劉 帥, 賈 梅, 秦小娜
(上海理工大學(xué)理學(xué)院,上海 200093)
帶積分邊值條件的分?jǐn)?shù)階微分方程解的存在性和唯一性
劉 帥, 賈 梅, 秦小娜
(上海理工大學(xué)理學(xué)院,上海 200093)
研究了一類帶積分邊值條件的分?jǐn)?shù)階微分方程邊值問(wèn)題解的存在性和唯一性,并利用Schauder不動(dòng)點(diǎn)定理以及壓縮映像原理,得到了邊值問(wèn)題解的存在性及唯一性結(jié)論.
積分邊值條件;不動(dòng)點(diǎn)定理;存在性和唯一性
在實(shí)際的研究中,許多數(shù)學(xué)和物理學(xué)問(wèn)題都?xì)w結(jié)為微分方程邊值問(wèn)題,如波動(dòng)方程等,因此,學(xué)者們對(duì)微分方程邊值問(wèn)題進(jìn)行了大量研究,得到了許多有意義的結(jié)論[1-2].近年來(lái),由于分?jǐn)?shù)階微分方程在化學(xué)工程、熱彈性力學(xué)以及人口動(dòng)態(tài)等問(wèn)題中得到了很好的應(yīng)用,受到人們的廣泛關(guān)注[2-16].帶積分邊界的分?jǐn)?shù)階微分方程邊值問(wèn)題更是成為最近幾年研究的熱點(diǎn)問(wèn)題,并且得到了許多的結(jié)論[4-9].
本文研究在非線性項(xiàng)中含有分?jǐn)?shù)階導(dǎo)數(shù)的帶有積分邊界條件的邊值問(wèn)題:解的存在性和唯一性,其中,1<λ≤2,0<σ<1且λ-σ-1>0,α1,α2,β1,β2∈R,且δ=α1α2+ α1β2-α2β1≠0,g1,g2∈L1([0,1],R+),,為Caputo導(dǎo)數(shù).
從上面的分析可以看出,帶積分邊界條件的分?jǐn)?shù)階微分方程的相關(guān)研究成果已經(jīng)很多,文獻(xiàn)[13]對(duì)邊界條件中系數(shù)的符號(hào)進(jìn)行了限制,而本文研究的內(nèi)容其系數(shù)具有任意性,是在文獻(xiàn)[13]的基礎(chǔ)上進(jìn)一步的推廣,更具有普遍性.
a.對(duì)一切的x,y∈R,f(·,x,y)是[0,1]→R可測(cè)函數(shù);
b.對(duì)幾乎處處的t∈[0,1],f(t,·,·)是R× R→R的連續(xù)函數(shù);
本文所涉及到的f都是Lq-Caratheodory函數(shù).
定義1[2]函數(shù)y:[0,∞)→R的α階積分定義為
對(duì)任意的α>0,右端積分在[0,∞)上逐點(diǎn)可積.
定義2[2]函數(shù)y:[0,∞)→R的α階Caputo型導(dǎo)數(shù)定義為
其中,α>0,α不為整數(shù),右端積分在[0,∞)上逐點(diǎn)可積,n=[α]+1,[α]為不超過(guò)α的最大整數(shù).當(dāng)α>0,α為整數(shù)時(shí),=y(α)(t).
引理1[3]階數(shù)為α的分?jǐn)?shù)階微分方程x(t)=0的一般解為
引理2 設(shè)y∈Lq[0,1],且1<λ≤2,0<σ<1,則當(dāng)ω≠0時(shí),邊值問(wèn)題
引理3 G,Gσ,H1,Hσ1在t,s∈[0,1]上是連續(xù)且有界的.
借助引理3的結(jié)論,為研究問(wèn)題方便起見(jiàn),作如
引理4 設(shè)f是Lq-Caratheodory函數(shù),則T:X→X是全連續(xù)的.
證明 a.T為連續(xù)的.
設(shè){un}?X,u∈X,滿足當(dāng)n→∞時(shí),‖unu‖→0.因此,對(duì)a.e.s∈[0,1],有
由Ascolli-Arzela定理可知,T相對(duì)緊.綜上所述,T:X→X是全連續(xù)的.
所以,‖Tu‖≤r.故有T(Br)?Br.
由引理4可知,T為全連續(xù)的.根據(jù)Schauder不動(dòng)點(diǎn)定理可知,T在Br中至少存在1個(gè)不動(dòng)點(diǎn).
故邊值問(wèn)題(1)在X中至少存在1個(gè)有界解.
定理2 設(shè)f是Lq-Caratheodory函數(shù),且滿足(H2),則邊值問(wèn)題(1)在X中至少存在1個(gè)有界解.
證明 取,
所以,‖Tu‖≤r.故有T(Br)?Br.
由引理4可知,T為全連續(xù)的.根據(jù)Schauder不動(dòng)點(diǎn)定理可知,T在Br中至少存在1個(gè)不動(dòng)點(diǎn).
故邊值問(wèn)題(1)在X中至少存在1個(gè)有界解.
定理3 設(shè)f是Lq-Caratheodory函數(shù),且滿足(H3),則邊值問(wèn)題(1)在X中至少存在1個(gè)有界解.
所以,‖Tu‖≤r.故有T(Br)?Br.
由引理4可知,T為全連續(xù)的.根據(jù)Schauder不動(dòng)點(diǎn)定理可知,T在Br中至少存在1個(gè)不動(dòng)點(diǎn).
故邊值問(wèn)題(1)在X中至少存在1個(gè)有界解.
定理4 若(H4)成立,且0<γ<1,則邊值問(wèn)題(1)有唯一解.
證明 任取u,v∈X,對(duì)t∈[0,1]有
所以,‖Tu-Tv‖≤γ‖u-v‖,由于0<γ<1,根據(jù)壓縮映像原理可知,T在X中存在唯一不動(dòng)點(diǎn).
故邊值問(wèn)題(1)在X中有唯一解.
[1] 葛渭高.非線性常微分方程邊值問(wèn)題[M].北京:科學(xué)出版社,2007.
[2] Podlubny I.Fractional differential equations[M].New York:Academic Press,1999.
[3] Zhnag X M,F(xiàn)eng M Q.Positive solutions for a class of 2nth-order singular boundary value problems[J]. Nonlinear Analysis,2008,69(4):1287-1298.
[4] Ahmad B,Nieto J J.Existence results for nonlinear boundary value problems of fractional integrodifferential equations with integral boundary conditions[J].Boundary Value Problems(Hindawi),2009:708576.
[5] Ahmad B,Nieto J J,Alseaedi A.Existence and uniqueness of solutions for nonlinear fractional differential equations with non-separated type integral boundary conditions[J].Acta Mathematic Scientia,2011,31(6):2122-2130.
[6] Hu M,Wang L L.Existence of solutions for a nonlinear fractional differential equation with integral boundary condition[J].International Journal of Mathematical and Computer Science,2011(7):1-7.
[7] Benchohra M,Ouaar F.Existence results for nonlinear fractional differential equations with integral boundary conditions[J].Bulletin of Mathematical Analysis and Applications,2010(2):7-15.
[8] Liu X P,Jia M,Wu B F.Existence and uniqueness of solution for fractional differential equations with integral boundary conditions[J].Electronic Journal of Qualitative Theory of Differential Equations,2009 (69):1-10.
[9] 金京福,劉錫平,竇麗霞,等.分?jǐn)?shù)階微分方程積分方程邊值問(wèn)題正解存在性[J].吉林大學(xué)學(xué)報(bào)(理學(xué)版),2011,49(5):823-828.
[10] Agarwal R P,O’Regan D,Staněk S.Positive solutions for dirichlet problems of singular nonlinear fractional differential equations[J].Journal of Mathematical Analysis and Applications,2010,371(1):57-68.
[11] Ahmad B,Ntouyas S K.Existence results for nonlocal boundary value problems of fractional differential equations and inclusions with strip conditions[J]. Boundary Value Problems(Springer),2012:55.
[12] Guezane-Lakoud A,Khaldi R.Solvability of a fractional boundary value problem with fractional integral condition[J].Nonlinear Analysis:Theory Method& Applications,2012,75(4):2692-2700.
[13] Khan R A,Rehman M U,Henderson J.Existence and uniqueness of solutions for nonlinear fractional differential equations with integral boundary conditions[J].Fractional Differential Calculus,2011,1(1):29-43.
[14] 竇麗霞,劉錫平,金京福,等.分?jǐn)?shù)階積分微分方程多點(diǎn)邊值問(wèn)題解的存在性和唯一性[J].上海理工大學(xué)學(xué)報(bào),2012,34(1):51-55.
[15] 王淑,賈梅,祁衛(wèi)杰.非線性項(xiàng)變號(hào)的分?jǐn)?shù)階微分方程邊值問(wèn)題正解的存在性[J].上海理工大學(xué)學(xué)報(bào),2013,35(1):1-6.
[16] Feng M Q,Zhang X M,Ge WG.New existence results for higher-order nonlinear fractional differential equation with integral boundary conditions[J]. Boundary Value Problems(Hindawi),2011:720702.
(編輯:石 瑛)
Existence and Uniqueness of Solutions of the Fractional Differential Equation with Integral Boundary Value Conditions
LIUShuai, JIA Mei, QIN Xiao-na
(College of Science,University of Shanghai for Science and Technology,Shanghai 200093,China)
The existence and uniqueness of solutions were studied for a class of fractional differential equations with integral boundary value conditions.The conclusions about the existence and uniqueness of solutions were obtained by using the Schauder fixed point theorem and the Banach contraction principle.
integral boundary value condition;fixed point theorem;existence and uniqueness
O 175.8文獻(xiàn)標(biāo)示碼:A
1007-6735(2014)05-0409-07
10.13255/j.cnki.jusst.2014.05.001
2013-07-21
國(guó)家自然科學(xué)基金資助項(xiàng)目(11171220);上海市教委科研創(chuàng)新基金重點(diǎn)資助項(xiàng)目(10ZZ93)
劉 帥(1987-),女,碩士研究生.研究方向:應(yīng)用微分方程.E-mail:liushuai871030@163.com
賈 梅(1963-),女,副教授.研究方向:應(yīng)用微分方程.E-mail:jiamei-usst@163.com