国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

云南昆陽磷礦黑色頁巖微量元素特征及其地質(zhì)意義*

2014-04-10 01:23:38徐林剛BerndLEHMANN張錫貴鄭偉孟慶田
巖石學(xué)報 2014年6期
關(guān)鍵詞:昆陽石巖磷塊巖

徐林剛 Bernd LEHMANN 張錫貴 鄭偉 孟慶田

1. 中國地質(zhì)科學(xué)院礦產(chǎn)資源研究所,國土資源部成礦作用與資源評價重點實驗室,北京 1000372. 中國地質(zhì)大學(xué)地質(zhì)過程與礦產(chǎn)資源國家重點實驗室,北京 1000833.

昆陽磷礦是我國下寒武統(tǒng)黑色頁巖中賦存的最大的磷塊巖礦床。為了探討磷塊巖及上覆黑色頁巖的源區(qū)性質(zhì)及古海洋的氧化還原環(huán)境,本文對梅樹村組中誼村段的磷塊巖、石巖頭段的黑色頁巖以及筇竹寺組玉案山段的砂質(zhì)黑色頁巖的地層剖面進(jìn)行了巖石地球化學(xué)研究。發(fā)現(xiàn)昆陽剖面磷礦區(qū)的下寒武統(tǒng)黑色頁巖Th-Zr和Th-Y/Ho比值以及Y-Y/Ho比值與陸源碎屑物質(zhì)更為接近,石巖頭段黑色頁巖樣品的稀土元素總量平均為174×10-6,與大陸殼稀土總量的平均豐度基本一致。稀土配分模式也十分類似,說明陸源碎屑物質(zhì)來源比海水自生來源占的比重更大。受陸源碎屑物質(zhì)的影響,Ni/Co,V/Cr和V/(V+Ni)等氧化還原敏感元素比值并不能很好的指示古海洋的沉積環(huán)境。但石巖頭段黑色頁巖的氧化還原敏感元素相對大陸殼具有一定程度的富集,并且富集程度不強烈,Ce具有輕微的負(fù)異常,反映了黑色頁巖可能形成于次氧化環(huán)境。

氧化還原敏感元素;微量元素;稀土元素;昆陽磷礦;云南

1 引言

圖1 華南下寒武統(tǒng)黑色頁巖型多金屬鎳鉬礦、釩礦、磷礦、重晶石礦和石煤礦分布圖Fig.1 Spatial distribution of polymetallic Ni-Mo, vanadium, phosphorite, barite and stone coal deposits hosted in the Early Cambrian black shales

圖2 昆陽磷礦地質(zhì)圖(據(jù)韓豫川等,2012)Fig.2 Simplified geological map of the Kunyang phosphorite deposit (after Han et al., 2012)

在我國華南地區(qū),沿?fù)P子地臺南緣沉積了一套以頁巖、泥巖和硅質(zhì)巖為主的富含化石(海綿針骨、節(jié)肢動物、浮游生物以及細(xì)菌遺跡等)的早寒武世黑色頁巖層序,分布范圍西起云、貴、川,東至蘇、浙、皖,在空間上呈北東向延伸長達(dá)1600km(Fanetal., 1984)。該套黑色頁巖保存完好,層序穩(wěn)定,富含鉬、鎳、鉻、釩、金、鈾等多種元素。尤其特殊的是,這套黑色頁巖還賦存了一系列與海相沉積作用密切相關(guān)的礦產(chǎn),包括多金屬鎳鉬礦、釩礦、磷礦、重晶石礦以及石煤礦等,著名的礦產(chǎn)比如遵義-張家界地區(qū)多金屬鎳鉬礦、湖南古丈釩礦、貴州江古釩礦、新晃-大河邊重晶石礦、貴州織金磷礦以及云南昆陽磷礦等(圖1)。對于華南下寒武統(tǒng)黑色頁巖的沉積環(huán)境及成礦過程,一直以來是研究熱點,并取得了豐碩的研究成果(楊勤生, 2001; 范德廉等, 2004; Steineretal., 2005;楊衛(wèi)東等,2005)。然而,相對于多金屬鎳鉬礦的大量研究成果(Maoetal., 2002; Jiangetal., 2006; Lehmannetal., 2007; 王敏, 2004; 皮道會, 2007; 陳蘭, 2006; Xu, 2011; Xuetal., 2011, 2013),同樣賦存在黑色頁巖中的其他礦種的研究則較少(胡能勇等, 2010; 龐艷春等, 2011)。對于下寒武統(tǒng)黑色頁巖形成環(huán)境,目前普遍認(rèn)為經(jīng)歷了從靜水還原環(huán)境到次氧化環(huán)境的演化過程(Goldbergetal., 2007; Xuetal., 2012; Pietal., 2013),本文針對云南昆陽磷礦的黑色頁巖層序進(jìn)行研究,以確定昆陽磷礦層上覆的黑色頁巖的物源性質(zhì)以及形成時期的古海洋氧化還原環(huán)境,為進(jìn)一步對比整個華南早寒武世古海洋沉積環(huán)境及沉積成礦過程提供支撐。

2 地質(zhì)背景

昆陽型磷礦泛指位于揚子地臺西南緣,形成于滇東地區(qū)下寒武統(tǒng)成磷帶的海相沉積型磷塊巖礦床,地理位置上包括北起永善-鎮(zhèn)雄,南至蒙自-廣南之間的廣闊范圍。磷礦石總儲量約占全國總儲量的30%,是中國最大的磷礦床礦集區(qū)(韓豫川等,2012)。昆陽磷礦是我國下寒武統(tǒng)地層中賦存的最大磷塊巖礦床,位于昆明市西南的滇池西岸,礦區(qū)位于近東西向的香條沖背斜兩翼(圖2),出露的地層包括中新元古界昆陽群、新元古界燈影組、下寒武統(tǒng)梅樹村組、筇竹寺組、中泥盆統(tǒng)??诮M以及石炭系。背斜軸部為新元古界燈影組,南北兩翼由下寒武統(tǒng)含磷巖系以及頂板和底板巖系組成,外側(cè)則分布著泥盆系-石炭系碎屑巖夾薄層碳酸鹽巖。含磷層位包括兩層,背斜南側(cè)磷礦層產(chǎn)狀一般160°~190°,傾角10°~30°,平均厚度11.6m,上磷礦層厚度較大,平均5.8m,下磷礦層厚度平均3.5m。上下磷礦層之間為一層白色含磷斑脫巖,厚度變化在0~1.3m之間(楊帆等,2011)。南北兩翼的含磷巖系存在差異,南翼的含磷巖系厚度較小,一般在11~13m,上下礦層之間的夾層為含磷粘土巖,礦石中的白云石含量較少,品位較富。北翼的含磷巖系厚度較大,在31~67m之間,上下礦層之間的夾層由南翼的含磷粘土巖相變?yōu)楹装自茙r,礦石品位偏低(韓豫川等,2012)。

昆陽磷礦下寒武統(tǒng)黑色頁巖包括梅樹村組和筇竹寺組,構(gòu)成一個完整的沉積旋回, 筇竹寺組上覆于梅樹村組上部,構(gòu)成含磷巖系的頂板,梅樹村組含磷巖系可細(xì)劃分為上部的中誼村段和下部的小歪頭山段。含磷巖系下伏于梅樹村組石巖頭段(八道灣段)之下,中誼村段為主要含磷巖系,小歪頭山段為含磷巖系的底板。小歪頭山段上覆于新元古界燈影組之上。根據(jù)區(qū)域地層對應(yīng)和野外觀察,將所研究的剖面劃分為8個巖性段,各巖性段特征見表1和圖3。

表1云南省昆陽磷礦地層剖面巖性特征

Table 1Lithological descriptions of the geological profile in the Kunyang phosphorite deposit, Yunnan Province

地層單元地層厚度(m)巖性描述13.5下磷礦層,中下部為粒屑磷塊巖或礫狀磷塊巖,上部為白云質(zhì)硅質(zhì)條帶磷塊巖21.5斑脫巖,灰白色,含磷含海綠石,產(chǎn)少量小殼動物化石,主要礦物包括伊利石、蒙脫石,以及石英-長石晶屑,含少量白云母和黃鐵礦37.0上磷礦層,礦石礦物主要由碳氟磷灰石組成,顯示為非晶質(zhì)碳氟磷灰石膠磷礦.具有結(jié)核狀、鮞狀等原生沉積特征.含石英、硅質(zhì)巖巖屑等陸源碎屑礦物,伴生有白云石、伊利石、蒙脫石、高嶺土和黃鐵礦等自生礦物,另外還有少量海綠石、綠泥石、電氣石等41.5灰白色致密堅硬白云巖,含燧石條帶及扁豆體50.5斑脫巖,灰白色,含磷含海綠石,產(chǎn)少量小殼動物化石,主要礦物包括伊利石、蒙脫石,以及石英-長石晶屑,含少量白云母和黃鐵礦627黑色頁巖,層薄層狀,夾數(shù)層粉砂質(zhì)微晶白云巖,局部見黃鐵礦團(tuán)塊,粒度達(dá)數(shù)厘米765白云質(zhì)粉砂巖,下部為灰黑色厚層狀粉砂巖夾黑色薄層粉砂質(zhì)頁巖,上部為深灰-灰白色厚層狀白云質(zhì)粉砂巖夾粉砂質(zhì)隱晶白云巖814粉砂質(zhì)黑色頁巖,主要為黑色薄-中層泥質(zhì)粉砂巖以及粉砂質(zhì)黑色頁巖,該層上部為含澄江動物群化石層位

梅樹村剖面寒武系地層出露良好,曾是前寒武紀(jì)-寒武紀(jì)界線全球標(biāo)準(zhǔn)層型剖面和點位的三個候選剖面之一(Cowie, 1985),產(chǎn)豐富的小殼動物化石,“澄江動物群”的產(chǎn)出層位相當(dāng)于剖面上筇竹寺組玉案山段(Steineretal., 2007)。Compstonetal. (2008) 利用SHRIMP U-Pb法對石巖頭組下部和中誼村段兩層磷塊巖之間的凝灰?guī)r層進(jìn)行定年,獲得了分別為525.1±1.9Ma和539.4±2.9Ma的年齡,Zhuetal. (2009)利用高精度離子探針技術(shù),對中誼村段兩層磷塊巖層之間的凝灰?guī)r層定年,獲得了SIMS鋯石U-Pb年齡為535±1.7Ma,與Compstonetal. (2008)獲得的年齡一致,為區(qū)域巖層對比提供了依據(jù)(圖3)。

3 樣品采集、分析測試

本次研究樣品采自昆陽磷礦區(qū)露天剖面,樣品涵蓋了梅樹村組中誼村段磷塊巖、斑脫巖,石巖頭段黑色頁巖以及筇竹寺組玉案山段粉砂質(zhì)黑色頁巖。采樣間距隨巖性變化有所不同,采樣的重點是石巖頭段黑色頁巖(圖3)。剖面總厚度98.3m,樣品總計15件,包括1件斑脫巖、1件磷塊巖、11件黑色頁巖以及2件粉砂質(zhì)黑色頁巖。

主量元素的測試工作在德國漢諾威地質(zhì)科學(xué)與自然資源研究所(Federal Institute for Geosciences and Natural Resources)完成,分析采用X射線熒光光譜分析法(XRF),分析誤差小于3%。微量元素的測試在德國克勞斯塔爾工業(yè)大學(xué)(Technical University of Clausthal)完成。微量元素樣品溶樣在PicoTrace高壓溶樣系統(tǒng)中完成,首先稱取100~120mg粉末樣品,然后用1mL去離子水稀釋,使反應(yīng)器中不至于很干燥。加入3mL高濃度HF靜置24h,以去除樣品中的硅質(zhì)。加入3mL HNO3,然后加熱至180℃并持續(xù)20h。待溫度降低到60℃后,將高壓溶樣系統(tǒng)連接上盛有NaOH溶液的反應(yīng)瓶,使蒸發(fā)的酸液得到中和。繼續(xù)加溫到180℃并持續(xù)4h,待溫度降低后在樣品容器中加入32%的HCl 5mL,蓋上溶樣容器的蓋子然后加壓,加熱容器到180℃并持續(xù)19h。將上述溶樣程序重復(fù)兩次以達(dá)到樣品完全溶解的目的。最后在溶樣容器中加入1mL HCl溶液,然后再加入5mL去離子水,再次加入1mL HCl溶液以及10mL去離子水,然后蓋上蓋子等待樣品全部溶解,待樣品全部溶解后將溶樣轉(zhuǎn)移至溶樣瓶中并用0.5m/L的稀鹽酸反復(fù)清洗反應(yīng)容器3次。最后將待測樣品在Perkin-Elmer/Sciex ELAN 6000 ICM-MS分析儀中進(jìn)行測試,分析誤差在5%以內(nèi)。

4 分析結(jié)果

樣品的主量元素和微量元素組成見表2。由于黑色頁巖和磷塊巖等樣品含有大量有機質(zhì),導(dǎo)致樣品燒失量較高,最高達(dá)23.9%(K-18)。磷塊巖(K-3)具有高CaO,高P2O5,低Al2O3的特征,含量分別為48.2%,30.3%和0.41%。斑脫巖(K-2)中因含有少量磷結(jié)核,化學(xué)成分與磷塊巖類似,但是其CaO,P2O5的含量比磷塊巖低,Al2O3含量比磷塊巖高,分別為29.5%,20.6%和6.52%。除了K-10(14.8m)外,大部分黑色頁巖樣品(14.3~39.3m)化學(xué)成分相對穩(wěn)定,SiO2含量在48.3%到66.1%間變化,平均為59.8%。Al2O3含量為10.4%~13.8%,平均12.6%。Fe2O3T含量變化于2.8%到4.4%間,平均為3.6%。MgO含量為1.8%到6.5%之間(平均4.2%)。黑色頁巖具有較低的CaO含量,1.2%~9.3%(平均3.6%)。P2O5含量低,在0.3%到0.7%之間,平均含量為0.4%。相比之下,K-10具有較低的SiO2,Al2O3, Fe2O3T, 分別為43.2%, 6.03%, 1.92%, 但是具有較高的gO和CaO含量,分別達(dá)到9.09%和13.9%。玉案山段2個砂質(zhì)黑色頁巖樣品顯示區(qū)別于石巖頭段黑色頁巖的特征,具有低SiO2(42.1%和35.6%),Al2O3(8.42%和6.54%)和高CaO(17.6%和15.3%)的特征。

表2昆陽剖面樣品主量(wt%)和微量(×10-6)元素分析結(jié)果

Table 2Major (wt%) and trace (×10-6) element compositions of samples from the Kunyang profile

樣品號K-18K-19K-17K-15K-14K-13K-8K-12K-7K-11K-6K-10K-9K-3K-2樣品位置(m)98.395.339.320.319.318.317.316.816.315.815.314.814.384.5巖性砂質(zhì)黑色頁巖黑色頁巖磷塊巖斑脫巖SiO235.642.160.159.957.960.063.060.858.364.048.343.266.17.7033.6TiO20.393.450.660.690.690.740.710.660.640.680.530.230.310.070.06Al2O36.548.4212.612.912.413.813.412.512.513.310.46.0312.60.416.52Fe2O3T3.583.894.444.054.124.183.593.152.852.83.011.924.170.280.99MnO0.170.010.050.050.050.050.040.040.050.030.10.120.010.040.01MgO10.71.355.294.64.944.053.433.854.242.916.549.091.793.230.80CaO15.317.63.513.064.042.551.833.664.462.349.3113.91.1948.229.5Na2O0.020.070.060.060.060.050.060.060.060.060.040.020.030.100.17K2O2.112.63.824.664.525.215.244.854.805.484.062.716.140.173.67P2O50.5414.40.440.300.480.360.280.340.490.320.710.600.2930.320.6SO30.850.200.781.041.161.270.941.251.060.861.700.911.220.330.43Cl0.020.020.020.020.020.020.010.020.020.020.020.020.010.020.02F0.091.130.060.090.120.060.110.160.160.110.180.100.162.961.97LOI23.94.727.898.229.287.477.268.4910.16.8915.021.15.807.442.41Sum99.8100.099.899.799.899.899.899.899.799.899.899.999.9101.2100.7CIA0.270.290.630.620.590.640.650.590.570.630.440.270.63 As16.057.010.020.019.020.016.021.023.026.032.015.051.05.0012.0Ba252983455562520563586499477562389210417195359Bi<4<4<4<4<4<4<4<4<4<4<4<4<4<5<5Co6.008.009.0016.010.014.014.09.009.011.09.003.007.00<3<3Cd0.24 0.340.380.170.880.170.210.170.180.190.180.180.210.37Cr31.023471.018311613177.014436511528433.061.024.06.00Cs<318.04.008.007.008.008.0010.08.009.008.00<35.00<4<4Cu92.019.033.041.028.033.032.032.038.026.038.016.020.010.012.0Ga9.0010.017.017.016.018.018.016.019.017.013.07.0019.0<27.00Hf8.008.007.007.00<6<6<6<69.00<6<6<6<6<7<7Li13.56.8922.731.240.918.29.8928.531.146.149.752.071.338.138.6Mo7.0021.0<37.005.004.004.005.007.005.007.003.009.00<3<3Nb6.0062.010.010.012.011.011.013.012.010.09.008.043.03.007.00Ni59.015.031.064.060.068.058.053.058.055.062.022.027.0<3<3Pb6.0024.08.0012.012.024.023.025.019.026.039.021.01225.0015.0Rb59.063.010110810711711211011511489.045.071.010.033.0Sb<9<10<7<7<7<7<7<7<7<7<8<8<6<13<11Sc8.0016.012.012.012.014.012.012.012.012.011.06.005.00<34.00Sn<4<54<4<4<4<4<4<4<4<4<4<4<5<5Sr10331462.057.062.079.052.063.068.053.097.082.025.0575725Ta5.0<55.0<4<4<4<4<4<4<4<4<4<4<5<5Th14.042.021.018.020.020.018.019.019.017.019.013.025.08.0022.0U8.0084.04.0013.010.013.011.014.014.013.018.010.012.030.015.0V4220197649255392164254657252379146271328.0W<4<4<4<4<4<4<4<4<4<4<4<4<4<5<4Zn28.033.048.051.055.060.047.034.012834.010829.01146.0011.0Zr12725519717319318719818418216915376.019221084.0Mo/Sc0.881.31 0.580.420.290.330.420.580.420.640.501.80 V/Sc5.2512.68.0854.121.328.013.721.254.821.034.524.354.2 2.00U/Sc1.005.250.331.080.830.930.921.171.171.081.641.672.40 3.75Th/U1.750.505.251.382.001.541.641.361.361.311.061.302.080.271.47V/Mo6.009.57 92.751.098.041.050.893.950.454.148.730.1 Ni/Co9.831.883.444.006.004.864.145.896.445.006.897.333.86 V/Cr1.350.861.373.552.2.02.992.131.761.802.191.334.424.441.331.33V/(V+Ni)0.420.930.760.910.810.850.740.830.920.820.860.870.91

圖3 昆陽剖面地層柱狀圖及采樣位置Fig.3 Stratigraphic column of the Kunyang profile showing the Early Cambrian sedimentary sequences and sample locations in the Kunyang phosphorite deposit

昆陽剖面底部的斑脫巖和磷塊巖微量元素組成與石巖頭段黑色頁巖具有明顯差異,顯示出虧損氧化還原敏感元素的特征,其Mo,Ni,Co含量均小于3×10-6,V含量也明顯低于大陸殼豐度。而U含量分別為30×10-6和15×10-6,明顯高于大陸殼豐度,甚至高于上覆黑色頁巖。相對于大陸殼,石巖頭段黑色頁巖樣品均富集Mo,V,U,Th等,但是富集程度比較低,其富集系數(shù)均在10以內(nèi)。Mo含量為3×10-6~9×10-6,平均5.4×10-6;V含量在97×10-6~657×10-6之間,平均320×10-6;U含量為4×10-6~18×10-6,平均12×10-6;Th含量13×10-6~25×10-6,平均19×10-6。這4種元素相對于大陸殼豐度的富集系數(shù)分別為4.9,3.3,4.3和1.8。石巖頭段黑色頁巖中的Co,Cr,Ni,Sc含量則與大陸殼豐度基本一致,其Co含量在3×10-6~16×10-6之間,平均10.1×10-6;Cr含量33×10-6~365×10-6,平均144×10-6;Ni含量為22×10-6~68×10-6,平均50.7×10-6;Sc含量變化于5×10-6~14×10-6之間,平均10.9×10-6。這4種元素相對于大陸殼豐度的富集系數(shù)分別為0.6,1.6,1.1和0.8。玉案山段的2個砂質(zhì)黑色頁巖樣品顯示出比較明顯的差異,K-19具有高M(jìn)o(21.0×10-6),U(84.0×10-6),V(201×10-6),Th(42×10-6)的特征,而Ni的含量比較低,僅為15.0×10-6。上覆的K-18砂質(zhì)黑色頁巖中微量元素則與石巖頭段黑色頁巖比較相似,含7×10-6Mo,59×10-6Ni,8×10-6U,42×10-6V和14×10-6Th。

昆陽剖面樣品的稀土元素組成見表3。中誼村段斑脫巖和磷塊巖具有較高的∑REE,分別為436×10-6和313×10-6,Ce負(fù)異常明顯,其Ce/Ce*(Ce/Ce*=2/(LaPAAS+PrPAAS))比值分別為0.78和0.35。Eu也具有負(fù)異常的特征,Eu/Eu*(Eu/Eu*=2/(SmPAAS+GdPAAS))比值分別為0.44和0.84。Y/Ho和Pr/Pr*值分別為39.4和62.9、1.12和1.27。石巖頭段黑色頁巖的∑REE為141×10-6~206×10-6,平均174×10-6,與大陸殼平均稀土總量(169×10-6)基本一致。具有微弱的Ce負(fù)異常,Ce/Ce*比值為0.81~0.92,平均0.85。Eu/Eu*比值在0.44和1.03之間。整體上Ce/Ce*和Eu/Eu*比值在石巖頭段有由低變高的趨勢,而Y/Ho的變化趨勢則相反,除了最底部的K-9具有較低的Y/Ho比值(25.4)以外,從底部到頂部Y/Ho的比值從33.5(K-10)降低到27.3(K-17)。Pr/Pr*比值比較穩(wěn)定,變化范圍在1.04~1.11之間,平均1.08。玉案山段砂質(zhì)黑色頁巖的∑REE變化范圍很大,底部的K-19 ∑REE明顯高于玉案山段黑色頁巖,為848×10-6,而上覆砂紙黑色頁巖(K-18)的∑REE則比較低,為137×10-6。兩個樣品均具有Eu正異常,其Eu/Eu*的比值分別為1.21和1.12。Ce/Ce*比值變化不明顯,分別為0.98和0.95。Y/Ho和Pr/Pr*值分別為31.6和28.3以及0.93和1.01。

5 討論

5.1 風(fēng)化作用和成巖作用對樣品化學(xué)組分的影響

由于樣品采自露天剖面,必須考慮風(fēng)化作用對樣品化學(xué)成分的影響,本文對石巖頭段黑色頁巖和玉案山段砂質(zhì)頁巖樣品的化學(xué)蝕變指數(shù)(CIA)進(jìn)行計算,其計算方程為CIA=Al2O3/(Al2O3+CaO+Na2O+K2O) (Nesbitt and Young, 1982), 大部分石巖頭段樣品CIA的變化范圍在0.44到0.65之間,與新疆塔里木地區(qū)新鮮的黑色頁巖樣品的化學(xué)蝕變指數(shù)基本一致(劉兵等, 2007; Yuetal., 2009),說明本次研究所采集的樣品雖然來自露天剖面,但風(fēng)化作用對樣品化學(xué)組分并沒有太大影響。另外部分樣品(K-10,K-19和K-18)的CIA值比較低,可能反應(yīng)了源區(qū)化學(xué)組分的不同對樣品化學(xué)蝕變指數(shù)有一定的影響。

表3昆陽剖面樣品稀土元素含量分析結(jié)果(×10-6)

Table 3Rare earth element compositions of samples from the Kunyang profile (×10-6)

樣品號K-18K-19K-17K-15K-14K-13K-8K-12K-7K-11K-6K-10K-9K-3K-2La17.810133.030.532.731.337.140.337.233.136.621.621.059.264.3Ce38.923162.455.859.355.862.967.360.453.660.837.632.934.3110Pr5.0028.97.446.997.516.857.528.418.036.568.225.153.938.0816.3Nd21.513928.126.029.025.226.230.130.023.631.620.213.934.165.1Sm5.4640.25.244.786.094.814.025.325.943.966.454.553.265.8613.8Eu1.3311.21.060.981.290.970.741.041.180.741.380.620.321.331.33Gd5.6545.94.644.245.74.383.334.865.713.396.294.673.428.7814.6Tb0.856.280.720.660.850.690.570.760.870.550.950.790.781.242.35Dy5.133.34.474.0.04.974.233.724.905.423.695.815.036.538.6814.7Y28.518124.122.927.425.023.029.933.623.239.334.040.4138117Ho1.015.730.880.831.000.890.831.011.110.791.211.021.592.192.96Er2.8313.52.622.462.752.642.473.043.152.393.432.885.516.497.65Tm0.391.480.390.370.380.380.390.450.470.360.480.400.900.770.93Yb2.437.952.552.382.522.492.502.883.002.343.052.456.123.995.11Lu0.361.080.380.360.390.390.390.440.450.360.450.370.870.510.71Y/Ho28.331.627.327.627.527.927.729.530.229.532.633.525.462.939.4Ce/Ce*0.950.980.920.880.870.880.870.840.810.840.810.820.830.350.78Pr/Pr*1.010.931.041.081.061.081.091.101.111.081.101.091.081.271.12Eu/Eu*1.121.211.011.031.031.000.950.960.950.951.010.630.440.840.44∑REE137848178163182166176201197159206141141313436

圖4 昆陽剖面樣品Th-Zr,Th-Y/Ho關(guān)系圖解Fig.4 Correlation diagrams of Th vs. Zr and Th vs. Y/Ho of samples from the Kunyang phosphorite deposit

圖5 昆陽剖面樣品Y-Y/Ho關(guān)系圖解(底圖據(jù)Bau and Dulski, 1996)Fig.5 Correlation diagram of Y vs. Y/Ho of samples from the Kunyang phosphorite deposit (after Bau and Dulski, 1996)

沉積巖中的化學(xué)組分一般有三個主要來源:陸源碎屑物質(zhì)、生物作用以及自生海水來源(Piper, 1994)。為了更好的確定氧化還原敏感元素的富集規(guī)律,首先需要確定黑色頁巖中是否有陸源碎屑來源的組分。常規(guī)的方法是利用一些在海水中滯留時間比較短的不相容元素,因為這些元素可以不經(jīng)過在海水中滯留而直接在沉積物中富集,因此更接近陸殼的組分。但是,Johnson and Grimm (2001)指出,部分這類元素的富集往往與源區(qū)性質(zhì)以及沉積物的粒度有關(guān)系(比如Al2O3)。本文采用Th作為衡量陸源碎屑組分的指標(biāo),因為沉積物的粒度對Th的影響比較小。由于黑色頁巖的成巖過程對Zr,Y/Ho的影響比較小,因此利用Th與Zr和Y/Ho的比值可以有效的指示陸源碎屑對成巖的貢獻(xiàn) (Schr?der and Grotzinger, 2007)。圖4中Th與Zr和Y/Ho的關(guān)系圖顯示兩者不存在明顯的相關(guān)關(guān)系,說明黑色頁巖中元素的來源并非單一的陸源碎屑物質(zhì),部分元素為海水自生來源。自然界中Y和Ho具有非常相似的地球化學(xué)性質(zhì),因此在很多地質(zhì)過程中兩者一同遷移或沉淀。Bau and Dulski (1996)研究發(fā)現(xiàn),火山巖和碎屑沉積物中的Y/Ho的比值約為28,而海水的Y/Ho比值為44~74。利用這一規(guī)律,Xuetal. (2013)認(rèn)為華南遵義地區(qū)下寒武統(tǒng)黑色頁巖可能有部分陸源碎屑物質(zhì)來源。本研究中除了中誼村段磷塊巖(K-3)具有海水化學(xué)沉積的特點外,石巖頭段黑色頁巖和玉案山段粉砂質(zhì)黑色頁巖均具有明顯的陸源碎屑物質(zhì)來源的特點(圖5)。綜合Th-Zr和Th-Y/Ho比值以及Y-Y/Ho比值,昆陽磷礦區(qū)的下寒武統(tǒng)黑色頁巖可能主要來源于陸源碎屑物質(zhì),海水自生來源雖然也是重要的來源之一,但是可能不如陸源碎屑物質(zhì)占的比重大。

5.2 稀土元素地球化學(xué)

圖6 昆陽剖面樣品標(biāo)準(zhǔn)化稀土元素配分模式圖(太古代澳大利亞頁巖采用Mclennan, 1989;海水采用Nozaki, 1997)Fig.6 PAAS-normalized REE distribution patterns of samples for the Kunyang phosphorite deposit (PAAS values after Mclennan, 1989; Seawater values after Nozaki, 1997)

圖7 昆陽剖面樣品Eu/Eu*-Ba含量(×10-6)關(guān)系圖解Fig.7 Correlation diagram of Eu/Eu* vs. Ba (×10-6) of samples from the Kunyang phosphorite deposit

圖8 昆陽剖面Ce和Eu異常演化特征Fig.8 Ce and Eu anomalies of samples from the Kunyang phosphorite deposit

由于昆陽剖面石巖頭段黑色頁巖的稀土元素化學(xué)組成比較一致(表3),本文在稀土元素配分模式圖中11個石巖頭段黑色頁巖樣品采用平均值,為了方便對比,平均大陸殼和現(xiàn)代海水的稀土元素配分模式一并列出(圖6)。中誼村段磷塊巖、石巖頭段黑色頁巖和玉案山段砂質(zhì)黑色頁巖的輕重稀土富集程度差異不明顯,總體上呈平坦型,僅玉案山段黑色頁巖(K-19)中稀土較富集。稀土元素中只有Ce和Eu是價態(tài)可變元素,因此在很多地質(zhì)過程中Ce和Eu會表現(xiàn)出異常的特征,影響Ce和Eu異常的因素很多,比如氧化還原狀態(tài)的變化,熱液疊加作用以及風(fēng)化作用等。昆陽剖面不同巖性段樣品的稀土元素地球化學(xué)存在差異。磷塊巖樣品顯示出明顯的Ce負(fù)異常和Y正異常特征,與現(xiàn)代海水的稀土元素配分模式基本一致(圖6)。由于現(xiàn)代海水處于氧化狀態(tài),海水中Ce呈Ce4+,并且以CeO2的形式與鐵錳氧化物一起沉淀下來,導(dǎo)致了現(xiàn)代海水具有明顯的Ce負(fù)異常,磷塊巖(K-3)具有明顯Ce負(fù)異常、Y正異常的特征反應(yīng)了磷塊巖海相化學(xué)沉積的特點。ICP-MS測試技術(shù)中Ba元素的存在可能會導(dǎo)致Eu產(chǎn)生異常,本研究中Ba元素與Eu異常的相關(guān)系數(shù)僅為0.25,說明Ba含量的變化并沒有對Eu異常形成干擾(圖7)。Eu正異常一般形成于酸性、中高溫(>250℃)還原性熱液流體(Bau, 1991),而Eu負(fù)異常一般出現(xiàn)在高度演化的巖漿巖中,由于Eu在斜長石中富集,而相對于其他礦物是不相容元素,隨著巖漿巖演化過程中斜長石的不斷析出,造成了Eu的負(fù)異常。中誼村段斑脫巖樣品(K-2)具有明顯的Eu負(fù)異常,可能是斑脫巖中僅含少量斜長石造成。石巖頭段黑色頁巖樣品的稀土元素含量變化不大,其平均值無論是在稀土總量上還是在配分模式上與大陸殼稀土元素都十分類似(圖6),只是與大陸殼相比,石巖頭段黑色頁巖具有輕微的Ce負(fù)異常的特征,說明了石巖頭段黑色頁巖的化學(xué)成分主要來自于陸源碎屑物質(zhì),而弱Ce負(fù)異常卻反映部分物質(zhì)是海水自生沉積而成,這與Th-Zr和Th-Y/Ho比值以及Y-Y/Ho比值的結(jié)果一致。玉案山段底部粉砂質(zhì)黑色頁巖的稀土元素總量明顯高于石巖頭段黑色頁巖,并且具有明顯的Eu正異常(Eu/Eu*=1.21),可能反映了熱液活動的影響,熱液疊加作用一方面攜帶了更多的稀土元素,另一方面其酸性、中高溫等特征導(dǎo)致了Eu/Eu*正異常。類似的Eu/Eu*正異常特征也在Sedex型(Maetal., 2004)和VMS型(Relvasetal., 2006)等熱液礦床中普遍存在。

現(xiàn)代海水中由于氧化作用,Ce以Ce4+的形式沉淀下來而相對于其相鄰的La和Pr元素虧損。由于Ce具有氧化還原敏感性,被廣泛應(yīng)用于古海洋的氧化還原環(huán)境重建(German and Elderfieldetal., 1990; Jiangetal., 2007),Ce異常除了與環(huán)境的氧化還原性有關(guān)外,還與諸多因素比如微生物作用、海水的酸堿度、海水深度以及古海洋的地質(zhì)時代有關(guān)系。圖8中Ce異常曲線顯示,中誼村段磷塊巖具有明顯的海水沉積成因的Ce負(fù)異常特征,石巖頭段黑色頁巖整體上呈弱Ce負(fù)異常,且從石巖頭段底部向上Ce負(fù)異常逐漸變小。這種輕微的負(fù)異??赡苁抢^承了古海水中Ce負(fù)異常的結(jié)果。Shields and Stille (2001)認(rèn)為華南早寒武世黑色頁巖的Ce負(fù)異常可能反映了早寒武世古海洋處于缺氧的環(huán)境。Jiangetal. (2007) 則通過磷塊巖REE特征認(rèn)為磷塊巖形成的早期古海洋處于相對氧化的環(huán)境,這種環(huán)境更利于保存海水Ce負(fù)異常的特征,而晚期的稀土元素則經(jīng)歷了再活化作用,而且其環(huán)境可能相對更加還原。昆陽剖面石巖頭段黑色頁巖由下到上Ce負(fù)異常逐漸變輕也一定程度上體現(xiàn)了古海洋還原程度逐漸減弱的趨勢。Eu/Eu*從石巖頭段沒有異常到玉案山段明顯正異常反映了熱液活動在石巖頭段并不強烈,而在玉案山段則非常強烈(圖8)。

5.3 氧化還原敏感元素及其比值

黑色頁巖中的氧化還原敏感元素含量及其比值,比如Ni/Co,V/Cr和V/(V+Ni),被廣泛應(yīng)用于古海洋沉積環(huán)境研究中(Dill, 1986; Hatch and Leventhal, 1992; Jones and Manning, 1994; Rimmer, 2004; Tribovillardetal., 2006; Dumoulinetal., 2011)。雖然不同學(xué)者對于這些元素及其比值所反映的沉積環(huán)境的劃分方法有所差異,但是都承認(rèn)一個基本事實:隨著氧化程度的逐漸增加,Ni/Co,V/Cr和V/(V+Ni)的比值均逐漸下降。這種規(guī)律與元素本身的化學(xué)性質(zhì)關(guān)系密切,Ni、Co、V和Cr的還原相溶解度極低。Hatch and Leventhal (1992)和Jones and Mannning (1994)通過系統(tǒng)研究認(rèn)為,Ni/Co<5指示氧化環(huán)境,5~7指示缺氧環(huán)境,>7指示的是還原環(huán)境;而V/Cr<2為氧化環(huán)境,2~2.45指示缺氧環(huán)境,而>4.25為還原環(huán)境;Lewan (1984)研究發(fā)現(xiàn)形成于還原環(huán)境的黑色頁巖其V/(V+Ni)比值均大于0.5。昆陽剖面石巖頭段黑色頁巖的Ni/Co比值均在5左右,而V/Cr比值除兩個樣品大于4.25外其他樣品均在2~3之間(圖9),根據(jù)Hatch and Leventhal (1992)和Jones and Manning (1994)給出的劃分方案,Ni/Co和V/Cr比值均指示昆陽剖面石巖頭段為氧化或輕度缺氧環(huán)境。然而石巖頭段V/(V+Ni)比值在0.74~0.92之間,與Lewan (1984)所認(rèn)為的還原環(huán)境黑色頁巖V/(V+Ni)比值均大于0.5一致,這與V/Cr和Ni/Co比值所得出的結(jié)論相矛盾。前人的研究認(rèn)為自生成因的氧化還原敏感元素對沉積環(huán)境的指示作用更有意義,而昆陽磷礦黑色頁巖有大量陸源物質(zhì)的加入,因而對沉積環(huán)境的指示作用產(chǎn)生一定影響。昆陽剖面石巖頭段黑色頁巖樣品的氧化還原敏感元素相比于大陸殼具有一定程度的富集,但是富集程度都不強烈,反映了黑色頁巖可能形成于次氧化環(huán)境,與Ce具有輕微的負(fù)異常特征所反映的次氧化沉積環(huán)境一致,這種環(huán)境下金屬元素的自生作用不甚明顯,陸源物質(zhì)的加入則成為主導(dǎo)。

圖9 昆陽剖面樣品的氧化還原敏感元素及其比值演化趨勢圖Fig.9 Mo, Ni, U, V/Cr, Ni/Co, and V/(V+Ni) data of samples from the Kunyang phosphorite deposit

6 結(jié)論

昆陽磷礦層賦存于梅樹村組黑色頁巖中,通過對梅樹村組中誼村段的磷塊巖、石巖頭段的黑色頁巖以及筇竹寺組玉案山段的砂質(zhì)黑色頁巖的巖石地球化學(xué)研究認(rèn)為:

(1)樣品的化學(xué)蝕變指數(shù)(CIA)指示本次研究所采集的樣品雖然來自露天剖面,但風(fēng)化作用對樣品化學(xué)組分并沒有太大影響。

(2)磷礦區(qū)下寒武統(tǒng)黑色頁巖Th-Zr和Th-Y/Ho比值以及Y-Y/Ho比值更接近于陸源碎屑物質(zhì),石巖頭段黑色頁巖樣品的稀土元素總量和配分模式與大陸殼稀土元素十分類似,海水自生來源雖然也是來源之一,但是所占比重可能不如陸源碎屑物質(zhì)大。

(3)由于陸源物質(zhì)的影響,Ni/Co,V/Cr和V/(V+Ni)等比值并不能很好的指示古海洋的沉積環(huán)境。石巖頭段黑色頁巖的氧化還原敏感元素相比于大陸殼具有一定程度的富集,但是富集程度都不強烈,Ce具有輕微的負(fù)異常等特征均反映了黑色頁巖可能形成于次氧化環(huán)境。

致謝野外工作得到了云南省地質(zhì)礦產(chǎn)勘查開發(fā)局和昆陽磷礦的大力支持;分析測試工作在德國漢諾威地質(zhì)科學(xué)與自然資源研究所和德國克拉斯塔爾工業(yè)大學(xué)實驗室完成;在此一并表示感謝。

Bau M. 1991. Rare-earth element mobility during hydrothermal and metamorphic fluid-rock interaction and the significance of the oxidation state of europium. Chemical Geology, 93(3-4): 219-230

Bau M and Dulski P. 1996. Distribution of yttrium and rare-earth elements in the Penge and Kuruman iron-formations, Transvaal Supergroup, South Africa. Precambrian Research, 79(1-2): 37-55

Chen L. 2006. Sedimentology and geochemistry of the Early Cambrian black rock series in the Hunan-Guizhou area, China. Ph. D. Dissertation. Guiyang: Institute of Geochemistry, Chinese Academy of Sciences, 1-103 (in Chinese)

Compston W, Zhang ZC, Cooper JA, Ma GG and Jenkins RJF. 2008. Further SHRIMP geochronology on the Early Cambrian of South China. American Journal of Science, 308(4): 399-420

Cowie JW. 1985. Continuing work on the Precambiran-Cambrian boundary. Episodes, 8: 93-97

Dill H. 1986. Metallogenesis of Early Paleozoic graptolite shales from the Graafenthal Horst (Northern Bavaria-Federal Republic of Germany). Economic Geology, 81(4): 889-903

Dumoulin JA, Slack JF, Whalen MT and Harris AG. 2011. Depositional setting and geochemistry of phosphorites and metalliferous black shales in the Carboniferous-Permian Lisburne Group, northern Alaska. In: Dumoulin JA and Galloway JP (eds.). Studies by the U. S. Geological Survey in Alaska, 2008-2009: U.S. Geological Survey Professional Paper 1776-C, 64

Elderfield H, Upstill-Goddard R and Sholkovitz ER. 1990. The rare earth elements in rivers, estuaries, and coastal seas and their significance to the composition of ocean waters. Geochimica et Cosmochimica Acta, 54(4): 971-991

Fan DL, Yang RY and Huang ZX. 1984. The Lower Cambrian black shales series and the iridium anomaly in South China. Developments in Geoscience, 27thInternational Geological Congress, Moscow. Beijing: Science Press, 215-225

Fan DL, Zhang T and Ye J. 2004. Black Shales in China and Associated Metalogency. Beijing: Science Publishing House, 1-441 (in Chinese)

Goldberg T, Strauss H, Guo QJ and Liu CQ. 2007. Reconstructing marine redox conditions for the Early Cambrian Yangtze Platform: Evidence from biogenic sulphur and organic carbon isotopes. Palaeogeography, Palaeoclimatology, Palaeoecology, 254(1-2): 175-193

Han YC, Xia XH, Xiao RG, Wei SS, Yao CM, Yang JH, Tian LS, Lian W, Yuan CJ, Hao EH, Liang ZP and Wang BQ. 2012. The Chinese Phophate Deposits. Beijing: Geological Publishing House, 1-723 (in Chinese)

Hatch JR and Leventhal JS. 1992. Relationship between inferred redox potential of the depositional environment and geochemistry of the Upper Pennsylvanian (Missourian) stark shale member of the Dennis limestone, Wabaunsee country, Kansas, USA. Chemical Geology, 99(1-3): 65-82

Hu NY, Xia HD, Dai TG, You XJ, Bao ZX and Bao JM. 2010. Sedimentary vanadium deposit of Lower Cambrian black rock series in western Hunan. Contributions to Geology and Mineral Resources Research, 25(4): 296-302 (In Chinese with English abstract)

Jiang SY, Chen YQ, Ling HF, Yang JH, Feng HZ and Ni P. 2006. Trace- and rare-earth element geochemistry and Pb-Pb dating of black shales and intercalated Ni-Mo-PGE-Au sulfide ores in Lower Cambrian strata, Yangtze Platform, South China. Mineralium Deposita, 41(5): 453-467

Jiang SY, Zhao HX, Cheng YQ, Yang T, Yang JH and Ling HF. 2007. Trace and rare earth element geochemistry of phosphate nodules from the Lower Cambrian black shale sequence in the Mufu Mountain of Nanjing, Jiangsu Province, China. Chemical Geology, 244(3-4): 584-604

Johnson KM and Grimm KA. 2001. Opal and organic carbon in laminated diatomaceous sediments: Saanich Inlet, Santa Barbara Basin and the Miocene Monterey Formation. Marine Geology, 174(1-4): 159-174

Jones B and Manning DAC. 1994. Comparison of geochemical indeces used for the interpretation of palaeoredox conditions in ancient mudstones. Chemical Geology, 111(1-4): 111-129

Lehmann B, N?gler TF, Holland HD, Wille M, Mao JW, Pan JY, Ma DS and Dulski P. 2007. Highly metalliferous carbonaceous shale and Early Cambrian seawater. Geology, 35(5): 403-406

Lewan MD. 1984. Factors controlling the proportionality of vanadium to nickel in crude oils. Geochimica et Cosmochimica Acta, 48(11): 2231-2238

Liu B, Xu B, Meng XY, Kou XW, He JY, Wei W and Mi H. 2007. Study on the chemical index of alteration of Neoproterozoic strata in the Tarim plate and its implications. Acta Petrologica Sinica, 23(7): 1664-1670 (in Chinese with English abstract)

Ma GL, Beaudoin G, Qi SJ and Li Y. 2004. Geology and geochemistry of the Changba SEDEX Pb-Zn deposit, Qinling orogenic belt, China. Mineralium Deposita, 39(3): 380-395

Mao JW, Lehmann B, Du AD, Zhang GD, Ma DS, Wang YT, Zeng MG and Kerrich R. 2002. Re-Os dating of polymetallic Ni-Mo-PGE-Au mineralization in Lower Cambrian black shales of South China and its geologic significance. Economic Geology, 97(5): 1051-1061

Mclennan SM. 1989. Rare earth elements in sedimentary rocks: Influence of provenance and sedimentary processes. Reviews in Mineralogy and Geochemistry, 21: 169-200

Nesbitt HW and Young GM. 1982. Early Proterozoic climates and plate motions inferred from major element chemistry of lutites. Nature, 299(5885): 715-717

Nozaki Y. 1997. A fresh look at element distribution in the North Pacific. Eos (Transactions, American Geophysical Union)

Pang YC, Lin L, Zhu LD, Zhou YH and Ren CY. 2011. Features of Cambrian Niutitang Formation in the beidoushan ore district, Weng’an County, Guizhou Province. Geological Bulletin of China, 30(8): 1245-1250 (in Chinese with English abstract)

Pi DH. 2007. Geochemistry of Early Cambrian black rock series from Zunyi, Guizhou Province. Ph. D. Dissertation. Guiyang: Institute of Geochemistry, Chinese Academy of Sciences, 1-117 (in Chinese with English summary)

Pi DH, Liu CQ, Shields-Zhou GA and Jiang SY. 2013. Trace and rare earth element geochemistry of black shale and kerogen in the Early Cambrian Niutitang Formation in Guizhou Province, South China: Constraints for redox environments and origin of metal enrichments. Precambrian Research, 225: 218-229

Piper DZ. 1994. Seawater as the source of minor elements in black shales, phosphorites and other sedimentary rocks. Chemical Geology, 114(1-2): 95-114

Relvas JMRS, Barriga FJAS, Ferreira A, Noiva PC, Pacheco N and Barrga G. 2006. Hydrothermal alteration and mineralization in the Neves-Corvo volcanic-hosted massive sulfide deposit, Portugal. I. Geology, mineralogy, and geochemistry. Economic Geology, 101(4): 753-790

Rimmer SM. 2004. Geochemical paleoredox indicators in Devonian-Mississippian black shales, central Appalachian basin (USA). Chemical Geology, 206(3-4): 373-391

Schr?der S and Grotzinger JP. 2007. Evidence for anoxia at the Ediacaran-Cambrian boundary: The record of redox-sensitive trace elements and rare earth elements in Oman. Journal of the Geological Society, London, 164(1): 175-187

Shields G and Stille P. 2001. Diagenetic constraints on the use of cerium anormalies as paleoseawater redox proxies: An isotope and REE study of Cambrian phosphorites. Chemical Geology, 175(1-2): 29-48

Steiner M, Zhu MY, Zhao YL and Erdtmann BD. 2005. Lower Cambrian Burgees Shale-type fossil associations of South China. Palaeogeography, Palaeoclimatology, Palaeoecology, 220(1-2): 129-152

Steiner M, Li GX, Qian Y, Zhu MY and Erdtmann BD. 2007. Neoproterozoic to Early Cambrian small selly fossil assemblages and a revised biostratifraphic correlation of the Yangtze Platform (China). Palaeogeography, Palaeoclimatology, Palaeoecology, 254(1-2): 67-99

Tribovillard N, Algeo TJ, Lyons T and Riboulleau A. 2006. Trace metals as paleoredox and paleoproductivity proxies: An update. Chemical Geology, 232(1-2): 12-32

Wang M. 2004. Geology, geochemistry and genesis of PGE-polymetallic deposits, southern China. Ph. D. Dissertation. Guangzhou: Zhongshan University, 1-156

Xu LG. 2011. Early Cambrian black shale and associated polymetallic Ni-Mo-PGE-Au mineralization, South China. Ph. D. Dissertation. Claufeld-Zellerfeld: Technical University of Clausthal, 1-369

Xu LG, Lehmann B, Mao JW, Qu WJ and Du AD. 2011. Re-Os age of polymetallic Ni-Mo-PGE-Au mineralization in Early Cambrian black shales of South China: A reassessment. Economic Geology, 106(3): 511-522

Xu LG, Lehmann B, Mao JW, N?gler TF, Neubert N and B?ttcher ME. 2012. Mo isotope and trace element patterns of Early Cambrian black shales in South China: Constraints on the paleoenvironment. Chemical Geology, 318-319: 45-59

Xu LG, Lehmann B and Mao JW. 2013. Seawater as origin of polymetallic Ni-Mo-PGE-Au mineralization in Early Cambrian black shales of South China: Evidences from Mo isotope, PGE, trace element and REE geochemistry. Ore Geology Reviews, 52: 66-84

Yang F, Xiao RG and Xia XH. 2011. Sedimentary environment and geochemistry of the Kunyang phosphorite deposit in eastern Yunnan Province. Geology and Exploration, 47(2): 294-303 (in Chinese with English abstract)

Yang QS. 2001. Metallogenetic characteristics and prospecting in the black rock series of East Yuannan and the neighbourhood. Yunnan Geology, 20(1): 59-72 (in Chinese with English abstract)

Yang WD, Qi L and Lu XY. 1995. Geochemical characteristics and origin of phosphoric sedimentary formation REE in Early Cambrian in the eastern Yunnan. Bulletin of Mineralogy Petrology and Geochemistry, 12: 224-227 (in Chinese with English abstract)

Yu BS, Dong HL, Widom E, Chen JQ and Lin CS. 2009. Geochemistry of basal Cambrian black shales and cherts from the northern Tarim Basin, Northwest China: Implications for depositional setting and tectonic history. Journal of Asian Earth Sciences, 34: 418-436

Zhu RX, Li XH, Hou XG, Pan YX, Wang F, Deng CL and He HY. 2009. SIMS U-Pb zircon age of a tuff layer in the Meishucun section, Yunnan, Southwest China: Constraint on the age of the Precambrian-Cambrian boundary. Science in China (Series D), 52(9): 1385-1392

附中文參考文獻(xiàn)

陳蘭. 2006. 湘黔地區(qū)早寒武世黑色巖系沉積學(xué)及地球化學(xué)研究. 博士學(xué)位論文. 貴陽: 中國科學(xué)地球化學(xué)研究所, 1-103

范徳廉, 張燾, 葉杰. 2004. 中國的黑色巖系及其有關(guān)礦床. 北京: 科學(xué)出版社, 1-441

韓豫川, 夏學(xué)惠, 肖榮閣, 魏祥松, 姚超美, 楊金湖, 田升平, 連衛(wèi), 袁從建, 郝爾宏, 梁中朋, 王炳銓. 2012. 中國磷礦床. 北京: 地質(zhì)出版社, 1-723

胡能勇, 夏浩東, 戴塔根, 游先軍, 鮑正襄, 包覺敏. 2010. 湘西北下寒武統(tǒng)黑色巖系中的沉積型釩礦. 地質(zhì)找礦論叢, 25(4): 296-302

劉兵, 徐備, 孟祥英, 寇曉威, 何金有, 衛(wèi)巍, 米合. 2007. 塔里木板塊新元古代地層化學(xué)蝕變指數(shù)研究及其意義. 巖石學(xué)報, 23(7): 1664-1670

龐艷春, 林麗, 朱利東, 周玉華, 任才云. 2011. 貴州甕安地區(qū)北斗山礦區(qū)寒武系牛蹄塘組的特征. 地質(zhì)通報, 30(8): 1245-1250

皮道會. 2007. 貴州遵義早寒武世黑色巖系地球化學(xué)研究. 博士學(xué)位論文. 貴陽: 中國科學(xué)院地球化學(xué)研究所, 1-117

王敏. 2004. 華南下寒武統(tǒng)黑色巖系鉑多金屬礦地質(zhì)地球化學(xué)及其成因. 博士學(xué)位論文. 廣州: 中山大學(xué), 1-156

楊帆, 肖榮閣, 夏學(xué)惠. 2011. 昆陽磷礦沉積環(huán)境與礦床地球化學(xué). 地質(zhì)與勘探, 47(2): 294-303

楊勤生. 2001. 云南東部及臨區(qū)黑色巖系內(nèi)的礦床(化)特征與找礦設(shè)想. 云南地質(zhì), 20(1): 59-72

楊衛(wèi)東, 漆亮, 魯曉鶯. 1995. 滇東早寒武世含磷巖系稀土元素地質(zhì)地球化學(xué)特征及成因. 礦物巖石地球化學(xué)通報, 12(4): 224-227

猜你喜歡
昆陽石巖磷塊巖
湖北省張家埡磷礦床磷塊巖元素地球化學(xué)特征及成因意義①
粒徑對云南昆陽膠磷礦雙反浮選中脫硅的影響
云南化工(2021年6期)2021-12-21 07:30:58
里耶秦簡昆陽邑地望考
黑龍江史志(2021年9期)2021-11-13 04:32:55
石巖里9號墓出土金制帶扣的制作方法考察
磷塊巖的類型及成因
昆陽大戰(zhàn):一萬人打敗四十萬“人獸聯(lián)軍”
新傳奇(2018年9期)2018-05-14 15:39:56
紀(jì)振民作品
國畫家(2017年4期)2017-08-28 15:43:16
學(xué)徒
三月三(2017年5期)2017-06-05 02:10:50
學(xué)徒
三月三(2017年5期)2017-05-25 07:40:14
湖北省中低品位磷塊巖工業(yè)類型劃分的研究
宣武区| 合作市| 泗洪县| 布尔津县| 民和| 饶河县| 贵德县| 宣威市| 柘荣县| 车险| 肥西县| 岫岩| 宜城市| 盘锦市| 景泰县| 增城市| 丁青县| 杭州市| 花垣县| 昌江| 胶南市| 增城市| 连平县| 封丘县| 德阳市| 象州县| 邛崃市| 宿迁市| 安平县| 隆尧县| 富源县| 湖口县| 稷山县| 安多县| 涿鹿县| 光泽县| 灵寿县| 漠河县| 绥宁县| 潮安县| 湄潭县|