)肌采用單濃度(0.3 μmol·L-1)給藥法[18]。每個標本依次在5個前負荷下完成一種藥物的5次量效曲線,張力換能器記錄收縮反應(yīng)(g)。
1.3 統(tǒng)計學(xué)分析
2.1 牽拉對CCh誘發(fā)胃平滑肌收縮的影響
CCh 0.001~30 μmol·L-1可使大鼠離體賁門、胃底、胃體和幽門環(huán)肌產(chǎn)生濃度依賴性收縮反應(yīng)。雙因素方差分析顯示,賁門、胃底和胃體環(huán)肌在1.5,2.0,2.5和3.0 g前負荷下,CCh誘發(fā)的收縮顯著大于1.0 g的收縮(P<0.05,P<0.01;圖1A~C)。但是幽門環(huán)肌在1.0,1.5,2.0,2.5和3.0 g前負荷下,CCh誘發(fā)的收縮無統(tǒng)計學(xué)差異(圖1D)。圖2結(jié)果顯示,單濃度給予CCh 0.3 μmol·L-1時,胃竇環(huán)肌在1.0,1.5,2.0,2.5和3.0 g前負荷下,CCh誘發(fā)的胃竇環(huán)肌強直性收縮的振幅隨前負荷增加而下降,但無統(tǒng)計學(xué)差異(圖2A)。CCh誘發(fā)的胃竇節(jié)律性收縮振幅隨前負荷的增加而增強,前負荷2.0 g時收縮振幅顯著強于1.0 g(P<0.01,圖2B);前負荷2.5 g和3.0 g時收縮振幅與2.0 g相似(圖2B)。胃竇環(huán)肌收縮頻率與前負荷(1.0 g~3.0 g)呈明顯的負相關(guān)(圖2C),由1.0 g時的5.5 min-1降至3.0 g時的1.4 min-1(P<0.01);胃竇環(huán)肌首先呈強直性收縮,繼而為長時程節(jié)律性收縮(圖2D)。
2.2 牽拉對5-HT誘發(fā)胃平滑肌收縮的影響
5-HT 0.0001~30 μmol·L-1可使大鼠離體賁門、胃底和胃體環(huán)肌產(chǎn)生濃度依賴性收縮。雙因素方差分析顯示,賁門、胃底和胃體環(huán)肌在2.0,2.5和3.0 g前負荷下,5-HT誘發(fā)的收縮顯著大于1.0 g時收縮(P<0.05,P<0.01;圖3A~C)。5-HT對胃竇和幽門環(huán)肌無明顯作用(數(shù)據(jù)略,n=8)。
Fig.1 Contractile responses to carbachol(0.001-30 μmol·L-1)in isolated circular muscle strips of rat gastric cardia(A,n=9),fundus(B,n=20),gastric body(C,n=18)and pylorus(D,n=10)under different preloads of 1.0,1.5,2.0,2.5 and 3.0 g..?P<0.05,??P<0.01 compared with preload 1.0 g.
Fig.2 Responses to carbachol 0.3 μmol·L-1in isolated circular muscle strips of rat gastric antrum.A:stiffnass amplitude;B:rhythmamplitude;C:rhythm frequency.,n=6.?P<0.05,??P<0.01 compared with preload 1.0 g.
Fig.3 Contractile responses to 5-hydroxytryptamine(5-HT,0.0001-30 μmol·L-1)in isolated circular muscle strips of the rat gastric cardia(A,n=12),fundus(B,n=7)and gastric body(C,n=7)under different preloads of 1.0,1.5,2.0,2.5 and 3.0 g..?P<0.05,??P<0.01,compared with preload 1.0 g.
2.3 牽拉對CCh和5-HT誘發(fā)最大收縮和EC50的影響
單因素方差分析顯示(表1),賁門、胃底和胃體環(huán)肌在1.0~3.0 g前負荷下,CCh誘發(fā)的最大收縮反應(yīng)(Emax)隨著牽拉強度增大而升高;幽門環(huán)肌則無顯著改變。4種環(huán)肌的實測Emax值(CCh)分別為:賁門10.453±2.956(3.0 g)、胃底13.878±2.618 (2.5 g)、胃體10.244±1.843(2.5 g)和幽門2.585± 1.098(2.5 g)。賁門、胃底和胃體環(huán)肌對5-HT的反應(yīng)類似于CCh,但是其Emax值明顯小于CCh;3種標本的實測Emax值(5-HT)分別為:賁門4.363±1.705 (3.0 g)、胃底3.931±0.615(3.0 g)和胃體3.161± 0.680(3.0 g)。以2.5 g的Emax值作為對照進行統(tǒng)計學(xué)分析顯示,2.0 g和3.0 g前負荷下CCh和5-HT的Emax值無顯著差異。
單因素方差分析結(jié)果顯示(表2),在 1.0~3.0 g前負荷下,CCh和5-HT誘發(fā)賁門收縮的EC50值無顯著改變,5-HT誘發(fā)胃體環(huán)肌收縮的EC50值亦無顯著改變。在1.0 g前負荷下,CCh和5-HT誘發(fā)胃底環(huán)肌收縮的-Log EC50(mol·L-1)值分別為6.610±0.237和7.133±0.239;CCh誘發(fā)胃體和幽門環(huán)肌收縮的-Log EC50(mol·L-1)值分別為6.544±0.148和6.689±0.466。前負荷增至1.5,2.0,2.5和3.0 g時,各自的-Log EC50(mol·L-1)值逐漸變小(P<0.05,P<0.01)。以 2.5 g的-Log EC50值作為對照進行統(tǒng)計學(xué)分析結(jié)果顯示,2.0 g和3.0 g前負荷下CCh和5-HT的-Log EC50值無顯著差異。
Tab.1 Emaxof carbachol and 5-HT in various circular muscle strips of rats
Tab.2 -Log EC50of carbachol and 5-HT in various circular muscle strips of rats
本研究顯示,0.5 g或1.0 g前負荷不適于研究M受體和5-HT受體介導(dǎo)的大鼠離體賁門、胃底、胃體和幽門環(huán)肌收縮。本課題組曾報道,在兔離體血管環(huán)標本,不同程度的牽拉(前負荷變化)對α1受體介導(dǎo)收縮的EC50和Emax產(chǎn)生顯著影響[13];本研究在大鼠離體胃組織中多個部位的環(huán)行肌條上,證實了不同牽拉程度對不同受體介導(dǎo)的平滑肌收縮的影響是不同的。
本研究發(fā)現(xiàn),在1.0~3.0 g(含3.0 g)前負荷時CCh和5-HT誘發(fā)賁門環(huán)肌收縮、5-HT誘發(fā)胃體環(huán)肌收縮的EC50值均無改變。但是與1.0 g前負荷相比,3.0 g前負荷時CCh和5-HT誘發(fā)賁門肌收縮的Emax值分別增大117.4%和75.7%,5-HT誘發(fā)胃體肌收縮的Emax值亦增大115.9%。除胃竇外,與2.5和3.0 g時相比,其他4部位標本施以2.0 g前負荷時,其EC50值和Emax值均無統(tǒng)計學(xué)差異。但是,這4部位標本的前負荷低于2.0 g時,多數(shù)標本的Emax值顯著降低。因此,推薦在2.0 g前負荷作用下,進行M受體和5-HT受體介導(dǎo)的大鼠離體胃平滑肌收縮的研究。鑒于這些標本在1.0 g和1.5 g前負荷下,藥物誘發(fā)收縮反應(yīng)的Emax值有較大變化并有統(tǒng)計學(xué)意義,因此,選擇≤1.0 g的前負荷進行實驗顯然不合適。
M受體包含5種亞型,M1,M2和M3分布在胃腸道,M2和M3可介導(dǎo)大鼠胃平滑肌收縮,M3作用為主[19-20]。研究發(fā)現(xiàn),大鼠胃底縱肌在1.0 g前負荷作用下,M2和 M3均可介導(dǎo)收縮,M3為主[21]。M2受體基因敲除小鼠的胃底和胃竇環(huán)肌在0.5 g前負荷下,CCh誘發(fā)收縮的EC50值明顯大于野生型小鼠,而收縮的Emax值不變;對于M3受體基因敲除小鼠相同部位,CCh誘發(fā)收縮的Emax值降低約50%,EC50值則無明顯改變;M2和M3受體基因同時敲除,CCh不再誘發(fā)收縮[22]。So等[23]報道,利用膜片鉗技術(shù)和單細胞RT-PCR技術(shù)發(fā)現(xiàn),豚鼠胃竇平滑肌表達M1~M5受體的mRNA,但能被乙酰膽堿激活的只有M2,M3和M4受體。本研究發(fā)現(xiàn),大鼠離體賁門、胃底、胃體和幽門環(huán)肌在前負荷相同時(1.0 g,1.5 g或 2.0 g),CCh誘發(fā)收縮的-Log EC50值(即 pD2值)均十分接近,提示上述4個部位胃組織中介導(dǎo)CCh誘發(fā)收縮的M受體可能相似。然而,在5-HT誘發(fā)大鼠賁門、胃底和胃體環(huán)肌收縮中,前負荷為1.0 g時的-Log EC50值依次為6.056±0.438,7.133±0.239和6.840±0.316,賁門與胃底環(huán)肌的-Log EC50的比值為11.9。前負荷增加至1.5 g,2.0 g或2.5 g時,賁門與胃底或胃體環(huán)肌相比,5-HT的-Log EC50值有明顯差異;結(jié)果提示,介導(dǎo)賁門環(huán)肌收縮的5-HT受體亞型與胃底胃體不同。進一步確定大鼠賁門、胃底、胃體和幽門環(huán)肌中,介導(dǎo)CCh和5-HT收縮的受體亞型十分重要。
[1] Li W,Zheng TZ,Qu SY,Ding YH,Wei YL.Effect of Cangzhu on contractile activity of gastric muscle strips in rats[J].Pharmacol Clin Chin Mater Med (中藥藥理與臨床),1999,15(6):29-30.
[2] Dai CB,Liu N,Qian W,Hou XH.Effect of nitric oxide on gastric antral smooth muscle contraction induced by Simo decoction in rats[J].Chin J Gastroenterol(胃腸病學(xué)),2012,17(2):115-118.
[3] Zhou L,Wang LJ,Yuan B,Wang L.Effect of motilin on gastric smooth contraction induced by interstitial cells of Cajal[J].Natl Med J China(中華醫(yī)學(xué)雜志),2003,83(16):1422-1427.
[4] Mendel M,Ch?opecka M,Dziekan N,Karlik W,Wiechetek M.Participation of extracellular calcium in α-hederin-induced contractions of rat isolated stomach strips[J].J Ethnopharmacol,2013,146 (1):423-426.
[5] Buharalioˇglu CK,Akar F.The reactivity of seroto-nin,acetylcholine and KCl-induced contractions to relaxant agents in the rat gastric fundus[J].Pharmacol Res,2002,45(4):325-331.
[6] Correa RM,Lafayette SS,Pereira GJ,Hirata H,Garcez-do-Carmo L,Smaili SS.Mitochondrial involvement in carbachol-induced intracellular Ca2+mobilization and contraction in rat gastric smooth muscle[J].Life Sci,2011,89(21-22):757-764.
[7] Giaroni C,Knight GE,Ruan HZ,Glass R,Bardini M,Lecchini S,et al.P2 receptors in the murine gastrointestinaltract[J].Neuropharmacology,2002,43(8):1313-1323.
[8] Qin J, Liu K, Wang PS, Liu C.V1Receptor in ENS mediates the excitatory effect of vasopressin on circular muscle strips of gastric body in vitro in rats[J].Regul Pept,2009,157(1-3):32-36.
[9] Korolkiewicz R,Takeuchi K,Sliwinski W,Konstanski Z,Rekowski P,Szyk A.Contractile effects of porcine galanin(1-29)-NH2on the rat isolated gastric fundus:mediation by potassium ions[J].Pharmacol Res,1997,36(2):147-151.
[10] Amemiya N,Hatta S,Ohshika H.Effects of ondansetron on electrically evoked contraction in rat stomach fundus:possible involvement of 5-HT2Breceptors[J].Eur J Pharmacol,1997,339(2-3): 173-181.
[11] Blanc FX,Salmeron S,Coirault C,Bard M,F(xiàn)adel E,Dulmet E,et al.Effects of load and tone on the mechanics of isolated human bronchial smooth muscle [J].J Appl Physiol,1999,86(2):488-495.
[12] De Mey JG,Brutsaert DL.Mechanical properties of resting and active isolated coronary arteries[J]. Circ Res,1984,55(1):1-9.
[13] Ren LM,Zhang M,Yuan ZF,Zhu ZN,Shi CX.Influence of stretch on α1receptor agonist phenylephrine regulated vasoconstriction in rabbit regional arteries[J].Chin J Pharmacol Toxicol(中國藥理學(xué)與毒理學(xué)雜志),2002,16(4):255-260.
[14] Gershon MD,Tack J.The serotonin signaling system:from basic understanding to drug development for functional GI disorders[J].Gastroenterology,2007,132(1):397-414.
[15] Sanger GJ.5-Hydroxytryptamine and the gastrointestinal tract:where next?[J].Trends Pharmacol Sci,2008,29(9):465-471.
[16] Zhou L.Function of gastric motility[M]∥Zhou L,Ke MY.Gastrointestinal Motility:Basic and Clinical (胃腸動力學(xué):基礎(chǔ)與臨床).Beijing:Science Press,1999:509.
[17] Milenov K,Golenhofen K.Differentiated contractile responses of gastric smooth muscle to substance P[J].Pflugers Arch,1983,397(1):29-34.
[18] Li L,Wu T,Wei C,Han JK,Jia ZH,Wu YL,et al.Exhaustive swimming differentially inhibits P2X1 receptor-and α1-adrenoceptor-mediated vasoconstriction in isolated rat arteries[J].Acta Pharmacol Sin,2012,33(2):221-229.
[19] Wang B,Cheng FT.Muscarinic receptor subtypes and gastrointestinal smooth muscle function[J]. Chin J Pathophysiol(中國病理生理雜志),2001,17(11):1093-1096.
[20] Zheng SL, Wang SY, Wang YY.Physiological mechanism of acetylcholine on myocardial and smooth muscle[J].J Tangshan Teachers Coll(唐山師范學(xué)院學(xué)報),2009,31(2):75-76.
[21] Thomas EA, Ehlert FJ.Involvement of the M2muscarinic receptor in contractions of the guinea pig trachea,guinea pig esophagus,and rat fundus [J].Biochem Pharmacol,1996,51(6):779-788.
[22] Kitazawa T,Hashiba K,Cao J,Unno T,Komori S,Yamada M,et al.Functional roles of muscarinic M2and M3receptors in mouse stomach motility:studies with muscarinic receptor knockout mice[J].Eur J Pharmacol,2007,554(2-3):212-222.
[23] So I,Yang DK,Kim HJ,Min KW,Kang TM,Kim SJ,et al.Five subtypes of muscarinic receptors are expressed in gastric smooth muscles of guinea pig[J].Exp Mol Med,2003,35(1):46-52.
Effect of stretch on muscarinic receptor-and 5-hydroxytryptamine receptor-mediated contractile responses in isolated gastric smooth muscle of rats
WANG Dong-kai1?,REN Xue-Jiao2?,LU Dan-dan1,REN Lei-ming1
(1.College of Chinese Integrative Medicine,Hebei Medical University,Shijiazhuang 050017,China;2.the Fourth Hospital,Hebei Medical University,Shijiazhuang 050011,China)
OBJECTlVE To investigate the effect of stretch on muscarinic receptor-and 5-hydroxytryptamine(5-HT)receptor-mediated contractile responses in isolated circular muscle strips taken from the rat stomach.METHODS The contractile responses to carbachol(CCh)0.001-30 μmol·L-1or 5-HT 0.0001-30 μmol·L-1administered cumulatively were recorded in isolated circular muscle strips taken from the gastric fundus,body,cardia and pylorus of rats under different preloads of 1.0,1.5,2.0,2.5 and 3.0 g,but a single concentration of CCh 0.3 μmol·L-1was administered to the antrum. RESULTS The-Log EC50value for CCh in the isolated circular muscle strips of the gastric fundus,body and pylorus under 1.0 g preload was the largest,but decreased significantly with higher preloads (P<0.05,P<0.01).A similar result was obtained in the isolated circular muscle strips of the gastric body when 5-HT was used as an agonist.The Emaxvalue of contractile responses to CCh and 5-HT in the circular muscle strips of the gastric cardia under 3.0 g preload was increased by 117.4%and 75.7%compared to that under 1.0 g preload.The Emaxvalue of contractile responses to 5-HT in the circular muscle strips of the gastric body under 3.0 g preload was also increased by 115.9%when compared to 1.0 g preload.The Emax(g)value of contractile responses to CCh in four types of muscle strips was 10.453±2.956(cardia under 3.0 g preload),13.878±2.618(fundus under 2.5 g preload),10.244±1.843 (gastric body under 2.5 g preload)and 2.585±1.098(pylorus under 2.5 g preload),respectively.The Emax(g)value of contractile responses to 5-HT in three types of muscle strips was 4.363±1.705(cardia under 3.0 g preload),3.931±0.615(fundus under 3.0 g preload)and 3.161±0.680(gastric body under 3.0 g preload),respectively.CONCLUSlON 0.5 g or 1.0 g preload is inadequate for accurate determination of contractile responses mediated by muscarinic receptors and 5-HT receptors in isolated circular muscle strips taken from the rat gastric cardia,fundus,body and pylorus,but 2.0 g preload is optimal for investigating muscarine receptor-or 5-HT receptor-mediated contractile responses of isolated gastric strips of rats.
receptors,muscarine;receptors,5-hydroxytryptamine;stretch;gastric body;fundus;cardia;pylorus
REN Lei-ming,E-mail:ren-leiming@263.net,Tel:(0311)86266722
R975
A
1000-3002(2014)04-0519-06
10.3867/j.issn.1000-3002.2014.04.008
Foundation item:The project supported by National Program on Key Basic Research Project of China(973 Program)(2012CB518601);and National Science&Technology Major Project of China(2011ZX 09102-011-04)
2014-01-09 接受日期:2014-07-14)
(本文編輯:喬 虹)
國家重點基礎(chǔ)研究發(fā)展計劃(973計劃) (2012 CB518601);國家科技重大專項(2011ZX09102-011-04)
王東凱(1984-),男,碩士研究生;任雪姣(1985-),女,碩士,主要從事腫瘤放射治療學(xué)研究。
任雷鳴,Tel:(0311)86266722,E-mail: ren-leiming@263.net
?共同第一作者。