任大忠,孫 衛(wèi),雷啟鴻,張 茜,張 瑞,趙國璽
(1. 大陸動力學國家重點實驗室/地質學系,西北大學,陜西西安 710069;2. 低滲透油氣田勘探開發(fā)國家工程實驗室,陜西西安 710018)
鄂爾多斯盆地華慶油田長81段儲層物性影響因素
任大忠1,孫 衛(wèi)1,雷啟鴻2,張 茜1,張 瑞1,趙國璽2
(1. 大陸動力學國家重點實驗室/地質學系,西北大學,陜西西安 710069;2. 低滲透油氣田勘探開發(fā)國家工程實驗室,陜西西安 710018)
在綜合大量樣品測試數(shù)據(jù)與圖像的基礎上,研究了華慶油田長81段儲層特征和物性影響因素。研究表明:砂巖巖性以中細砂巖與細砂巖巖屑長石砂巖和長石巖屑砂巖為主,儲集空間以剩余原生粒間孔和長石溶孔為主。孔隙類型以中孔隙和小孔隙為主,優(yōu)勢孔隙具有雙孔隙結構特征。儲層類型為低孔特低滲-超低滲巖性油藏,儲層孔喉半徑與物性具有正相關的分帶性。沉積作用-成巖作用共同影響著儲層的發(fā)育特征,較好的物性發(fā)育在中粒巖屑長石砂巖、細-中粒巖屑長石砂巖與細粒巖屑長石砂巖的砂體中,壓實作用使原生孔隙度損失21.92%,膠結作用使原生孔隙度損失8.61%,溶蝕作用使孔隙度提高了4.46%。繼續(xù)研究沉積和成巖作用對儲層物性特征的影響,將有利于認識和處理同類儲層的勘探開發(fā)。
物性 沉積作用 成巖作用 華慶油田
Ren Da-zhong, Sun Wei, Lei Qi-hong, Zhang Xi, Zhang Rui, Zhao Guo-xi. Influential factors in the physical properties of the Chang 81reservoir, Yanchang Formation in the Huaqing Oilfield, Ordos Basin[J].Geology and Exploration,2014,50(3):0591-0598.
鄂爾多斯盆地延長組長81段是目前華慶油田主要有利儲層之一(任大忠,2012),該儲層段開發(fā)程度和相關研究較低,特別是直觀表征儲層特征和物性的控制影響因素認識不清,制約著對油氣相對高滲富集帶和開發(fā)難易程度的認識。若依據(jù)常規(guī)單一分析方法研究儲層物性的影響因素,勢必會增大誤差。因此,本文利用鑄體薄片、常規(guī)壓汞、物性、X射線衍射等巖心測試分析資料與測井資料相結合,著重從沉積、成巖作用演化的角度分析研究儲層物性的影響因素,為該油藏的勘探開發(fā)提供有利的指引。
華慶油田位于甘肅省隴東地區(qū)華池縣境內(圖1),構造上屬于燕山構造層,受印支構造演化階段控制,位于基底構造平緩穩(wěn)定的陜北斜坡帶中部(鄧秀琴,2011),長81時期為典型的巖性油氣藏儲層,在差異壓實作用下發(fā)育多排近南東向-北西向的小型鼻狀隆起(任大忠,2012;鄧秀琴,2011)。研究區(qū)面積約2500 km2,延長組長81時期為淺水湖泊三角洲沉積體系,以三角洲前緣水下分流河道砂體為儲集空間主體(圖2),含油砂巖以深灰色、褐色、灰色中細砂巖與細砂巖為主,其次為極細砂質細砂巖,含油單砂體厚度主要在3~7m之間。
圖1 華慶油田區(qū)位置圖Fig.1 Location of Huaqing Oilfield 1-華慶油田;2-盆地邊界;3-構造帶1-Huaqing oilfield;2-basin boundary; 3-tectonic zone
依照石油行業(yè)標準(SY/T 5368-2000),通過觀察、統(tǒng)計與分析鑄體薄片、掃描電鏡、圖象粒度、X線衍射黏土分析,儲層以細砂巖(61.3%)和中砂巖(23.2%)為主;巖石類型(圖3) 以巖屑長石砂巖與長石巖屑砂巖為主,少量長石砂巖與巖屑砂巖,巖石類型接近,但并不單一,說明物源具有混源特征;巖屑含量高,長石風化程度大,巖石成分成熟度低(指數(shù)<1.0),粒徑為0.115 ~0.5 mm,分選性中-好,骨架顆粒磨圓度以次棱角為主,壓實程度中等偏強,膠結類型以加大-孔隙型與薄膜-孔隙型(68.1%)為主,其次為孔隙型(16.4%);填隙物為少量雜基類和自生礦類膠結物,充填于孔隙空間中,體積平均含量11.64%,其中重要膠結物占10.32%(自生粘土礦物、碳酸鹽礦物與硅質類),其它占1.32%,粘土礦物以綠泥石和伊利石為主,其次為高嶺石。
3.1 儲集空間類型
據(jù)含油砂巖鑄體薄片與掃描電鏡資料觀察、統(tǒng)計與分析,長81段儲層原生孔隙發(fā)育中等,次生孔隙相對發(fā)育,孔隙配位程度差-中等、連通程度中等;以平均相對比例統(tǒng)計儲集空間以剩余原生粒間孔和長石溶孔為主(占87.85%),其次巖屑溶孔和粒間溶孔(占9.48%),其余以微孔為主;孔隙主要以組合式發(fā)育,其孔隙內充填有自生礦類膠結物和雜基類(圖4),孔隙發(fā)育特征與充填物質直接反映儲層的儲集與滲流性能。
圖2 華慶油田長81段儲層沉積相圖Fig.2 Sedimentary facies of the Chang 81 reservoir, Yanchang Formation in Huaqing Oilfield 1-地名;2-井號;3-分流間灣(S/F≤0.3);4-水下分流河道(0.3≤S/F≤0.5);5-水下分流河道(0.5≤S/F≤0.7);6-水下分流河道(0.7≤S/F);7-微相界線1-place;2-well number; 3-interdistributary bay(S/F≤0.3);4-subaqueous distributary channel (0.3≤S/F≤0.5);5-subaqueous distributary channel (0.5≤S/F≤0.7);6-subaqueous distributary channel (0.7≤S/F);7-sedimentary facies boundary
圖3 華慶油田長81儲層含油砂巖分類圖Fig.3 Diagram showing types of oil-bearing sandstones from the Chang 81 reservoir in the Huaqing Oilfield
圖4 華慶油田長81儲層含油砂體典型成巖現(xiàn)象圖版Fig.4 Photos showing typical diagenenesis of oil-bearing sandstones from the Chang 81 reservoir in the Huaqing Oilfield a-顆粒主要呈線接觸-凹凸接觸,云母礦物彎曲及假雜基化,P110井2221.58m,鑄體(+);b-顆粒緊密接觸,石英加大,成巖縫,B465井2204.3m,鑄體(+);c-綠泥石薄膜以襯邊方式膠結,B280井2216.0m,SEM(2000×);d-綠泥石膠結并交代長石,石英加大,S135井2137.28m,SEM(1800×);e-高嶺石膠結并交代長石和石英,B428井2282.6m,SEM(1515×);f-伊利石膠結并交代長石,L56井2348.3m,SEM(2400×);g-伊/蒙混層與碳酸鹽膠結,并交代石英與長石,石英加大,P110井2221.58m,SEM(1215×);h-長石加大,伊利石與綠泥石膠結,B455井2147m,SEM(1600×);i-鐵方解石連晶膠結充填粒間孔、溶蝕孔及破裂縫,并交代長石、石英、巖屑類及云母,B304井2237.84m,鑄體(+);j-鐵白云石膠結與自生晶石英充填粒間孔,并交代長石,伊利石膠結并交代石英,L54井2126.6m,SEM(3000×);k-長石顆粒溶蝕,S139井2211.91m,SEM(1000×);l-粒間孔與溶蝕孔發(fā)育, B456井2137.97m,鑄體(-); Qzt-石英; Qzt-o-石英加大; Fs-長石; Nfs-鈉長石; Kfs-鉀長石; Fs-o-長石加大; Fs-d-長石溶孔; R-巖屑類; R-d-巖屑溶孔; M-s-云母變形; M-mx-雜基類; Cal-方解石; Dol-鐵白云石; Cal-Fe-鐵方解石; Mf-破裂縫; Mf-d-溶蝕解理縫; Oil-油浸;I-伊利石; Chl-綠泥石; K-高嶺石; K-d-高嶺石溶蝕; I/C-伊蒙混層;P-粒間孔;P-c-微孔類;注:所有樣品深度±1.5cma-grains contact from point to concave convex, and mica mineral bend and are false matrices, from a depth of 2221.58 m in the well P110,casting(+);b-particles contact intimately,with quartz overgrowth,and diagenetic fissure,from a depth of 2204.3 m in the well B465, casting(+);c-lining chlorite is shaped in thin film,from a depth of 2216.0 m in the well B280, SEM(2000×);d-The cementation of chlorite is distributed in feldspar, while quartz overgrow, from a depth of 2137.28m in the well S135, SEM(1800×);e-The cementation of kaolinite is distributed in feldspar and quartz, from a depth of2282.6m in the well B428, SEM(1515×); f-The cementation of illite is distributed in feldspar,from a depth of2348.3m in the well L56, SEM(2400×);g-I/S mixed-layer mineral and carbonate cements are gradually formed in pores,or distribute in feldspar and quartz,with quartz overgrowth, from a depth of2221.58m in the well P110, SEM(1215×);h-quartz overgrowth,illite filling and Chlorite cementation, from a depth of 2147m in the well B455, SEM(1600×);i-intergrown Fe-calcite cements are gradually formed in intergranular pores, solution pores and fractures, or distribute in feldspar,quartz,lithic fragment and mica, from a depth of2237.84m in the well B304, casting(+);j-ankerite cements and authigenic crystalline quartz are gradually formed in intergranular pores, or distribute in feldspar; illite cementation replace quartz, from a depth of2126.6m in the well L54, SEM(3000×);k-the dissolution of feldspar particles, from a depth of 2211.91m in the well S139, SEM(1000×);l-the reservoir develops intergranular pore and solution pore, from a depth of 2137.97m in the well B456, casting(+); Qzt -quartz;Qzt-o-quartz overgrowth; Fs-feldspar; Nfs-albite;Kfs-potash feldspar; Fs-o-feldspar overgrowth; Fs-d-feldspar dissolution pore; R-lithic fragment; R-d-Lithic dissolution pore; M-s-mica deformation; M-mx-matrix content; Cal-calcite; Dol-Fe-dolomite; Cal-Fe-ferrocalcite; Mf -fissure; Mf-d-dissolution cleavage crack; Oil-inrush of oil; I-illite; Chl-chlorite; K-kaolinite; K-d-kaolinite dissolution; I/C-illite/montmorillonite mixing layer; P-intergranular pore; P-c-micropore; Note: All the depth of the samples plus or minus 1.5cm.
類型孔隙度/%滲透率/×10-3μm2門檻壓力/MPa中值壓力/MPa最大進汞飽和度/%中值半徑/μm最大連通孔喉半徑/μm分選系數(shù)樣品數(shù)/個Ⅰ>10>1.0<0.5<3.0>80>0.153.0~18.51.7~3.09Ⅱ7~140.3~2.00.15~1.01.0~8.075~950.1~0.51.2~13.51.5~2.717Ⅲ6~130.1~1.00.7~2.05.0~2055~800.05~0.250.5~5.01.1~2.519Ⅳ<10<0.1>2.0>15<75<0.05<1.50.9~2.56
注:4類樣品個數(shù)統(tǒng)計誤差均小于5.0%,樣品個數(shù)集中程度均大于95%。
3.2 孔隙結構特征
據(jù)含油砂巖孔隙實驗資料觀察、統(tǒng)計與分析,長81段儲層孔隙形態(tài)無規(guī)律性,孔隙類型以中孔隙(約45.45%)和小孔隙(約31.82%)為主,其次為大孔隙(約18.18%),而細孔隙與微孔隙較少;喉道類型以微細喉道(約40.91%)和細喉道(約31.82%)為主,其次為微喉道(約40.91%),而中細喉道與吸附喉道較少;孔隙組合類型以微孔型(約33.94%)和溶孔-粒間孔型(約32.11%)為主,其次為粒間孔-溶孔型(約10.55%)和粒間孔-微孔型(約9.17%),而溶孔-微孔型和粒間孔型平均相對比例接近。
依據(jù)常規(guī)壓汞曲線特征、進汞壓力參數(shù)、進汞飽和度參數(shù)及物性參數(shù),將區(qū)內有效儲層孔喉結構分為4類(表1,圖5):Ⅰ大中孔隙細-微喉道型,Ⅱ中小孔隙細-微喉道型,Ⅲ小孔隙-微細喉道型,Ⅳ小微孔隙-吸附喉道型。壓汞曲線特征表現(xiàn)為雙孔隙結構特征(原海涵等,1999;李霞等,2012):低壓、進汞曲線階梯特征明顯,孔喉半徑大、粒間孔發(fā)育、孔喉分選系數(shù)大、雙孔隙結構特征明顯;高壓、進汞曲線平緩,孔喉半徑細小、微孔發(fā)育、雙孔隙結構特征變弱。研究層段以Ⅱ、Ⅲ孔隙結構為主。
圖5 華慶油田長81儲層壓汞曲線特征圖Fig.5 Typical mercury-injection curves of oil-bearing sandstones from the Chang 81 reservoir in the Huaqing Oilfield
4.1 儲層物性特征
依照石油行業(yè)標準(SY/T 6285-2011),通過對巖心物性化驗分析資料統(tǒng)計和分析,取孔隙度為6.0%、滲透率為0.075×10-3μm2作為儲層有效物性下限。據(jù)2464塊有效物性資料統(tǒng)計(圖6),主要孔隙度區(qū)間在6.0%~19.54%,平均值10.28%,孔隙度小于10%的樣品個數(shù)占40.12%,孔隙度在10%~15%的樣品數(shù)占53.46%,孔隙度大于15%的樣品數(shù)占6.42%;主要滲透率區(qū)間在(0.075~18.24)×10-3μm2,平均值0.93×10-3μm2,滲透率小于0.1×10-3μm2的樣品數(shù)占8.29%,滲透率在(0.1~1.0)×10-3μm2的樣品數(shù)占71%,滲透率在(1.0~3.0)×10-3μm2的樣品數(shù)占13.56%,滲透率在3.0×10-3μm2的樣品數(shù)占7.15%;儲層以低孔特低滲-超低滲巖性油藏為主。
圖6 華慶油田長81儲層孔隙度(a)和滲透率(b)分布頻率直方圖Fig.6 Histograms showing frequency distribution of the porosity (a) and permeability (b) for the lower part of Chang 81 reservoir in the Huaqing Oilfield
4.2 儲層物性相關性
據(jù)2464塊有效孔隙度與滲透率相關性統(tǒng)計顯示(圖7a),孔隙度與滲透率呈指數(shù)規(guī)律的正相關關系中等偏好。從壓汞參數(shù)的4類孔喉結構來看,不同孔喉半徑區(qū)間物性具有明顯的分帶性(表1,圖7b),與孔隙相對比滲透率分布范圍寬、參數(shù)敏感程度強,說明儲層物性明顯受儲層微觀孔隙結構發(fā)育程度控制(陳國俊,2010;Lashetal.,2011),尤其是滲透性受喉道控制較為明顯,同時表明物性是儲層微觀孔隙結構發(fā)育特征的直觀反映。
5.1 沉積作用
本文通過對研究區(qū)長81儲層段含油砂巖鑄體薄片、物性、粒度、沉積構造、砂體厚度等統(tǒng)計分析,儲層沉積背景同為三角洲前緣亞相,水下分流河道微相是研究層段的主體儲集空間。不同區(qū)間段的水下分流河道砂體厚度與展布形態(tài)、沉積構造、粒度等對物性的影響存在差異性(表2,圖2)。水下分流河道微相砂地比值大,砂體厚度大、塊狀沉積構造發(fā)育、粒度粗、物性好;砂地比值小,砂體厚度薄、 沉積構造層發(fā)育、粒度細、物性差。同時沉積作用對成巖作用也有明顯的控制,即對于構造穩(wěn)定的巖性油氣藏,沉積相帶框架是儲層特征的內在決定因素,控制著儲層的屬性與發(fā)育狀況(李洋等,2013;丁曉琪等,2013)。
據(jù)統(tǒng)計(表2),儲層巖石的孔徑和物性都與碎屑顆粒粒徑成呈正相關關系,同時巖石顆粒的結構成熟度與孔隙間的填隙物含量對物性也有明顯的影響。表現(xiàn)為:粗-中粒巖屑長石砂巖與中粒巖屑長石砂巖為低孔特低滲儲集空間;細-中粒巖屑長石砂巖、細粒巖屑長石砂巖、極細-細粒巖屑長石砂巖與極細-細粒長石砂巖物性呈變差趨勢,為低孔特低孔超低滲儲集空間。綜合統(tǒng)計分析,研究區(qū)層段主要優(yōu)勢巖性為中粒巖屑長石砂巖、細-中粒巖屑長石砂巖、細粒巖屑長石砂巖,粗-中粒巖屑長石砂巖所占相對比例低于10%,極細-細粒巖屑長石砂巖與極細-細粒長石砂巖目前勘探開發(fā)難度較大。
5.2 成巖作用
5.2.1 壓實-壓溶作用
早期成巖階段的壓實作用是巖石孔隙空間損失的主要因素。鏡下觀察現(xiàn)象圖4(a、b):① 巖石骨架顆粒多由半定向式向定向式排列、顆粒表面純潔度降低、粒間充填物質增加(假雜基)、顆粒接觸的緊密程度增加(由點式呈線式);② 粗顆粒表現(xiàn)為剛性(易于破裂), 細顆粒表現(xiàn)為塑性(易于轉動或變形);③ 云母類軟組分變形破裂,巖屑組分易于擠壓變形,微細顆粒及其它軟組分假雜基化。由砂巖儲層成巖作用定量參數(shù)模型統(tǒng)計(Scherer M,1987;王瑞飛等,2011;姚涇利等,2013),研究區(qū)儲層段表現(xiàn)為弱壓溶、壓實程度中等偏強,巖石相對壓實率區(qū)間主要為40.0%~75.0%,壓實過程導致原生孔隙度損失區(qū)間主要為14.0%~28.0%,原生孔隙度平均損失21.92%。
表2 華慶油田長81儲層不同砂巖粒度物性分布Table 2 Distribution of the porosity and permeability of different grain diameters of the Chang 81 sandstone reservoir in Huaqing Oilfield
圖7 華慶油田長81儲層物性關系Fig.7 Relationship between porosity and permeability of the Chang 81 reservoir in the Huaqing Oilfield a-含油砂巖孔隙度與滲透率關系; b-四類孔隙結構的物性分布a-relationship between porosity and permeability for oil-bearing sandstones; b-porosity and permeability for 4 types of pore textures
5.2.2 膠結作用
依照石油行業(yè)標準(SY/T5477-2003),通過鏡下觀察和X線衍射黏土統(tǒng)計與分析,研究區(qū)儲層段砂巖孔隙空間內黏土礦物膠結、碳酸鹽膠結、硅質膠結普遍發(fā)育,膠結作用直接反映物化作用過程對儲層孔隙空間的改造程度,膠結物以充填孔隙縮小孔隙體積空間為主,同時對孔隙有一定的保護與增孔貢獻。
綠泥石膠結在中粗-細粒砂巖儲集段廣泛發(fā)育,表現(xiàn)為圖4(c、d):早期綠泥石富鐵自生晶簇近乎呈等厚的葉狀或片狀,主要以孔隙襯邊方式膠結附于碎屑顆粒表面,薄膜厚度主要在3.0~10.0μm;中期成熟度較高的綠泥石以薄膜狀包裹于顆粒表面,晶簇發(fā)育厚度高達15.0μm以上;晚期的“絨球狀或菊花瓣狀”綠泥石充填孔隙。對孔隙的影響表現(xiàn)為:早期綠泥石膠結在顆粒接觸處降低壓實強度與抑制壓溶作用,使大量原生孔隙得以保存;中晚期,對喉道的充填破壞較為明顯,造成孔喉體積空間縮小,封閉和半封閉喉道數(shù)增加,流體儲集與滲流能力變差;富Fe2+的綠泥石吸附瀝青質中的活性物質呈灰黑色,使綠泥石膜表面增厚降低孔喉體積空間與連通性。
高嶺石膠結主要發(fā)育在中-細粒交匯的水下分流河道砂體中,表現(xiàn)為圖4(e):早期主要為長石質與巖屑類溶蝕產物,少量的長石或石英交代產物,多成蠶蛹狀或分散的豆瓣狀,自生晶形產狀差或表面被溶蝕,附著于顆粒表面或充填粒間孔隙;中晚期主要為早期高嶺石自生加大或溶蝕沉淀物次生晶體,多呈假六邊形晶簇的書頁狀晶體形態(tài)較好,充填粒間孔隙(易于移動)與溶蝕孔隙(不易移動)起到分割與減小孔隙空間作用,成熟的高嶺石晶間孔隙發(fā)育,孔徑一般小于3.0μm。
伊利石膠結發(fā)育在細粒與部分極細粒砂體中,在巖屑砂巖中較為富集,表現(xiàn)為圖4(f、g):伊利石多以絨絮邊緣的卷曲片狀或絲縷狀賦存于粒間孔中,伊利石膠結連晶程度較差,在顆粒表面分布相對散亂,對孔隙具有一定的保護作用;對孔隙和喉道具有分割作用,相對集中時堵塞喉道;主要表現(xiàn)為縮小孔隙體積,降低滲透率。而伊/蒙混層含量較低,多以蜂窩狀或卷片狀附著于顆粒表面充填孔隙圖4(g),常常與硅質加大或碳酸鹽膠結伴生。
硅質膠結作用在有效砂層段普遍發(fā)育,表現(xiàn)為圖4(a、b,d,g、h):次生加大狀晶面與基質顆粒之間具有明顯的黏土薄膜,在軟組型膠結較弱的石英或長石顆粒的邊壁發(fā)育,以孔隙式充填原生孔隙,增強顆粒之間的固結程度,顆粒穩(wěn)定的石英質主要為環(huán)邊狀與自生晶體狀膠結,長石質次生加大膠結發(fā)育程度偏弱。早期硅質加大具有抵抗壓實能力,中晚期硅質加大縮小孔喉體積空間,對小孔特別是對喉道的封堵?lián)p害更為嚴重。
碳酸鹽膠結在極細-細粒砂體普遍發(fā)育,成分主要為鐵方解石,其次為鐵白云石,而方解石、白云石與菱鐵礦較少,膠結方式多以孔隙式或連晶式充填粒間孔隙或溶蝕孔,表現(xiàn)為圖4(a,g,i、j):早成巖期以方解石膠結為主,被交代的碎屑顆粒表面較純凈,溶液雜質較多,其方解石晶型多為泥晶、微晶或亮晶組合;早成巖后期-中成巖期,鐵方解石與鐵白云石膠結物晶型較好;中成巖-晚成巖時期鐵方解石與鐵白云石晶簇加大或發(fā)生部分溶蝕。碳酸鹽膠結是本研究區(qū)層段物性變差的主要膠結類型,在砂體中碳酸鹽膠結物占8%~45%,局部方解石含量高達65%以上,鏡下觀察到局部粒間孔隙或溶孔被碳酸鹽膠結物完全充填;碳酸鹽膠結早期充填孔隙使孔喉體積縮小,同時增強抗壓實能力,中后成巖階段主要為破壞孔隙結構縮小孔隙體積。
膠結物是導致砂巖孔隙損失的因素之一,碳酸鹽膠結對孔隙的破壞最為突出,黏土礦物膠結次之,硅質膠結低于前兩者,依據(jù)砂巖儲層成巖作用定量參數(shù)模型統(tǒng)計(Scherer,1987;王瑞飛等,2011;姚涇利等, 2013),膠結過程導致原生孔隙度損失區(qū)間主要為3.5%~12.5%,原生孔隙度平均損失8.61%。
5.2.3 交代與重結晶作用
研究區(qū)層段砂體內交代與重結晶作用表現(xiàn)為圖4(d-j):早成巖階段后期與中成巖階段致密型交代為碳酸鹽交代石英、長石、巖屑、次生硅質及黏土類,表現(xiàn)為方解石連晶式充填孔隙交代,對孔隙空間破壞嚴重;體積膨脹型交代以黏土礦物類交代石英和長石為主;其交代形式以原生顆粒邊緣交代為主以及少量粒內交代,交代程度以原生顆粒部分交代為主。此外,方解石與鐵方解石自生晶粒重結晶形成碳酸鹽連晶膠結為主要的重結晶作用。
5.2.4 溶蝕作用
研究區(qū)層段溶蝕占次生孔隙的95%以上,表現(xiàn)為圖4(k-l):次生溶蝕孔90%以上為長石質溶孔,形成溶蝕孔(部分溶蝕、綠泥石包裹的鑄模溶孔等)與溶蝕縫;而石英、巖屑、雜基、自生晶碳酸鹽與高嶺石等溶蝕較少。溶蝕孔的發(fā)育對砂巖的孔隙空間具有良好的改善作用,優(yōu)化了孔隙結構的配位關系。依據(jù)砂巖儲層成巖作用定量參數(shù)模型統(tǒng)計(Scherer,1987;王瑞飛等,2011;姚涇利等, 2013),溶蝕作用使孔隙體積的面孔率增加1.83%,孔隙度貢獻了4.46% 。
(1) 華慶油田長81段儲層三角洲前緣水下分流河道砂體發(fā)育,砂巖類型以中細砂巖與細砂巖的巖屑長石砂巖和長石巖屑砂巖為主,巖石成分成熟度低,其物源具有一定的混源特征,填隙物相對含量中等偏低,主要以膠結物的形式充填于孔隙空間中。
(2) 長81段儲層儲集空間以剩余原生粒間孔和長石溶孔為主;孔隙類型以中孔隙和小孔隙為主;喉道類型以微細喉道和細喉道為主;孔隙組合類型以微孔型和溶孔-粒間孔型為主;孔隙結構以Ⅱ、Ⅲ類為主,Ⅰ、Ⅱ、Ⅲ具有明顯雙孔隙結構特征;儲集砂體物性差,為低孔特低滲-超低滲巖性油藏,儲層孔喉半徑與物性具有正相關性與分帶性。
(3) 沉積相帶框架是儲層特征的內在決定因素,控制著儲層的屬性與發(fā)育狀況,長81段儲層砂巖發(fā)育低孔特低滲儲集空間和低孔特低孔超低滲儲集空間,孔滲較好的砂巖主要為中粒巖屑長石砂巖、細-中粒巖屑長石砂巖、細粒巖屑長石砂巖。
(4) 成巖作用是儲層物性改造的內在控制因素,在固結成巖過程中,壓實作用使原生孔隙度損失21.92%,膠結作用使原生孔隙度損失8.61%,溶蝕作用使孔隙體積的面孔率增加1.83%,孔隙度貢獻了4.46% 。
Chen Guo-jun,Lv Cheng-fu,Wang Qi,Du Gui-chao,Chen Ji.2010.Characteristics of pore evolution and its controlling factors of Baiyun Sag in deepwater area of Pearl River Mouth Basin [J]. Acta Petrolei Sinic, 31(4) :566-572 (in Chinese with English abstract)
Deng Xiu-qin.2011. Accumulation machanism research on ultra-low-permeability and large scale lithogical reserviors of Triassic Yanchag Formation in Ordos Basin[D]. Xi’an:Northwestern University:124-139 (in Chinese with English abstract)
Ding Xiao-qi,Han Mei-mei,Liu Yan,Wan You-li.2013 .Coupling relation between provenance and diagenesis of siliciclastic reservoirs in the Yanchang Formation, Ordos basin[J]. Geology and Exploration,49( 2):0384-0392 (in Chinese with English abstract)
Lash G G, Engelder T.2011. Thickness trends and sequence stratigraphy of the Middle Devonian Marcellus Formation,Appalachian Basin:Implications for Acadian foreland basin evolution [J]. AAPG Bulletin,95:61-103
Li Xia,Zhao Wen-zhi,Zhou Can-can,Wang Tong-shan,Li Chao-liu.2012.Dual-porosity saturation model of low-porosity and low-permeability clastic reservoirs[J] .Petroleum Exploration and Development,39(1) :82-91 (in Chinese with English abstract)
Li Yang, Zhu Xiao-min,Song Ying-qi,Liu Fen,Li Chao.2013.Sedimentary characteristics and evolution of shallow-water delta of the Lower Cretaceous Fuyu reservoir in the Yushulin Oilfield, Songliao Basin[J].Geological Journal of China Universities,19(1):23-31(in Chinese with English abstract)
Ren Da-zhong.2012.The fine reservoir description of low /ultra-low permeability lithologic reservoirs-Taking Chang 81 reservoir of Yanchang Formation in Huaqing region in Ordos basin as an example[D].Xi’an:Northwestern University:1,11-18 (in Chinese with English abstract)
Scherer M.1987.Parameters influencing porosity in sandstones — a model for sandstone porosity predication[J] .AAPG Bulletin,71(5) :485-491
Wang Rui-fei, Shen Ping-ping, Zhao Liang-jin.2011. Diagenesis of deep sandstone reservoirs and a quantitative model of porosity evolution:Taking the third member of Shahejie Formation in the Wendong Oilfield,Dongpu Sag,as an example[J] .Petroleum Exploration and Development,38(5):552-559(in Chinese with English abstract)
Yao Jin-li,Tang Jun,Pang Guo-yin,Ma Xiao-feng,Wang Qi.2013.Quantitative simulation on porosity-evolution in member 8 of Yanchang Formation of Baibao-Huachi area ,Ordos basin[J].Natural Gas Geoscience,24(1):38-46(in Chinese with English abstract)
Yuan Hai-han,Zhao Yu-ping,Yuan Ye.1999.An analysis on “double hump distribution of intrusive”mercury curve[J] .Acta Petrolei Sinic,20(4):61-68 (in Chinese with English abstract)
[附中文參考文獻]
陳國俊,呂成福,王 琪,杜貴超,陳 吉.2010.珠江口盆地深水區(qū)白云凹陷儲層孔隙特征及影響因素[J].石油學報,31(4):566-572
鄧秀芹.2011.鄂爾多斯盆地三疊系延長組超低滲透大型巖性油藏成藏機理研究[D].西安:西北大學:124-139
丁曉琪,韓玫梅,劉 巖,萬友利.2013.鄂爾多斯盆地延長組物源與成巖耦合關系研究[J].地質與勘探,49(2):0384-0392
李 霞,趙文智,周燦燦,王銅山,李潮流.2012.低孔低滲碎屑巖儲集層雙孔隙飽和度模型[J].石油勘探與開發(fā),39(1):82-91
李 洋,朱筱敏,宋英琦,劉 芬,李 超.2013.松遼盆地榆樹林油田下白堊統(tǒng)泉頭組扶余油層淺水三角洲沉積特征及其演化[J].高校地質學報,19(1):23-31
任大忠.2012.低滲-超低滲透巖性油藏精細描述-以鄂爾多斯盆地華慶地區(qū)長81儲層為例[D].西安:西北大學:1,11-18
王瑞飛,沈平平,趙良金.2011.深層儲集層成巖作用及孔隙度演化定量模型-以東濮凹陷文東油田沙三段儲集層為例[J].石油勘探與開發(fā),38(5):552-559
姚涇利,唐 俊,龐國印,馬曉峰,王 琪.2013.鄂爾多斯盆地白豹-華池地區(qū)長8段孔隙度演化定量模擬[J].天然氣地球科學,24(1):38-46
原海涵,趙玉萍,原 野.1999.汞曲線“雙峰態(tài)”性質的分析[J].石油學報,20(4):61-67
Influential Factors in the Physical Properties of the Chang 81Reservoir, Yanchang Formation in the Huaqing Oilfield, Ordos Basin
REN Da-zhong1, SUN Wei1, LEI Qi-hong2, ZHANG Xi1, ZHANG Rui1, ZHAO Guo-xi2
(1. State Key Laboratory for Continental Dynamics and Department of Geology,Northwest University,Xi’an, Shaanxi 710069;2. National Engineering Laboratory for Exploration and Development of Low-Permeability Oil & Gas Fields,Xi’an, Shaanxi 710018)
This paper investigates the physical properties and their influential factors of the Chang-81reservoir, Yanchang Formation in the Huaqing oil field based sample tests and images. The results show that the sandstones are dominated by middle-fine sandstone, packsand, lithic feldspathic sandstone and feldspathic lithic sandstone. The pore space of the reservoir includes the remaining intergranular pores and feldspar dissolution porosity. Tiny pore and mesopore are the main pore configurations. The dominant pores exhibit the characteristic of a dual pore structure. And thus it belongs to low porosity and extra low permeability-ultra-low permeability oil reservoir. The radius of reservoir pore throat grows in a direct proportion to the physical property. The deposition and diagenesis jointly affected the developmental characteristics of the reservoir. Medium-grained lithic arkosic sandstone, fine-medium grained lithic arkosic sandstone and fine-grained lithic arkosic sandstone show better physical properties. The decrease of sandstone porosity is mainly caused by compaction, cementation and dissolution, which contribute 21.92%, 8.61% and 4.46% to the loss of primary pores, respectively. Further studies on influence of deposition and diagenesis on reservoir’s physical properties would help understand and deal with the difficult degree in exploration and development for similar reservoirs.
physical properties, diagenesis, deposition, Huaqing oil field
2013-04-13;
2013-08-12;[責任編輯]郝情情。
國家科技重大專項大型油氣田及煤層氣開發(fā)(2011ZX05044)和陜西省科技統(tǒng)籌創(chuàng)新工程(2011KTZB01-04-01)聯(lián)合資助。
任大忠(1984年-),男,西北大學油氣田地質與開發(fā)專業(yè)在讀博士,主要從事油氣藏地質與開發(fā)研究。E-mail:rendazhong123@163.com。
[文獻標識碼]A [文章編號]0495-5331(2014)03-0591-8