国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

巴爾哲堿性花崗巖鋯石稀土微量元素、U-Pb年齡及其成巖成礦指示*

2014-04-10 01:27:21丘志力梁冬云王艷芬孫媛李榴芬
巖石學報 2014年6期
關鍵詞:淺色深色鋯石

丘志力 梁冬云 王艷芬,,3 孫媛 李榴芬

1. 中山大學地球科學系,廣州 5102752. 廣州有色金屬研究院,廣州 5106513. 江蘇省有色金屬華東地質勘查局,南京 2100071.

巴尓哲堿性花崗巖體是分布在我國東北興蒙造山帶中段的罕見超大型稀土、鈮、鈹、鋯礦床。本文通過對堿性花崗巖東巖體(礦體)成礦期有關深色和淺色鋯石進行陰極發(fā)光、電子探針成分和LA-ICP-MS的分析測試,利用鋯石地球化學特征探討了巖體成巖成礦作用的關系。巖體的鋯石可分為淺色和深色兩類,兩類鋯石陰極發(fā)光具有不同特征,淺色鋯石可見較寬不連續(xù)振蕩環(huán)帶,部分鋯石存在核幔分區(qū);和淺色鋯石相比,深色鋯石邊部或內部凹坑、裂紋處溶蝕結構更發(fā)育。兩類鋯石均富含Nb、U、Y和REE元素,但深色鋯石具有更高的Fe含量。Ⅰ型淺色鋯石輕稀土富集,重稀土分異明顯,具有高Hf、Nb、Ta,低Y特征,Ⅱ型淺色鋯石輕稀土虧損,重稀土分異不明顯,其稀土元素球粒隕石分布模式具有明顯的“M型”四分組效應,顯示出熔體-流體結晶鋯石的特征。深色鋯石原生結晶部分稀土配分模式與淺色鋯石Ⅱ型相似,輕稀土虧損,重稀土分異不明顯,受流體改造部分∑REE無明顯變化,但LREE和Nb、Ta、U、Th含量及Th/U比值降低。淺色鋯石和深色鋯石的206Pb/238U年齡相近,獲得鋯石U-Pb的結晶年齡為122.7±1.8Ma(MSWD=5.1),與前人用Rb-Sr法及U-Pb法測定的年齡值一致;上述結果顯示,巴尓哲巖體成礦期鋯石具有幔源花崗巖來源特征,大型稀有稀土金屬成礦物質的富集可能和源區(qū)經(jīng)歷的近期富集交代及巖體在富含F(xiàn),Cl等揮發(fā)分流體-水環(huán)境下作用下經(jīng)歷分離結晶兩個因素疊加有關。可以認為,巴尓哲富稀土花崗巖成巖與成礦作用是近于同時完成的。

巴爾哲堿性花崗巖;鋯石;稀土及微量元素;U-Pb年代學;成巖成礦指示

1 引言

堿性花崗巖的物質來源、同位素特征、巖石成因及其與構造環(huán)境的關系是近二十年巖石學研究的熱點問題之一(Collinsetal., 1982; Eby, 1990, 1992; Windley, 1993; Poitrassonetal., 1994, 1995; Wickhametal., 1995, 1996; Kingetal., 1996, 2001; Landenberger and Collins, 1996; Turner and Foden, 1996; Boninetal., 1998; Liégeoisetal., 1998; Wuetal., 2002; Klimmetal., 2008; El-Bialy and Streck, 2009; Jiangetal., 2009)。我國東部堿性花崗巖的成因及物質來源已有相當多的學者進行過研究并提出了不同的成因觀點(顧連興, 1990; 魏春生等, 2001; Wuetal., 2002; 蔡劍輝等, 2004; 吳鎖平等, 2007),但對于堿性花崗巖成巖與稀有稀土金屬的礦化關系的研究卻相對較少(林德松, 1994; 馮守忠, 2000; 曹志敏等, 2004; Zhaoetal., 2007; Luetal., 2008; 牛賀才等, 2008)。本文選擇我國東部具有超大型稀土、鈮、鈹、鋯礦化的內蒙巴尓哲堿性花崗巖體為研究對象,通過對其成礦期鋯石稀土微量元素及其U-Pb年齡的研究來探討巖體成因及其礦化的關系。

2 內蒙巴尓哲堿性花崗巖及樣品來源

巴爾哲堿性花崗巖體位于大興安嶺南緣內蒙古哲里木盟扎魯特旗境內,大地構造上位于興蒙造山帶中段,巖體主要由兩個花崗巖巖株及小量巖脈組成,東、西兩個巖體是礦區(qū)的主體;區(qū)內主要的控巖控構造是北東向黃崗梁-甘珠爾廟-烏蘭浩特斷裂帶,區(qū)內火山和巖漿活動強烈,巖石種類復雜多樣,巖性包括中基性的閃長巖、閃長斑巖,中性至酸性、酸偏堿性鈉閃石花崗巖等組成,主要圍巖為侏羅紀呼日格組的堿性流紋質晶屑巖屑凝灰?guī)r。

巴爾哲堿性花崗巖巖石地球化學特征前人已做過較為詳細的工作(王一先和趙振華, 1997; 馮守忠, 2000; Jahnetal., 2001; 袁忠信等, 2003; 楊武斌等, 2009, 2011);巖體與圍巖間呈侵入接觸關系,東巖體主要組成礦物包括微斜長石、石英、鈉長石、鈉閃石、霓石、鋯石及磁鐵礦,巖體鈉閃石化、硅化蝕變強烈;和東巖體相比,西巖體的主要組成礦物條紋長石更為特征,晶洞發(fā)育;巴爾哲堿性花崗巖全巖稀土元素配分具有明顯的四分組效應(王一先和趙振華, 1997; Jahnetal., 2001),同時巴爾哲堿性花崗巖還是一個明顯虧損18O的花崗巖,其δ18O值為-5.61,是國內δ18O值最低的堿性花崗巖,其中長石18O較石英的氧同位素虧損更加明顯,巖體和圍巖具有相似的氧同位素組成(Jahnetal., 2001; 袁忠信等, 2003)。不同學者獲得的全巖Rb-Sr等時線年齡基本一致,變化在122±5Ma~127.2Ma,巖體初始的87Sr/86Sr為0.703~0.7071,εNd(t)為+1.88~+2.40和εNd(t) +1.9~+2.5 (王一先和趙振華, 1997; Jahnetal., 2001; 袁忠信等, 2003)。

本文樣品選自巴爾哲堿性花崗巖東巖體(礦體)從地表到深部的混合樣,樣品破碎粒度<0.32mm。經(jīng)顯微鏡觀察、電子探針分析及X射線衍射分析,確定該混合樣的主要礦物包括微斜長石、石英、鈉長石、鈉閃石、霓石、鋯石、獨居石、錳鈮鐵礦、氟碳鈰礦、氟碳鈰釔礦、興安石、鋅日光榴石、磁鐵礦、錳鈦鐵礦、釷石、錫石等,和前人研究一致。鋯石的分選工作在廣州有色金屬研究院選礦工程研究所完成,混合樣進行重選-磁選及人工淘洗,烘干后在雙目鏡下挑純。選出的鋯石大的可達到0.3mm,小者0.01mm,玻璃光澤,透明-半透明,顏色有無色、淺黃色、紅色、紅褐色。鋯石晶型復雜,部分呈不規(guī)則粒狀集合體產(chǎn)出。具完整晶型者以錐面較柱面發(fā)育者居多,呈雙錐狀和短柱狀,和堿性花崗巖中鋯石形態(tài)的標型特征一致。大致可分為深色和淺色兩種類型,深色鋯石和淺色鋯石的晶型類似,晶體呈自形-半自形,錐面均主要發(fā)育{101},柱面主要發(fā)育{100},但后者自形程度較前者高。淺色鋯石(樣品BEZ1)長約150~300μm,長寬比約為1~2。深色鋯石(BEZ2)長約140~330μm,長寬比約1.1~2.4。

3 測試方法

將分選出來的鋯石按照可以觀察其最大表面積晶面的原則固定在環(huán)氧樹脂上,做成薄圓柱狀樣品靶,放入恒溫箱中冷卻5h,先后用不同型號的砂紙和磨料粗磨、細磨去鋯石大約1/3,使樣品柱上全部鋯石均有較好的觀察面,最后進行仔細拋光。

鋯石的電子探針分析在南京大學內生金屬礦床成礦機制研究國家重點實驗室完成。鋯石的陰極發(fā)光照像和LA-ICP-MS微量元素分析和U-Pb定年分析均在中國地質大學(武漢)地質過程與礦產(chǎn)資源國家重點實驗室完成。

表1兩類鋯石電子探針成分分析(wt%)

Table 1The element compositions (wt%) of two types zircons of Baerzhe alkaline granite by EPMA

序號1234567891011121314151617181920鋯石類型淺色鋯石深色鋯石SiO232.833.133.633.934.233.533.733.833.934.533.333.93433.632.733.633.833.533.333.2CaO0.02-0.040.020.010.020.020.050.010.160.050.090.080.070.090.070.070.10.050.03TiO20.020.040.040.050.020.040.050.070.090.230.240.260.20.190.230.170.140.270.080.04FeO-0.02--0.010.06-0.020.090.250.310.30.180.180.20.220.320.310.16-MnO0.030.010.01-0.030.040.010.070.010.090.110.140.050.130.080.07-0.14--MgO--0.030.01---0.010.010.03----0.01-0.02-0.020.05Al2O3----0.010.010--0.190.20.230.190.230.120.170.10.290.08-P2O50.08-0.020.020-0.05--0---0.01-0.04---0.05Nb2O50.17-0.10.20.170.290.40.210.290.230.230.240.220.20.270.220.290.250.510.31Ta2O50.22--0.090.08-0.02-----0.06---0.030.01--ZrO254.653.158.257.557.657.25856.55855.756.256.554.756.456.555.655.25756.658.2HfO21.280.931.161.291.521.121.371.021.080.961.011.141.171.271.091.071.011.31.111.52ZrO2/HfO242.657.450.144.537.95142.355.653.857.855.849.646.644.551.951.954.843.951.238.2Y2O37.098.053.63.83.573.83.624.573.063.173.53.264.044.094.484.964.313.424.163.66ThO20.440.250.260.050.30.170.110.010.10.030.010.050.03--0.040.20.030.030.21UO20.510.250.290.290.210.280.220.310.20.250.160.130.240.30.260.40.380.340.260.31Ce2O30.120.070.150.210.150.240.280.110.240.460.420.560.130.120.590.460.23-0.270.33Tm2O30.060.070.04-0.060.11-0.070.050.010.070.040.160.09-0.090.20.04-0.07Yb2O30.270.390.460.470.430.320.410.590.580.460.610.310.750.690.750.610.771.090.330.46Er2O30.490.510.220.210.440.430.390.450.740.430.720.340.790.760.430.640.790.430.610.46Ho2O30.27-0.010.220.090.160.33-0.76-0.27-0.4---0.38-0.950.14Dy2O30.651.010.260.520.440.450.40.410.640.460.460.280.490.620.580.161.030.270.760.45Lu2O30.480.460.30.360.50.710.120.120.110.470.410.350.410.180.660.220.530.450.330.51∑RE2O32.342.511.451.972.112.41.931.743.112.292.951.883.132.443.012.183.942.283.242.41Total99.598.398.899.199.898.999.598.499.998.198.398.298.399.099.198.999.899.399.6100

鋯石的陰極發(fā)光測試儀器為日本JEOL公司的JXA-8100。電子探針成分測試儀器為JXA-8800M,測試條件為:速電壓15kV,束流電流10nA,探針直徑1μm。LA-ICP-MS分析儀器為Agilent7500a等離子體質譜儀和GeoLas Pro激光剝蝕系統(tǒng),等離子體功率:1350w;激光波長:193nm;激光頻率:10Hz;激光能量:90mJ;光斑直徑:1-11號點為32μm,12-40號點為24μm,每測試5~7個點進行兩次91500標樣校正;微量元素含量計算以NIST610作外標,以Zr作內標,數(shù)據(jù)處理采用劉勇勝教授編寫的ICPMSDataCal軟件,并用91500標準鋯石作為外標進行元素和同位素分餾校正,年齡計算采用ISOPLOT軟件,分析過程中國際標準物質NIST610測試值與文獻獲得NIST610參考值在誤差范圍內一致(Gaoetal., 2002)。

4 分析結果

鋯石的陰極發(fā)光圖像顯示(圖1),兩類鋯石的陰極發(fā)光中等或較弱,根據(jù)鋯石陰極發(fā)光類型可以將鋯石分為幾種不同類型:可見明暗相間的自形振蕩生長環(huán)帶,具巖漿成因特征的鋯石;中心到邊部只呈現(xiàn)微弱的明暗變化(圖1e-i)鋯石;具有扇形分帶結構(圖1m)和發(fā)育多個世代的鋯石(圖1n, o),其中后者又可分為早世代(核部)和晚世代(幔部),生長均較自形,且陰極發(fā)光強度無明顯變化;核幔邊界較模糊,核部和幔部晶面生長方向。鋯石的邊部或內部凹坑、裂紋處發(fā)育不同程度的溶蝕結構。和淺色鋯石相比,深色鋯石主要以具有扇形分帶結構的鋯石為主,部分鋯石陰極發(fā)光很暗且無分帶,鋯石的邊部或內部凹坑、裂紋處溶蝕結構更發(fā)育,??梢姳唤淮糠执┎邃喪纳L紋理,鋯石內部呈現(xiàn)出斑雜狀結構和多孔狀,說明后者形成過程中流體的參與可能更為明顯(Rubatto and Gebauer, 2000)。

圖1 巴爾哲堿性花崗巖鋯石陰極發(fā)光圖左為淺色鋯石;右為深色鋯石.圓圈為測試位置Fig.1 CL images of zircons in Baerzhe granitic plutonLeft: the light-colored zircon; Right: the dark-colored zircon. Round pits are positions of laser analyses

圖2 淺色鋯石的稀土配分模式圖(左Ⅰ型;右Ⅱ型)Fig.2 Chondrite-normalized REE abundance patterns of light zircons from Baerzhe alkaline granites (Left: type Ⅰ; Right: type Ⅱ)

圖3 Ⅰ、Ⅱ型淺色鋯石的Th、U含量(左)和Nb、Ta含量(右)分布圖Fig.3 The distributive diagrams of Th vs. U (left) and Nb vs. Ta (right) of light color typeⅠand Ⅱ zircons in Baerzhe alkaline granites

鋯石電子探針分析結果顯示,兩類鋯石ZrO2含量明顯偏低,鋯石的HfO2含量為0.925%~1.524%,鋯石具有明顯低的Zr、Hf元素;兩者均含有較高的Nb、U、Y和稀土元素,其中淺色鋯石Nb的含量變化于0.10%~0.40%之間,UO2含量分布于0.13%~0.51%之間,Y2O3的含量主要分布于3.06%~4.57%之間(兩個分析點除外),ΣRE2O3變化于1.45~3.13之間;深色鋯石Nb的含量變化于0.22%~0.51%之間,UO2含量分布于0.26%~0.40%之間,Y2O3的含量分布于3.42%~4.96%之間,ΣRE2O3變化于2.18%~3.94%之間(表1)。因此,均屬于賦礦的鋯石。不同的是,淺色鋯石基本上不含F(xiàn)e或者只含微量的Fe,深色鋯石的Fe含量為0.16%~0.32%(1個除外),總體上明顯高于淺色鋯石。

對19顆淺色鋯石共22個點進行了LA-ICP-MS微量元素測試(表2),參考陰極發(fā)光特征,認為其中19個點具有原生結晶鋯石特征,3個點具有顯示有流體改造特征。稀土配分模式顯示,淺色鋯石總體上可分為兩種類型,一類(Ⅰ型)具有輕稀土富集,重稀土分異明顯特征(圖2左),其稀土總量變化于14035×10-6~35731×10-6之間,平均稀土總量為24586×10-6,其LREE/HREE為0.15~1.47,Yb/Sm為3.85~16.7,δEu為0.01~0.03;另一類(Ⅱ型)具有輕稀土虧損,重稀土分異不明顯特征(圖2右)。其稀土總量變化于24666×10-6~46264×10-6之間,平均稀土總量為31587×10-6,LREE/HREE為0.13~0.38,Yb/Sm主要變化于2.03~9.26,δEu為0.01~0.03。

圖4 淺色鋯石的Hf、Y含量分布圖Fig.4 The distributive diagrams of Hf vs. Y of light color typeⅠand Ⅱ zircons in Baerzhe alkaline granites

Ⅰ型淺色鋯石Th含量主要變化于110×10-6~663×10-6,U含量主要變化于894×10-6~2391×10-6之間,Th/U比值除了一個數(shù)據(jù)為0.55(BEZ1-20)以外,其余的主要分布于0.11~0.29之間,另外有三個分析點具有異常低的Th/U比值(BEZ1-16,0.07;BEZ1-17,0.02;BEZ1-21,0.07),(Sm/La)N:0.16~6.73。Ⅱ型淺色鋯石10個測點Th的含量總體上較第一種類型的高(圖3),其中5個分析點(BEZ1-5,6,10,11,13)的Th含量分布于402×10-6~879×10-6之間,其余5個分析點的Th含量則達到1010×10-6~3903×10-6,U含量分布于1619×10-6~3957×10-6之間,無明顯變化,10個分析點的Th/U比值變化于0.12~1.00,(Sm/La)N:1.39~43.9??傮w上,Ⅰ型淺色鋯石的Th的含量、Th/U比值和(Sm/La)N均低于于Ⅱ型淺色鋯石。

Ⅰ型淺色鋯石的Nb含量分布于1729×10-6~4517×10-6之間,Ta含量分布于184×10-6~411×10-6之間,Nb/Ta比值變化為8.21~19.2。Ⅱ型淺色鋯石Nb含量分布于1207×10-6~2223×10-6之間(BEZ1-2除外,其Nb含量為861.54×10-6),Ta含量分布于143×10-6~271×10-6之間,Nb/Ta比值為4.45~13.3。Ⅰ型淺色鋯石的Nb、Ta含量和Nb/Ta比值高于Ⅱ型淺色鋯石(圖3)。

另外,Ⅰ型淺色鋯石Hf含量分布于1.09%~1.37%之間,Y含量分布于1.21%~3.46%之間,Hf/Y比值變化于0.32~1.12之間。Ⅱ型淺色鋯石Hf含量分布于0.96%~1.33%之間,Y含量主要分布于2.7%~3.99%之間,總體上,Ⅰ型淺色鋯石具有高Hf低Y特征而Ⅱ型則具有低Hf高Y特征(圖4)。

根據(jù)微量元素分析結果(表3),參考陰極發(fā)光特征,深色鋯石也可分為原生結晶Ⅰ型鋯石和受流體的改造作用明顯的Ⅱ型鋯石;原生結晶部分(深色Ⅰ型)的稀土配分模式(圖5)輕稀土虧損,重稀土分異明顯, 其稀土總量分布于27062×10-6~33885×10-6之間,平均稀土總量為30844×10-6,其分布模式明顯不同于淺色鋯石;LREE/HREE為 0.11~0.44,Yb/Sm為2.13~8.34,δEu為0.02。Th/U比值變化于0.20~0.34,Nb/Ta比值變化于5.12~11.60,Hf/Y比值變化于0.26~0.41之間,(Sm/La)N為8.88~38.6。受流體改造鋯石(深色Ⅱ型)根據(jù)其陰極發(fā)光特征又可分為兩種類型,其一為灰色核部-白色邊部類者(測點號BEZ2-28,BEZ2-29;BEZ2-32,BEZ2-33),另一種是白色核部-灰色邊部者,兩者稀土總量及Eu負異常特征和深色原生結晶Ⅰ型相似,但輕稀土(LREE)和Nb、Ta、U、Th含量及Th/U比值有所降低,LREE/HREE為0.08~0.44,Yb/Sm為1.87~10.8,(Sm/La)N為0.82~4.49。

鋯石的U-Pb同位素分析結果顯示(表4),數(shù)據(jù)在206Pb/238U-207Pb/235U諧和圖中不同程度沿水平方向偏離諧和線(圖6), 根據(jù)較能準確反映年輕鋯石結晶時間的206Pb/238U年齡計算,淺色鋯石Ⅰ206Pb/238U年齡主要分布范圍為113~129Ma(BEZ1-8除外,為139Ma),淺色鋯石Ⅱ年齡分布于116~126Ma之間,而深色鋯石Ⅰ年齡分布于117~128Ma之間。

表3巴爾哲堿性花崗巖深色鋯石稀土及微量元素分析結果(×10-6)

Table 3REE and trace element concentrations (×10-6) of dark zircons in Baerzhe alkaline granite

測點號BEZ2-27BEZ2-29BEZ2-33BEZ2-34BEZ2-35BEZ2-36BEZ2-38類型深色Ⅰ型CL特征暗色邊部Sr9.972.919.604.4215.585.873.97Ba25976.729811745217698.9Sc123123121123122123123Ga3.121.303.611.415.802.071.41Pb23111112683.9215207273Th6061000108890376711933817U3020294333782759364036013280Nb1799210125691535280717002437Ta201238285283242332243SiO2(wt%)36.934.736.037.938.237.940.0P2O5(wt%)0.080.050.070.090.070.120.06TiO2(wt%)0.080.080.100.060.130.060.09Hf(wt%)1.371.301.171.261.191.101.24Y(wt%)4.613.144.084.134.484.253.06La14510212058.122483.9133Ce126223421535122418519102217Pr15042620916025898.3364Nd112733281572138316818462830Sm1104229815251447128310852232Eu11.919.716.515.110.411.922.5Gd2167267526732421202724043426Tb691640787703643774828Dy6308485667705780597069076152Ho1757118217571452173818681452Er6437387560424742653163804436Tm1205671108682712451112711Yb9207488577806095926278134883Lu11806039227561161931601ΣREE32750279043279627062338853122230288LREE3799851649784288530730357799HREE28951193882781822775285782818722489LREE/HREE0.130.440.180.190.190.110.35δEu0.020.020.020.020.020.020.02δCe1.891.561.852.081.652.141.65Hf/Y0.300.410.290.310.270.260.41Nb/Ta8.958.849.025.4211.65.1210.0Th/U0.200.340.320.330.210.331.16Yb/Sm8.342.135.104.217.227.202.19(Sm/La)N11.834.819.638.68.8820.025.9測點號BEZ2-28BEZ2-29BEZ2-32BEZ2-33BEZ2-37BEZ2-38BEZ2-39BEZ2-40類型深色Ⅱ型CL特征白色邊部淺灰色邊部白色邊部灰色邊部白色核部灰色邊部白色核部灰色邊部Pb67.8111184126547273442455Th205100056810881054038171982726

續(xù)表3

Continued Table 3

測點號BEZ2-28BEZ2-29BEZ2-32BEZ2-33BEZ2-37BEZ2-38BEZ2-39BEZ2-40類型深色Ⅱ型CL特征白色邊部淺灰色邊部白色邊部灰色邊部白色核部灰色邊部白色核部灰色邊部U15772943203733782000328031283009Nb15702101152525691206243720753412Ta160238193285223243173200Hf(wt%)1.401.301.151.171.001.241.201.19Y(wt%)3.473.144.464.083.583.064.223.38La144102433120107133113258Ce1754234214181535625221711541640Pr26142615720952.4364206341Nd184533289201572389283017452220Sm143222989351525589223222732056Eu13.619.711.416.59.1622.531.322.0Gd20142675216026731666342656603806Tb55264073078759482815521027Dy473548567098677056356152116718037Ho12601182203517571502145225441846Er45493875709960424987443664395102Tm85567113271086856711839691Yb66594885970977806376488346173842Lu8846031181922811601443366ΣREE2695727904352153279624198302883928831252LREE54508516387449781771779955236537HREE2150719388313402781822426224893376524715LREE/HREE0.250.440.120.180.080.350.160.26δEu0.020.020.020.020.030.020.030.02δCe1.711.561.331.852.031.651.431.15Hf/Y0.400.410.260.290.280.410.280.35Nb/Ta9.808.847.899.025.4010.012.017.1Th/U0.130.340.280.325.271.160.630.24Yb/Sm4.652.1310.45.1010.82.192.031.87(Sm/La)N3.311.834.492.913.831.430.821.01

5 討論

5.1 淺色和深色鋯石的成因及其與礦化的關系

本文研究的淺色和深色兩類鋯石的組成和鋯石的理論組成相比(ZrO267.1%,SiO232.9%),ZrO2含量明顯偏低,鋯石具有明顯低的Zr、Hf元素組成,ZrO2/HfO2比值變化于37~59之間,ZrO2與HfO2含量呈正相關性,大部分鋯石以典型的雙錐狀為主,具有幔源型花崗巖鋯石的特征(汪相和

圖5 深色鋯石的稀土配分模式圖(上:Ⅰ型,下:Ⅱ型;球粒隕石據(jù)Sun and McDonough, 1989)Fig.5 Chondrite-normalized REE abundance patterns of dark zircons in Baerzhe alkaline granites (Upper: typeⅠ; Lower: typeⅡ; chondrite after Sun and McDonough, 1989)

圖6 鋯石U-Pb協(xié)和圖Fig.6 La-ICP-MS U-Pb zircon concordia digram

表4巴爾哲堿性花崗巖鋯石U-Pb年齡測定結果

Table 4The U-Pb isotopic data of zircons in Baerzhe alkaline granite

序號測點號Pb(total)(×10-6)Th(×10-6)U(×10-6)ThU同位素比值年齡/校正(Ma)207Pb206Pb±σ207Pb235U±σ206Pb238U±σ206Pb238U±1σ1BEZ1-8206934712650.270.00000.00000.14270.31040.01910.0027122172BEZ1-959831112990.240.05790.00970.16270.02590.01910.000312223BEZ1-127061447740.190.00000.00000.13690.13760.01900.001112274BEZ1-1444321620550.110.03690.00900.10960.02330.01910.000212225BEZ1-15203237820290.190.00000.00000.12810.23110.01920.0020123136BEZ1-16104993.212270.080.00000.00000.13070.09590.01950.001012467BEZ1-1754715515780.100.00000.00000.11680.06200.01910.000512238BEZ1-2046584616700.510.04500.00810.12550.02140.01910.000212219BEZ1-21342111416620.070.33610.32850.09400.22010.01930.00201231310BEZ1-22102651219540.260.00000.00000.02670.06670.01890.0006121411BEZ1-24200561121350.290.00000.00000.09270.16270.01920.0013123812BEZ1-1216114336950.310.04830.00110.12830.00270.01920.0001123113BEZ1-3591379140550.930.04870.00210.13010.00550.01920.0001123114BEZ1-4291113128740.390.05340.00220.13960.00560.01890.0001121115BEZ1-5232547930930.150.04520.01220.11890.02940.01800.0003115216BEZ1-1059481120850.390.04770.00870.14150.02310.01920.0002123117BEZ1-13329623426950.090.23790.19570.13550.17570.01920.00151231018BEZ1-18787169125330.670.03860.01190.12400.02900.01900.0003122219BEZ1-19142493021850.430.07270.02310.26190.08880.01880.0010120620BEZ2-2788550830040.170.03980.01870.15800.05490.01910.0005122321BEZ2-2933888927300.330.04400.00490.11670.01300.01930.0002123122BEZ2-3337493730330.310.05140.00450.13350.01180.01880.0001120123BEZ2-3419977824600.320.04740.00260.12400.00660.01910.0002122124BEZ2-3578366732870.200.04470.00910.12890.02300.01910.0002122125BEZ2-36729102932230.320.02800.01720.14340.04010.01910.0003122226BEZ2-381024322329161.110.00130.02040.12190.06060.01910.0005122327BEZ2-40226662326520.230.00010.04280.17810.12120.01910.0010122628BEZ1-6283348726600.180.03170.02560.12790.06670.02000.0005127329BEZ1-734014713570.110.04720.00760.12830.02010.01900.0002122130BEZ1-1130267016770.400.03660.01150.12700.03570.01890.0004120231BEZ2-2822416514550.110.03100.00580.08390.01520.01920.0002122132BEZ2-3279748918270.270.07730.01320.22030.03340.01920.0004122233BEZ2-372811894017515.110.00000.00000.28260.18350.02000.00161281034BEZ2-392220155825860.600.00000.00000.09940.19520.01920.001712210

注:1~27為原生結晶點;其中:1~11淺色鋯石Ⅰ型;12~19淺色鋯石Ⅱ型;20~27深色鋯石Ⅰ型;28~34深色鋯石Ⅱ型

Pupin, 1992)。兩類鋯石的稀土總量變化于1.4%~4.6%之間,富含稀土元素,其中稀土配分模式與一般花崗巖和偉晶巖中的鋯石類似(Belousovaetal., 2002),也相似與前人研究的花崗巖類的鋯石,鋯石δEu分布于0.01~0.03之間,球粒隕石標準化稀土配分模式呈深“V”型,具顯著的Eu負異常,指示鋯石結晶時花崗質巖漿經(jīng)歷過高度的分異,結果和前人研究獲得該巖體全巖及其它礦物的稀土組成均具有顯著虧損特征具有明顯的一致性(Jahnetal., 2001; Zhaoetal., 2002);但部分鋯石輕稀土明顯富集,和熱液成因鋯石特征一致(Hoskin and Ireland, 2000; Corfu, 2003; Hoskin, 2005; 畢詩健等, 2008),說明鋯石主要是在花崗巖或相關的熔體-流體體系中結晶的。

但鋯石的陰極發(fā)光特征及稀土配分特征同時顯示,兩類鋯石形成先后或者經(jīng)歷的過程仍然有所不同。從淺色鋯石到深色鋯石,∑REE、HREE和Y、Th、U等微量元素含量呈漸變增長趨勢,說明淺色鋯石較深色鋯石在巖漿中結晶早;Ball-haus等進行的Fe、Ni、Cu、Pt、Au等元素在流體相(飽和Si-NaC1的C-H-O-S流體)和硫化物相(摻有Pt、Au等金屬)之間的分配實驗(880~900℃、壓力為0.4~lGPa)顯示,流體中Fe含量明顯增高(轉引自劉叢強等,2001),本文深色鋯石Fe的含量明顯高于淺色鋯石,如果考慮其陰極發(fā)光特征較少顯示巖漿鋯石的典型特征和強鈉長石化地段鋯石高度富集的事實(王一先等,1997),可以認為深色鋯石的形成可能和晚期巖體經(jīng)歷的流體和揮發(fā)分的交代蝕變作用關系更加密切。

在淺色鋯石中,淺色鋯石Ⅰ的陰極發(fā)光特征以震蕩環(huán)帶為主,其Th/U比值主要分布于0.11~0.29之間,與火成鋯石相似。Yb/Gd=3.96~9.18,重稀土分異程度較大,表現(xiàn)為一般花崗巖鋯石的特征;而淺色鋯石Ⅱ則具有顯著的“M”型稀土元素四分組效應,Yb/Gd=1.07~3.45,重稀土分異不明顯,具有流體-熔體共存體系結晶礦物特點。和淺色鋯石Ⅱ相比,淺色鋯石Ⅰ富輕稀土(LREE)、Nb、Ta,貧Th、U、Y,其稀土總量(∑REE)和重稀土(HREE)含量總體上低于前者,其Th/U比值也較低;同時,Ⅰ型淺色鋯石具有高Hf低Y特征,和高溫幔源型的花崗巖鋯石一致,而Ⅱ型則具有低Hf高Y特征。由于Y比Hf,Th比U具有更大的離子半徑,前者比后者傾向于在巖漿晚期富集(汪相和Pupin, 1992),這些特征均顯示Ⅱ型淺色鋯石形成晚于Ⅰ型淺色鋯石。而較多的學者也認同,高度演化的花崗質巖漿晚期流體-熔體相互作用是花崗質巖漿稀土四分組效應形成的重要控制因素(趙振華等, 1992; Bau, 1996; Irber, 1999; Wuetal., 2004; Zhaoetal., 2002; 楊武斌等, 2009)??梢哉J為,Ⅱ型淺色鋯石更可能形成于巖漿演化晚期流體-熔體共存體系環(huán)境,是流體-熔體相互作用的產(chǎn)物,這個結論和根據(jù)鋯石Ti溫度計計算獲得Ⅰ型、Ⅱ型淺色鋯石和深色鋯石Ti飽和溫度依次下降的結果相一致。

顯然,礦化鋯石陰極發(fā)光圖像及稀土和微量元素特征顯示,Ⅰ型淺色鋯石形成最早,是高度分異花崗質巖漿體系結晶產(chǎn)物,它們的成因和幔源花崗巖有關;Ⅱ型淺色鋯石形成于巖漿演化晚期流體-熔體共存的體系,其中深色鋯石的形成和流體交代作用關系更密切。

5.2 巴爾哲堿性花崗巖的成巖與成礦過程

巴爾哲巖體的造巖礦物中包裹有稀有稀土金屬礦物的包體,說明巖漿冷卻結晶階段,稀有稀土金屬礦物已有晶出,因此,有人認為成礦或早于巖漿結晶或與巖漿結晶同時進行(馮守忠, 2000)。但由于造巖礦物不是主要的賦礦礦物,上述的認識有待進一步證據(jù)的支持。

本文研究的鋯石既是成巖副礦物也是主要的賦礦礦物之一,從早到晚以及巖漿結晶及和熔體-流體有關鋯石的206Pb/238U平均年齡為122.7±1.8Ma,不同類型鋯石在誤差范圍內一致,并且和前人利用Rb-Sr等時線獲得的全巖年齡122±5Ma~127.2Ma非常一致(王一先等, 1997; Jahnetal., 2001; 袁忠信等, 2003),充分顯示出巴爾哲巖體侵位時間和賦礦鋯石結晶時間不存在時差,或者說巴爾哲巖體的成巖和成礦是近于同時進行的,這一認識和根據(jù)礦床富晶體流體包裹體研究獲得的結論一致(牛賀才等, 2008; 楊武斌等, 2009)。

由于鋯石是結構高度穩(wěn)定的副礦物,其稀土微量元素及氧同位素組成不易受高溫變質、熱液蝕變的影響而發(fā)生變化(Watson and Cherniak, 1997; Monani and Valley, 2001; 蔡劍輝等, 2004),甚至即使經(jīng)歷過榴輝巖相高級變質作用,鋯石仍能基本保存原巖氧同位素的特征(鄭永飛等, 2003; Chenetal., 2004),巴爾哲巖體鋯石具有很大的負的δ18O(-10.9‰~-10.6‰)(袁忠信, 2003),顯示鋯石結晶時氧同位素虧損是花崗質熔體-流體具有的特征。巴爾哲花崗巖εNd(t)=+1.88~+2.50,(87Sr/86Sr)i<0.705,顯示新生地幔來源特征,但巖體的巖石的f(Sm/Nd)<0(王一先等, 1997; Jahnetal., 2001),顯示出巖漿曾經(jīng)歷了近期的富集事件,這種近期事件可能是該巖體氧同位素虧損的重要原因。就目前的資料來說,強烈伸展體制下巖石圈拆沉過程中經(jīng)歷過高溫海水熱液交換的再循環(huán)下部洋殼的部分熔融物的存在(交代)是一種可接受的解釋(Wuetal., 2002; 蔡劍輝等, 2004);而巖體全巖及其“整體”組成礦物(包括本文鋯石)均具有強烈的Eu虧損(δEu僅0.01~0.04),特別是一般呈現(xiàn)Eu正異常的長石也發(fā)生明顯的Eu負異常(δEu僅0.057)(Zhaoetal., 2002),說明巖體結晶前還經(jīng)歷過強烈的分異,鋯石是從經(jīng)歷了長石高度分離結晶后的殘留花剛質熔體中結晶的。因此,成礦物質的富集成礦可能和再循環(huán)下部洋殼近期富集交代及富含F(xiàn),Cl等揮發(fā)分流體-水環(huán)境下的分離結晶兩個因素的疊加有關。

前人對巖體成巖礦物氧同位素的研究顯示,巖體中長石的氧同位素強烈虧損,但石英的氧同位素則仍然在地幔來源的范圍,顯示出巖漿結晶時發(fā)生的揮發(fā)分-水與熔體的交代溫度不會高于500℃(Jahnetal., 2001)。本文對受到流體改造的深色鋯石的研究顯示,遭受后期流體作用,鋯石稀土元素總量無明顯變化,但輕稀土(LREE)和Nb、Ta、U、Th含量及Th/U比值降低,可能是鋯石在流體的參與下發(fā)生了溶蝕再結晶作用,在這個過程中,成礦有關的元素被不同程度的逐出鋯石晶格(Pidgeonetal., 1998; Hoskin and Ireland, 2000; Tomascheketal., 2003),因此,我們認為后期的流體交代作用雖然可以對成礦產(chǎn)生貢獻(使部分成礦元素重新活化并被富化),但可能不是成礦物質的主要來源。

6 結論

(1) 巴爾哲花崗巖賦礦鋯石可以分為淺色和深色兩種類型,兩類陰極發(fā)光具有不同特征,淺色鋯石可見較寬不連續(xù)振蕩環(huán)帶,暗示鋯石形成時巖漿的溫度較高,部分鋯石存在核幔分區(qū);和淺色鋯石相比,深色鋯石邊部或內部凹坑、裂紋處溶蝕結構更發(fā)育,顯示其形成過程中流體的參與更為明顯。

(2) 巴尓哲巖體兩類鋯石均富含Nb、U、Y和REE元素,但深色鋯石具有更高的Fe含量,兩類鋯石球粒隕石標準化稀土配分模式呈深“V”型,具非常顯著的Eu負異常,巖體成礦期鋯石具有幔源花崗巖來源特征。淺色鋯石Ⅰ型輕稀土富集,重稀土分異明顯,具有高Hf、Nb、Ta,低Y特征,淺色鋯石Ⅱ型輕稀土虧損,重稀土分異不明顯,其稀土元素球粒隕石分布模式具有明顯的“M型”四分組效應,顯示出鋯石形成過程中經(jīng)歷過熔體-流體過程。巖漿結晶及和熔體-流體有關鋯石206Pb/238U平均年齡為122.7±1.8Ma,給出了該巖體成巖及成礦的年齡。

結果顯示,大型稀有稀土金屬的成礦物質的富集可能和源區(qū)經(jīng)歷的近期富集交代及巖體在富含F(xiàn),Cl等揮發(fā)分流體-水環(huán)境下的分離結晶兩個因素的疊加有關,成巖與成礦近于同時完成;后期的流體交代作用雖然可以對成礦產(chǎn)生貢獻,但可能不是成礦物質的主要來源。

致謝南京大學內生金屬礦床成礦機制研究國家重點實驗室陳小明教授和中國地質大學(武漢)地質過程與礦產(chǎn)資源國家重點實驗室劉勇勝教授在鋯石電子探針分析和鋯石LA-ICP-MS微量元素分析、U-Pb定年及數(shù)據(jù)解釋方面提供了重要幫助;中國科學院廣州地球化學研究所牛賀才研究員在成文過程中提出了寶貴意見;二位審稿人提出了寶貴的修改意見;特此一并致謝。

Bau M. 1996. Controls on the fractionation of isovalent trace elements in magmatic and aqueous systems: Evidence from Y/Ho, Zr/Hf, and ianthanide tetrad effect. Contributions to Mineralogy and Petrology, 123(3): 323-333

Belousova EB, Giffin WL, O’Reilly S and Fisher NF. 2002. Igneous zircon: Trace element composition as an indicator of source rock type. Contributions to Mineralogy and Petrology, 143(5): 602-622

Bi SJ, Li JW and Zhao XF. 2008. Hydrothermal zircon U-Pb dating and geochronology of quartz vein-type gold deposits: A review. Geological Science and Technology Information, 27(1): 69-76 (in Chinese)

Bonin B, Azzouni-Sekkal A, Bussy F and Ferrag S. 1998. Alkali-calcic and alkaline post-orogenic (PO) granite magmatism: Petrologic constraints and geodynamic settings. Lithos, 45(1-4): 45-70

Cai JH, Yan GH, Xiao CD, Wang GY, Mu BL and Zhang RH. 2004. Nd, Sr, Pb isotopic characteristics of the Mesozoic intrusive rocks in the Taihang-Da Hinggan Mountains tectonomagmatic belt and their source region. Acta Petrologica Sinica, 20(5): 1225-1242 (in Chinese with English abstract)

Cao ZM, Zheng JB, An W and Li YG. 2004. Geochemistry of Xuebaoding alkali granite and its ore-controlling effect. Journal of Ocean University of Qingdao, 34(5): 874-880 (in Chinese with English abstract)

Chen DG, Deloule E, Chen H, Xia QK and Wu YB. 2004. Preliminary study of microscale zircon oxygen isotopes for Dabie-Sulu metamorphic rocks: Ion probe in situ analyses. Chinese Science Bulletin, 48(16): 1670-1678

Collins WJ, Beams SD, White AJR and Chappell BW. 1982. Nature and origin of A-type granites with particular reference to southeastern Australia. Contributions to Mineralogy and Petrology, 80(2): 189-200

Corfu F. 2003. Atlas of zircon textures. Reviews in Mineralogy and Geochemistry, 53(1): 469-500

Eby GN. 1990. The A-type granitoids: A review of their occurrence and chemical characteristics and speculations on their petrogenesis. Lithos, 26(1-2): 115-134

Eby GN. 1992. Chemical subdivision of the A-type granitoids: Petrogenetic and tectonic implications. Geology, 20(7): 641-644

El-Bialy MZ and Streck MJ. 2009. Late Neoproterozoic alkaline magmatism in the Arabian-Nubian Shield: the postcollisional A-type granite of Sahara-Umm Adawi pluton, Sinai, Egypt. Arabian Journal of Geosciences, 2(2): 151-174

Feng SZ. 2000. Geological characteristic and ore genesis of rare metal and rare-earth ore deposit in Baerze alkalic granite, Inner Mongolia. Volcanology & Mineral Resources, 21(2): 137-142, 149 (in Chinese with English abstract)

Gao S, Liu XM, Yuan HL, Hattendorf B, Günther D, Chen L and Hu SH. 2002. Determination of forty two major and trace elements in USGS and NIST SRM glasses by laser Ablation-Inductively coupled Plasma-Mass spectrometry. Geostandards Newsletter, 26(2): 181-196

Gu LX. 1990. Geological features, petrogenesis and metallogeny of A-type granites. Geological Science and Technology Information, 9(1): 25-31 (in Chinese with English abstract)

Hoskin P and Ireland TR. 2000. Rare earth element chemistry of zircon and its use as a provenance indicator. Geology, 28(7): 627-630

Hoskin PWO. 2005. Trace-element composition of hydrothermal zircon and the alteration of Hadean zircon from the Jack Hills, Australia. Geochimica et Cosmochimica Acta, 69(3): 637-648

Irber W. 1999. The lanthanide tetrad effect and its correlation with K/Rb, Eu/Eu*, Sr/Eu, Y/Ho, and Zr/Hf of evolving peraluminous granite suites. Geochimica et Cosmochimica Acta, 63(3-4): 489-508

Jahn BM, Wu FY, Capdevila R, Martineau F, Zhao ZH and Wang YX. 2001. Highly evolved juvenile granites with tetrad REE patterns: The Woduhe and Baerzhe granites from the Great Xing’an Mountains in NE China. Lithos, 59(4): 171-198

Jiang N, Zhang SQ, Zhou WG and Liu YS. 2009. Origin of a Mesozoic granite with A-type characteristics from the North China craton: Highly fractionated from I-type magmas? Contributions to Mineralogy and Petrology, 158(1): 113-130

King PL, White AJR, Chappell BW and Allen CM. 1996. Characterization and origin of aluminous A-type granites from the Lachlan Fold Belt, southeastern Australia. Journal of Petrology, 38(3): 371-391

King PL, Chappell BW, Allen CM and White AJR. 2001. Are A-type granites the high-temperature felsic granites? Evidence from fractionated granites of the Wangrah Suite. Australian Journal of Earth Sciences, 48(4): 501-514

Klimm K, Holtz F and King PL. 2008. Fractionation vs. magma mixing in the Wangrah Suite A-type granites, Lachlan Fold Belt, Australia: Experimental constraints. Lithos, 102(3-4): 415-434

Landenberger B and Collins W. 1996. Derivation of A-type granites from a dehydrated charnockitic lower crust: Evidence from the Chaelundi complex, Eastern Australia. Journal of Petrology, 37(1): 145-170

Liégeois J, Navez J, Hertogen J and Black R. 1998. Contrasting origin of post-collisional high-K calc-alkaline and shoshonitic versus alkaline and peralkaline granitoids: The use of sliding normalization. Lithos, 45(1-4): 1-28

Lin DS. 1994. Rare metal and REE deposits related to alkaline granites. Mineral Resources and Geology, 8(6): 401-406 (in Chinese with English abstract)

Liu CQ, Huang ZL, Li HP and Su GL. 2001. The geofluid in the mantle and its role in ore-forming processes. Earth Science Frontiers, 8(4): 231-243 (in Chinese)

Lu JJ, Chen WF, Zhu JC, Wang RC, Zeng QT and Zhao L. 2008. The characteristics of chloritized granite type tin deposit in the Furong tin deposit district in Hunan Province, China. Geochimica et Cosmochimica Acta, 721(12): 570

Monani S and Valley JW. 2001. Oxygen isotope ratios of zircon: Magma genesis of lowδ18O granites from the British Tertiary Igneous Province, western Scotland. Earth and Planetary Science Letters, 184(2): 377-392

Niu HC, Shan Q, Luo Y, Yang WB and Yu XY. 2008. Study on the crystal-rich fluid inclusions from the Baerzhe superlarge rare elements and REE deposit. Acta Petrologica Sinica, 24(9): 2149-2154 (in Chinese with English abstract)

Pidgeon RT, Nemchin AA and Hitchen GJ. 1998. Internal structures of zircons from Archaean granites from the Darling Range batholith: Implications for zircon stability and the interpretation of zircon U-Pb ages. Contributions to Mineralogy and Petrology, 132(3): 288-299

Poitrasson F, Pin C, Duthou J and Platevoet B. 1994. Aluminous subsolvus anorogenic granite genesis in the light of Nd isotopic heterogeneity. Chemical Geology, 112(3-4): 199-219

Poitrasson F, Duthou J and Pin C. 1995. The relationship between petrology and Nd isotopes as evidence for contrasting anorogenic granite genesis: Example of the Corsican Province (SE France). Journal of Petrology, 36(5): 1251-1274

Rubatto D and Gebauer D. 2000. Use of cathodoluminescence for U-Pb zircon dating by Ion Microprobe: Some examples from the western Alps. In: Cathodoluminescence in Geosciences. Berlin Heidelberg: Springer-Verlag, 373-400

Sun SS and McDonough WF. 1989. Chemical and isotopic systematic of oceanic basalts: Implication for mantle composition and processes. In: Saunders AD and Norry MJ (eds.). Magmatism in Oceanic Basins. Spec. Publ. Geol. Soc. Lond., 42: 313-345

Tomaschek F, Kennedy AK, Villa IM, Lagos M and Ballhaus C. 2003. Zircons from Syros, Cyclades, Greece: Recrystallization and mobilization of zircon during high-pressure metamorphism. Journal of Petrology, 44(11): 1977-2002

Turner S and Foden J. 1996. Magma mingling in late-delamerian A-type granites at Mannum, South Australia. Mineralogy and Petrology, 56(3-4): 147-169

Wang X and Pupin JP. 1992. Distribution characteristics of trace elements in zircons from granitic rocks. Chinese Journal of Geology (Scientia Geologica Sinica), (2): 131-140 (in Chinese with English abstract)

Wang YX and Zhao ZH. 1997. Geochemistry and origin of the Baerzhe REE Nb-Be-Zr superlarge deposit. Geochimica, 26(1): 25-26 (in Chinese with English abstract)

Watson EB and Cherniak DJ. 1997. Oxygen diffusion in zircon. Earth and Planetary Science Letters, 148(3-4): 527-544

Wei CS, Zheng YF and Zhao ZF. 2001. Nd-Sr-O isotopic geochemistry constraints on the age and origin of the A-type granites in eastern China. Acta Petrologica Sinica, 17(1): 95-111 (in Chinese with English abstract)

Wickham SM, Litvinovsky BA, Zanvilevich AN and Bindeman IN. 1995. Geochemical evolution of Phanerozoic magmatism in Transbaikalia, East Asia: A key constraint on the origin of K-rich silicic magmas and the process of cratonization. J. Geophys. Res., 100(B8): 15641-15654

Wickham SM, Alberts AD, Zanvilevich AN, Litvinovsky BA, Bindeman IN and Schauble EA. 1996. A stable isotope study of anorogenic magmatism in East Central Asia. Journal of Petrology, 37(5): 1063-1095

Windley BF. 1993. Proterozoic anorogenic magmatism and its orogenic connections. Journal of the Geological Society, 150(1): 39-50

Wu FY, Sun DY, Li HM, Jahn BM and Wilde SA. 2002. A-type granites in northeastern China: Age and geochemical constraints on their petrogenesis. Chemical Geology, 187(1-2): 143-173

Wu FY, Sun DY, Jahn BM and Wilde SA. 2004. A Jurassic garnet-bearing granitic pluton from NE China showing tetrad REE patterns. Journal of Asian Earth Sciences, 23(5): 731-744

Wu SP, Wu CL and Chen QL. 2007. Characteristics and tectonic setting of the Tula aluminous A-type granite at the south side of the Altyn Tagh fault, NW China. Geological Bulletin of China, 26(10): 1385-1392 (in Chinese with English abstract)

Yang WB, Niu HC, Shan Q, LuoY, Yu XY and Qiu YZ. 2009. Ore-forming mechanism of the Baerzhe super-large rare and rare earth elements deposit. Acta Petrologica Sinica, 25: 2924 -2932 (in Chinese with English abstract)

Yang WB, Su WC, Liao SP, Niu HC, Luo Y, Shan Q and Li NB. 2011. Melt and melt-fluid inclusions in the Baerzhe alkaline granite: Information of the magmatic-hydrothermal transition. Acta Petrologica Sinica, 27(5): 1493-1499 (in Chinese with English abstract)

Yuan ZX, Zhang M and Wan DF. 2003. A discussion on the petrogenesis of18O-low alkali granite: A case study of Baerzhe alkali granite in Inner Mongolia. Acta Petrologica et Mineralogica, 22(2): 119-124 (in Chinese with English abstract)

Zhao LL, Hu RZ, Yang JS, Peng JT, Li XM and Bi XW. 2007. He, Pb and S isotopic constraints on the relationship between the A-type Qitianling granite and the Furong tin deposit, Hunan Province, China. Lithos, 97(1-2): 161-173

Zhao ZH, Masuda Akimasa and Shabani MB. 1992. Tetrad effects of rare-earth elements in rare-metal granites. Geochimica, 21(3): 221-233 (in Chinese)

Zhao ZH, Xiong XL, Hen XD, Wang YX, Qiang W, Bao ZW and Jahn BM. 2002. Controls on the REE tetrad effect in granites: Evidence from the Qianlishan and Baerzhe granites, China. Geochemical Journal, 36(6): 527-543

Zheng YF, Chen KF, Gong B and Zhao ZF. 2003. Protolith nature of ultrahigh pressure metamorphic rocks in the Dabie-Sulu orogenic belt: Evidence from zircon oxygen isotope and U-Pb age. Chinese Science Bulletin, 48(2): 110-119 (in Chinese)

附中文參考文獻

畢詩健, 李建威, 趙新福. 2008. 熱液鋯石U-Pb定年與石英脈型金礦成礦時代: 評述與展望. 地質科技情報, 27(1): 69-76

蔡劍輝, 閻國翰, 肖成東, 王關玉, 牟保磊, 張任祜. 2004. 太行山-大興安嶺構造巖漿帶中生代侵入巖Nd, Sr, Pb同位素特征及物質來源探討. 巖石學報, 20(5): 1225-1242

曹志敏, 鄭建斌, 安偉, 李佑國. 2004. 雪寶頂堿性花崗巖巖石地球化學與成礦控制. 中國海洋大學學報(自然科學版), 34(5): 874-880

馮守忠. 2000. 內蒙古巴爾哲堿性花崗巖稀有稀土礦床地質特征及成因探討. 火山地質與礦產(chǎn), 21(2): 137-142, 149

顧連興. 1990. A型花崗巖的特征、成因及成礦. 地質科技情報, 9(1): 25-31

林德松. 1994. 與堿性花崗巖有關的稀有稀土礦床. 礦產(chǎn)與地質, 8(6): 401-406

劉叢強, 黃智龍, 李和平, 蘇根利. 2001. 地幔流體及其成礦作用. 地學前緣, 8(4): 231-243

牛賀才, 單強, 羅勇, 楊武斌, 于學元. 2008. 巴爾哲超大型稀有稀土礦床富晶體的流體包裹體初步研究. 巖石學報, 24(9): 2149-2154

汪相, Pupin JP. 1992. 花崗巖鋯石中的微量元素的配分特征. 地質科學, (2): 131-140

王一先, 趙振華. 1997. 巴爾哲超大型稀土鈮鈹鋯礦床地球化學和成因. 地球化學, 26(1): 25-26

魏春生, 鄭永飛, 趙子福. 2001. 中國東部A型花崗巖形成時代及物質來源的Nd-Sr-O同位素地球化學制約. 巖石學報, 17(1): 95-111

吳鎖平, 吳才來, 陳其龍. 2007. 阿爾金斷裂南側吐拉鋁質A型花崗巖的特征及構造環(huán)境. 地質通報, 26(10): 1385-1392

楊武斌, 牛賀才, 單強, 羅勇, 于學元, 裘愉卓. 2009. 巴爾哲超大型稀有稀土礦床成礦機制研究. 巖石學報, 25(11): 2924-2932

楊武斌, 蘇文超, 廖思平, 牛賀才, 羅勇, 單強, 李寧波. 2011. 巴爾哲堿性花崗巖中的熔體和熔體-流體包裹體: 巖漿-熱液過渡的信息. 巖石學報, 27(5): 1493-1495

袁忠信, 張敏, 萬德芳. 2003. 低18O堿性花崗巖成因討論——以內蒙巴爾哲堿性花崗巖為例. 巖石礦物學雜志, 22(2): 119-124

趙振華, 增田彰正, 夏巴尼 MB. 1992. 稀有金屬花崗巖的稀土元素四分組效應. 地球化學, 21(3): 221-233

鄭永飛, 陳福坤, 龔冰, 趙子福. 2003. 大別-蘇魯造山帶超高壓變質巖原巖性質: 鋯石氧同位素和U-Pb年齡證據(jù). 科學通報, 48(2): 110-119

猜你喜歡
淺色深色鋯石
等候深色
深色衣服“帶毒”?其實未必!
中老年保健(2021年3期)2021-12-03 02:32:25
從前
為什么夏天穿深色衣服要比穿淺色衣服熱?
俄成功試射“鋯石”高超音速巡航導彈
軍事文摘(2020年24期)2020-02-06 05:56:36
在深色的面紗下她絞著雙手
延河(2017年7期)2017-07-19 08:41:32
春“色”撩人
時尚北京(2017年4期)2017-05-02 13:20:30
紅鋯石
中國寶玉石(2016年2期)2016-10-14 07:58:30
鋯石微區(qū)原位U-Pb定年的測定位置選擇方法
華北地質(2015年3期)2015-12-07 05:13:23
鉆石與鋯石的區(qū)別知多少?
福鼎市| 竹北市| 漯河市| 广德县| 调兵山市| 顺平县| 分宜县| 吴桥县| 咸丰县| 辽中县| 英吉沙县| 资溪县| 綦江县| 弥勒县| 隆化县| 惠州市| 潮州市| 布拖县| 谢通门县| 兰州市| 吐鲁番市| 太和县| 灵石县| 海林市| 宣武区| 咸阳市| 博罗县| 遂昌县| 宣化县| 吉首市| 望江县| 广元市| 乌鲁木齐市| 陕西省| 巨野县| 沾益县| 包头市| 孟津县| 灵璧县| 高阳县| 太白县|