張瑞明
摘要 桃果實(shí)的成熟軟化是一個(gè)非常復(fù)雜的發(fā)育過(guò)程,其間經(jīng)歷了一系列生理生化的變化,包括細(xì)胞壁的降解、乙烯的釋放以及其他的代謝變化。對(duì)桃果實(shí)成熟軟化方面的分子生物學(xué)研究進(jìn)展進(jìn)行了綜述,介紹與桃果實(shí)成熟軟化過(guò)程相關(guān)的細(xì)胞壁酶以及乙烯在果實(shí)成熟軟化過(guò)程中的作用,并對(duì)軟化機(jī)理進(jìn)行了探討。綜合表明,果實(shí)的成熟軟化過(guò)程受多種基因調(diào)控作用的影響。對(duì)果實(shí)成熟軟化機(jī)理的探討可為果實(shí)的貯藏及加工提供理論依據(jù)。
關(guān)鍵詞 桃;果實(shí);后熟軟化;研究進(jìn)展
中圖分類(lèi)號(hào) S662.1 文獻(xiàn)標(biāo)識(shí)碼 A 文章編號(hào) 0517-6611(2014)13-04043-03
Abstract In the peach, fruit ripening and softening is a complex process concerning growth and regulation which is accompanied by a series of changes in physiological and biochemical attributes, including the degradation of cell wall, ethylene evolution and other metabolic change. Research advances on fruit ripening and softening in molecular biology was discussed. The related enzyme of cell wall and ethylene in fruit ripening and softening were reviewed. The results showed that the courses of fruit ripening and softening are influenced by many genes. The discussion on the mechanism of fruit ripening and softening will provide the theoretical foundation for the storage and freshness and processing of fruit.
Key words Peach; Fruit; Ripening and softening; Research process
桃[Prunus persica (L.) Batsch]屬于薔薇科 (Rosaceae)李屬(Prunus L.)。我國(guó)是桃起源中心,擁有4 000多年的栽培歷史和古老的文化底蘊(yùn),長(zhǎng)期以來(lái)的自然變異和人工選育積累了豐富的品種或品系。果實(shí)品質(zhì)對(duì)果樹(shù)產(chǎn)業(yè)的構(gòu)成和發(fā)展起著十分重要的作用,其中,果實(shí)硬度是果實(shí)品質(zhì)的一個(gè)重要指標(biāo),對(duì)果實(shí)的運(yùn)輸、貯藏具有重要的意義,越來(lái)越受到生產(chǎn)者和育種者的重視。然而,桃果實(shí)成熟軟化是一個(gè)非常復(fù)雜的過(guò)程,其間經(jīng)歷了一系列生理生化的變化,包括細(xì)胞壁的降解、乙烯的生物合成以及其他代謝變化。隨著分子生物學(xué)研究的深入,目前研究結(jié)果表明,果實(shí)的成熟軟化受多種基因調(diào)控。因此,加強(qiáng)果實(shí)成熟軟化分子的基礎(chǔ)研究,對(duì)于揭示果實(shí)成熟軟化的生理機(jī)制方面具有重要意義。
1 細(xì)胞壁降解對(duì)果實(shí)成熟軟化的影響
果實(shí)成熟軟化過(guò)程伴隨著細(xì)胞壁組分的變化。在果實(shí)成熟發(fā)育過(guò)程中,通過(guò)細(xì)胞壁修飾酶作用的降解在果實(shí)軟化中起著重要作用。
內(nèi)切多聚半乳糖醛酸酶(EC 3.2.1.15)主要作用于果膠,并對(duì)多聚半乳糖醛酸中的半乳糖醛酸殘基間的α(14) 糖苷鍵進(jìn)行水解。目前,已經(jīng)在番茄[1]、桃[2]、蘋(píng)果[3]等多種果實(shí)中檢測(cè)到 endoPG 的活性,且其表達(dá)量與果實(shí)軟化存在著密切的關(guān)系。Callahan等認(rèn)為,endoPG 對(duì)桃果實(shí)質(zhì)地起決定性作用,可能決定桃果實(shí)的溶質(zhì)和非溶質(zhì)[4]。另有報(bào)道表明,在溶質(zhì)性桃的溶質(zhì)階段,endoPG 酶的活性和基因的表達(dá)量均出現(xiàn)大幅度上調(diào)[5-6];但在成熟的非溶質(zhì)性桃的果實(shí)中,也可以檢測(cè)到 endoPG 酶的活性和基因的表達(dá),但活性和表達(dá)均較低[2,7]。此外,Ghiani等研究發(fā)現(xiàn),由于endoPG 在溶質(zhì)性桃果實(shí)中的大量表達(dá),導(dǎo)致了細(xì)胞粘著力的降低,造成了細(xì)胞間空隙增大;而在非溶質(zhì)性桃果實(shí)中沒(méi)有觀(guān)察到這些現(xiàn)象,因此認(rèn)為endoPG 在桃果實(shí)中的作用主要是通過(guò)增大細(xì)胞間空隙和中果皮細(xì)胞的皺縮來(lái)實(shí)現(xiàn)溶質(zhì),對(duì)硬度的降低無(wú)顯著影響[7]。對(duì)桃果實(shí)endoPG 基因進(jìn)一步分析發(fā)現(xiàn):軟溶質(zhì)果實(shí)和硬溶質(zhì)果實(shí)的PG等位基因間僅存在1個(gè)SNP位點(diǎn),其附近存在果實(shí)軟化相關(guān)的性狀標(biāo)記[8];同樣在溶質(zhì)桃和非溶質(zhì)桃的endoPG 基因開(kāi)放閱讀框之間僅存在5個(gè)SNP 位點(diǎn),其中只有1個(gè)是非同義突變[2],這些SNP可用于桃果實(shí)果肉質(zhì)地的分子標(biāo)記輔助育種。
此外,β半乳糖苷酶可以使細(xì)胞壁的一些組分變得不穩(wěn)定,它可以通過(guò)降解具支鏈的多聚醛酸,從而使其果膠降解或溶解。在桃果實(shí)出現(xiàn)軟化的前兩天,果膠物質(zhì)的降解主要是β半乳糖苷酶水解果膠分子上的乳糖支鏈起重要作用,加速了果實(shí)的軟化[9]。同樣,在對(duì)硬溶質(zhì)桃果實(shí)的研究中也表明,β半乳糖苷酶活性高峰出現(xiàn)于成熟前期,其作用與桃果實(shí)成熟前期果實(shí)的軟化啟動(dòng)密切相關(guān)[10-11]。同時(shí),在桃果實(shí)中,αL阿拉伯呋哺糖苷酶基因表達(dá)和活性在成熟軟化后期較高,且αL阿拉伯呋哺糖苷酶的快速變化滯后于乙烯及其合成相關(guān)酶的變化,推測(cè)其主要作用于果實(shí)成熟中后期的快速軟化,且αL阿拉伯呋哺糖苷酶的激活與果實(shí)內(nèi)源乙烯的積累密切相關(guān)[11]。
2 乙烯對(duì)桃果實(shí)軟化的影響
桃是典型的呼吸躍變型果實(shí),在果實(shí)成熟過(guò)程會(huì)出現(xiàn)躍變型果實(shí)所具有的呼吸峰和乙烯峰。乙烯早已被證實(shí)是果實(shí)成熟軟化和衰老的重要因子,近年來(lái),借助于擬南芥和番茄等模式植物的一些研究成果,植物乙烯信號(hào)轉(zhuǎn)導(dǎo)路徑已基本建立,與乙烯作用相關(guān)的果實(shí)成熟軟化控制方面取得了很大進(jìn)展,對(duì)揭示果實(shí)成熟的生理機(jī)制具有重要的理論意義。植物體內(nèi) SAM在ACC合成酶作用下轉(zhuǎn)化為ACC,ACC合成酶是果實(shí)成熟時(shí)乙烯產(chǎn)量增加的關(guān)鍵和限速酶[12-13]。桃成熟軟化過(guò)程中乙烯生物合成相關(guān)酶,如ACC合成酶、ACC氧化酶、ACC脫氨酶、SAM (硫腺苷甲硫氨酸)合成酶、SAM 水解酶等已被克隆并做了相關(guān)的功能分析[14-17]。金勇豐等采用PCR和RTPCR技術(shù)成功地從桃“玉露”品種中克隆出ACC 氧化酶基因,該基因全長(zhǎng)1 288 bp,含4個(gè)外顯子和3個(gè)內(nèi)含子, 外顯子總長(zhǎng)為957 bp,共編碼319個(gè)氨基酸,與番茄、矮牽牛、康乃馨的氨基酸序列同源性分別為83.00%、76.18%、74.00%,表明該基因是高度保守的[18-19]。此外,在乙烯的生物合成過(guò)程中ACS 和ACO 是2個(gè)關(guān)鍵酶,二者與ACC的積累共同調(diào)節(jié)果實(shí)中乙烯的產(chǎn)量[20]。在果實(shí)成熟期,PpACS1和PpACO1基因轉(zhuǎn)錄以及蛋白表達(dá)水平顯著上調(diào),可能參與乙烯合成的各種酶促反應(yīng)[21-23]。另外,這些酶的活性可被葉片等組織的創(chuàng)傷誘導(dǎo)激活[24-25],同時(shí)也可誘導(dǎo)PpACS2表達(dá)水平迅速下調(diào),暗示其可能受到乙烯合成的負(fù)調(diào)控[2]。
近些年,日本科學(xué)家發(fā)現(xiàn)了一種新的桃肉質(zhì)類(lèi)型Stony hard(SH),又名“石頭桃”,果實(shí)表現(xiàn)為硬度高、肉質(zhì)脆、掛果時(shí)間長(zhǎng)且采后肉質(zhì)較長(zhǎng)時(shí)間不會(huì)變軟,同時(shí)可溶性固形物含量較高。Hayama等對(duì)具SH基因型的“Manami”桃進(jìn)行深入的乙烯釋放和軟化機(jī)理研究時(shí),發(fā)現(xiàn)果實(shí)成熟過(guò)程中乙烯釋放量極少或幾乎沒(méi)有乙烯產(chǎn)生[26]。Tatsuki等研究發(fā)現(xiàn),SH基因型只釋放很少的乙烯,同時(shí)伴隨著PpACS1低表達(dá);然而應(yīng)用人工合成的生長(zhǎng)素“1萘乙酸”后可誘導(dǎo)PpACS1表達(dá)上調(diào),同時(shí)果實(shí)會(huì)釋放較多的乙烯并開(kāi)始軟化[27]。由此可見(jiàn),PpACS1可能是SH基因型桃果實(shí)內(nèi)源乙烯生物合成過(guò)程中最為關(guān)鍵的限速因子。
另一方面,鮮食桃屬于時(shí)鮮水果,常溫下只能存放2~5 d,耐貯運(yùn)性能差,貯藏保鮮的效果也很有限。Begheldo等使用溶質(zhì)桃品種“Summer Rich”和SH肉質(zhì)單株“IFF331”經(jīng)10和20 ℃ 2種溫度處理時(shí)發(fā)現(xiàn):低溫處理對(duì)溶質(zhì)桃延遲成熟的影響效果不明顯,2種溫度條件下溶質(zhì)桃?guī)缀跬瑫r(shí)進(jìn)入軟熟期,僅低溫條件下溶質(zhì)桃的硬度稍高于常溫;低溫下(10 ℃)SH桃的乙烯產(chǎn)生量比常溫時(shí)(20 ℃)顯著增高,且果實(shí)硬度快速降低[28]。這是因?yàn)榈蜏貤l件誘導(dǎo)了SH果實(shí)中乙烯合成相關(guān)的ACC合成酶基因(PpACS1)的轉(zhuǎn)錄,產(chǎn)生的乙烯又誘導(dǎo)了果實(shí)中endoPG基因的表達(dá),促使細(xì)胞壁降解,表現(xiàn)為果實(shí)軟化。該現(xiàn)象與冬梨的低溫后熟過(guò)程類(lèi)似,但是否是同一生理控制過(guò)程還有待進(jìn)一步研究。SH桃作為一個(gè)乙烯釋放的突變類(lèi)型,其貯藏特性研究?jī)H作了10和20 ℃ 2種溫度處理,有必要深入開(kāi)展SH基因型貯藏特性的分子生物學(xué)研究,可為深入了解該基因型桃的特性提供理論依據(jù)。目前國(guó)內(nèi)對(duì)SH基因型桃的鑒定和評(píng)價(jià)還處于起步階段,Haji等利用雜種群體對(duì)肉質(zhì)遺傳進(jìn)行分析時(shí)發(fā)現(xiàn),桃SH是由隱性單基因控制,該基因獨(dú)立于溶質(zhì)、不溶質(zhì)遺傳并且具有上位效應(yīng)[29-30]。同時(shí)發(fā)現(xiàn),應(yīng)用外源乙烯處理SH桃果實(shí)時(shí)又可以分離出處理后快速軟化和處理后緩慢變軟2種表現(xiàn)型,且推斷分別由2種基因型控制,屬于隱性純合基因型,若使用2種該基因型的種質(zhì)作為親本,雜種群體中理論上可獲得大量SH單株,因而能為SH基因型育種提供親本選擇依據(jù)。
3 小結(jié)與展望
目前,對(duì)果實(shí)成熟軟化方面的研究大多以番茄為試材,還不清楚這種調(diào)控模式是否適用于其他植物的果實(shí),但至少在桃、梨、蘋(píng)果和獼猴桃等呼吸躍變型果實(shí)中,控制乙烯生物合成的基因表達(dá)和調(diào)控機(jī)制有很大的相似性,但仍需對(duì)果實(shí)成熟軟化調(diào)控機(jī)制進(jìn)行進(jìn)一步研究。
耐貯運(yùn)桃新品種選育是當(dāng)前國(guó)內(nèi)外重要的育種目標(biāo),鑒于SH桃成熟時(shí)果肉硬脆,果實(shí)成熟過(guò)程中表現(xiàn)出極低水平的乙烯釋放且具有較高的可溶性固形物含量,近年來(lái)成為桃果實(shí)采后生理及其相關(guān)分子生物學(xué)研究的熱點(diǎn),以其為研究對(duì)象進(jìn)行乙烯釋放與成熟生理機(jī)制研究,為闡明乙烯在桃果實(shí)生理代謝中的作用機(jī)制提供難得的試材。該研究為豐富果實(shí)軟化機(jī)理以及解決果品貯藏和加工中的問(wèn)題提供了重要的理論依據(jù)。
參考文獻(xiàn)
[1] DELLAPENNA D,LASHBROOK C C,TOENJES K,et al.Polygalacturonase isozymes and pectin depolymerization in transgenic rin tomato fruit[J].Plant Physiology,1990,94(4):1882-1886.
[2] MORGUTTI S,NEGRINI N,NOCITO F F,et al.Changes in endopolygalacturonase levels and characterization of a putative endoPG gene during fruit softening in peach genotypes with nonmelting and melting flesh fruit phenotypes[J].New Phytologist,2006,171(2):315-328.
[3] WU Q,SZAKACSDOBOZI M,HEMMAT M,et al.Endopolygalacturonase in apples (Malus domestica) and its expression during fruit ripening[J].Plant physiology,1993,102 (1):219-225.
[4] CALLAHAN A M,SCORZA R,BASSETT C,et al.Deletions in an endopolygalacturonase gene cluster correlate with nonmelting flesh texture in peach[J].Functional Plant Biology,2004,31(2):159-168.
[5] BRUMMELL D A,DAL CIN V,CRISOSTO C H,et al.Cell wall metabolism during maturation,ripening and senescence of peach fruit[J].Journal of Experimental Botany,2004,55(405):2029-2039.
[6] YOSHIOKA H,HAYAMA H,TATSUKI M,et al.Cell wall modifications during softening in melting type peach “Akatsuki” and nonmelting type peach “Mochizuki”[J].Postharvest Biology and Technology,2011,60(2):100-110.
[7] GHIANI A,ONELLI E,AINA R,et al.A comparative study of melting and nonmelting flesh peach cultivars reveals that during fruit ripening endopolygalacturonase (endoPG) is mainly involved in pericarp textural changes,not in firmness reduction[J].Journal of Experimental Botany,2011,62(11):4043-4054.
[8] 魏瀟,劉威生,劉寧,等.果實(shí)軟化相關(guān)PG基因的進(jìn)化分析和基因組定位[J].園藝學(xué)報(bào),2011,38(9):1791-1799.
[9] DAWSON D M,MELTON L D,WATKINS C B.Cell wall changes in nectarine (Prunus persica)[J].Plant Physiology,1992,100:1203-1210,102:1062-1063.
[10] 闞娟.不同溶質(zhì)型桃果實(shí)成熟軟化機(jī)理研究[D].揚(yáng)州:揚(yáng)州大學(xué),2011.
[11] 闞娟,劉俊,金昌海.桃果實(shí)成熟軟化與細(xì)胞壁降解相關(guān)糖苷酶及乙烯生物合成的關(guān)系[J].中國(guó)農(nóng)業(yè)科學(xué),2012,45(14):2931-2938.
[12] WOESTE K E,YE C,KIEBER J J.Two Arabidopsis mutantsthat overproduce ethylene are affected in the posttranscriptional regulation of 1aminocyclopropane1carboxylic synthase[J].Plant Physiology,1999,119:521-529.
[13] ARGUESO C T,HANSEN M,KEIBER J J.Regulation of ethylene biosynthesis[J].Plant Growth Regulation,2007,26:92-105.
[14] WOESTE K E,YE C,KIEBER J J.Two Arabidopsis mutantsthat overproduce ethylene are affected in the posttranscriptional regulation of 1aminocyclopropane1carboxylic synthase[J].Plant Physiology,1999,119:521-529.
[15] RODRIGUESPOUSADA R A,DE RYCKE R,DEDONDER A,et al.The Arabidopsislaminocyclopropane1carboxylate synthnse gene 1 expressed during early development[J].Plant Cell,1993,5:897-911.
[16] AVNJ A,BAILEY B A,MATTOO A,et a1.Induction of ethylene biosynthesis in Nicotianatobaccum by a Tfichoderma viride xylanase is correlated to the accumulation of l aminocyclopropane1earboxylic acid (ACC) synthase and ACE oxidase transcripts[J].Plant Physiology,1994,106:1049-1055.
[17] 劉廷旭,羅川,趙彩平,等.脫落酸對(duì)桃果實(shí)成熟軟化和乙烯生物合成的影響[J].北方園藝,2012(20):134-137.
[18] 金勇豐,張耀洲,陳大明,等.桃ACC氧化酶基因的克隆和植物表達(dá)載體的構(gòu)建[J].園藝學(xué)報(bào),1998,25(1):37-43.
[19] 金勇豐,張耀洲,張上隆.中國(guó)“玉露”桃 ACC 氧化酶基因組DNA 的序列測(cè)定及其結(jié)構(gòu)分析[J].浙江農(nóng)業(yè)大學(xué)學(xué)報(bào),1998,24(1):63-65.
[20] YANG S F,HOFFMAN N E.Ethylene biosynthesis and its regulation in higher plants[J].Plant Physiology,1984,35:155-189.
[21] CALLAHAN A M,MORGENS P H,WRIGHT P,et al.Comparison of Pch313 (pTOM13 homolog) RNA accumulation during fruit softening and wounding of two phenotypically different peach cultivars[J].Plant Physiology,1992,100:482-488.
[22] LESTER D R,SPEIRS J,ORR G,et al.Peach (Prunus persica) Endopolygalacturonase cDNA isolation and mRNA analysis in melting and nonmelting peach cultivers[J].Plant Physiology,1994,105:225-231.
[23] TONUTTI P,BONGHI C,RUPERTI B,et al.Ethylene evolution and 1aminocyclopropane1carboxylate oxidase gene expression during early development and ripening of peach fruit[J].Journal of the American Society for Horticultural Science,1997,122:642-647.
[24] MATHOOKO F M,TSUNASHIMA Y,OWINO W Z O,et al.Regulation of genes encoding ethylene biosynthetic enzyme in peach (Prunus persica L.) fruit by carbon dioxide and 1methylcyclopropene[J].Postharvest Biology and Technology,2001,21:265-281.
[25] TATSUKI M,HAJI T,YAMAGUCHI M.The involvement of 1aminocyclopropane1carboxylic acid synthase isogene,PpACS1,in peach fruit softening[J].Journal of Experimental Botany,2006,57:1281-1289.
[26] HAYAMA H,TATSUKI M,ITO A,et al.Ethylene and fruit softening in the stony hard mutation in peach[J].Postharvest Biology and Technology,2006,41:16-21.
[27] TATSUKI M,NAKAJIMA N,F(xiàn)UJII H,et al.Increased levels of IAA are required for system 2 ethylene synthesis causing fruit softening in peach (Prunus persica L.Batsch)[J].Journal of Experimental Botany,2013,64:1049-1059.
[28] BEGHELDO M,GEORGE A M,CLAUDIO B,et al.Different postharvest conditions modulate ripening and ethylene biosynthetic and signal transduction pathways in Stony Hard peaches[J].Postharvest Biology and Technology,2008,48:84-91.
[29] HAJI T,YAEGAKI H,YAMAGUCHI M.Varietal differences in the relationship between maturation characteristics,storage life and ethylene production in peach fruit[J].Journal of the Japanese Society for Horticultural Science,2004,73:97-104.
[30] HAJI T,YAEGAKI H,YAMAGUCHI M.Inheritance and expression of fruit texture melting, nonmelting and stony hard in peach[J].Scientia Horticulturae,2005,105:241-248.