国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

RNAi生物技術(shù)作物環(huán)境風(fēng)險(xiǎn)評(píng)估研究進(jìn)展

2014-08-30 06:05:12何康來王振營
生物安全學(xué)報(bào) 2014年4期
關(guān)鍵詞:殺蟲靶標(biāo)轉(zhuǎn)基因

何康來, 王振營, 沈 萍

1中國農(nóng)業(yè)科學(xué)院植物保護(hù)研究所,植物病蟲害生物學(xué)國家重點(diǎn)實(shí)驗(yàn)室,北京 100193; 2中華人民共和國農(nóng)業(yè)部科技發(fā)展中心,北京 100122

轉(zhuǎn)蘇云金芽孢桿菌Bacillusthuringiensis(Bt)殺蟲蛋白基因抗蟲作物已在世界許多國家大面積應(yīng)用,以防治鱗翅目和鞘翅目害蟲(James,2014; Vaughnetal.,2005)。Bt殺蟲蛋白被靶標(biāo)昆蟲攝入后在中腸酶的作用下,經(jīng)一系列構(gòu)型變化,插入中腸細(xì)胞的原生質(zhì)膜,從而形成孔洞,最終殺死害蟲(Rajamohanetal.,1998)。然而,室內(nèi)和田間的大量研究結(jié)果表明,大面積使用單一和具有相同作用模式的Bt殺蟲蛋白,會(huì)導(dǎo)致靶標(biāo)害蟲產(chǎn)生抗性,從而使轉(zhuǎn)Bt基因抗蟲作物防治害蟲的功能失效(Tabashniketal.,2008)。因此,害蟲防治策略中包含不同殺蟲作用機(jī)理的轉(zhuǎn)基因作物,對于預(yù)防和治理害蟲抗性,使轉(zhuǎn)基因抗蟲作物在害蟲防治中得以可持續(xù)利用具有重要意義。

RNA干涉(RNA interference,RNAi)在基因功能研究方面顯示了重要作用(Bucheretal.,2002),同時(shí)在臨床醫(yī)學(xué)(Huvenn & Smagghe,2010)和害蟲防治領(lǐng)域(Gatehouse & Price,2011)有巨大的潛力。由于RNAi的殺蟲機(jī)理與Bt蛋白完全不同,其可作為害蟲Bt抗性治理的又一潛在新途徑。有研究表明,基于RNAi的轉(zhuǎn)基因抗蟲作物可用于害蟲防治(Baumetal.,2007; Maoetal.,2007)。但是,有關(guān)RNAi轉(zhuǎn)基因抗蟲作物的環(huán)境安全性也受到科學(xué)家的關(guān)注。因此,本文就目前RNAi生物技術(shù)作物及其環(huán)境風(fēng)險(xiǎn)評(píng)價(jià)研究進(jìn)行簡要綜述。

1 RNAi生物技術(shù)作物研發(fā)進(jìn)展

1.1 dsRNA施用方法的研究

在真核生物(包括昆蟲)中普遍存在由雙鏈RNA(double-stranded RNA,dsRNA)引發(fā)特異序列的基因沉默現(xiàn)象(Hannon,2002)。在植物中被稱之為轉(zhuǎn)錄后基因沉默(post-transcriptional gene silencing)(Baulcombe,2004),在動(dòng)物中則被稱之為RNAi(Hannon,2002)。通過取食或注射大量dsRNA引發(fā)重要基因沉默,可導(dǎo)致昆蟲停止取食,進(jìn)而死亡。在傳統(tǒng)的遺傳模式生物中應(yīng)用RNAi開展基因功能研究已有十多年的歷史。在昆蟲方面也有許多報(bào)道,如通過微量注射沉默基因以探索基因功能(Amdametal.,2003; Brownetal.,2009; Bucheretal.,2002; Suazoetal.,2009; Tomoyasu & Denell,2004)。由于基因沉默僅發(fā)生于“感染”了dsRNA的細(xì)胞,選擇適宜的施用方法是RNAi成功的重要一步。已報(bào)道的方法包括注射法(Bettencourtetal.,2002; Quanetal.,2002)、攝食法(Turneretal.,2006)、浸泡法(Aronsteinetal.,2006; Eatonetal.,2002; Rajagopaletal.,2002; Timmons & Fire,1998)和基因槍法(Yuenetal.,2008)等。與此同時(shí),科學(xué)家在積極探討和研發(fā)應(yīng)用RNAi防治害蟲的新方法。例如,直接噴霧dsRNA后,亞洲玉米螟Ostriniafurnacalis(Guenée)幼蟲的死亡率可達(dá)到50%,同時(shí)噴霧處理幼蟲和人工飼料,死亡率可達(dá)73%~100%(Wangetal.,2011);點(diǎn)滴法施用丙酮稀釋的AaeIAP1 dsRNA能殺死埃及伊蚊Aedesaegypti(L.)雌蚊(Pridgeonetal.,2008);將幾丁聚糖基因AgCHS1 dsRNA制成納米微膠囊喂食非洲瘧蚊Anophelesgambiae(Zhangetal.,2010)及以表達(dá)dsRNA的轉(zhuǎn)基因工程菌喂食實(shí)蠅等都能取得一定的殺蟲效果(Gura,2000; Lietal.,2011; Timmons & Fire,1998)。在實(shí)驗(yàn)室,喂食dsRNA實(shí)現(xiàn)RNAi具有簡單、無需特殊設(shè)備(注射法需要精密的微量注射儀)、易操作、經(jīng)濟(jì)、省時(shí)、無入侵性傷口(相比注射法)等特點(diǎn),且是客觀自然性的攝入,因此實(shí)用性強(qiáng);同時(shí),符合田間應(yīng)用技術(shù)的開發(fā),如dsRNA制劑、RNAi生物技術(shù)作物等。

1.2 RNAi生物技術(shù)作物的研發(fā)

隨著轉(zhuǎn)Bt基因抗蟲作物的應(yīng)用,主要靶標(biāo)鱗翅目害蟲得到了有效控制(Wuetal.,2008),而一些次要害蟲如盲蝽、蚜蟲、飛虱等刺吸式害蟲上升為主要害蟲(Luetal.,2010),目前還未發(fā)現(xiàn)對這類昆蟲有殺蟲活性的Bt殺蟲蛋白。因此,RNAi生物技術(shù)作物將為包括這類昆蟲在內(nèi)的害蟲防治提供了新途徑(Gatehouse & Price,2011)。此外,由于Bt作物的大面積應(yīng)用,某些靶標(biāo)害蟲已在一些地區(qū)對Bt作物產(chǎn)生了抗性(Alietal.,2006; Lietal.,2004、2007; Mattenetal.,2008; Tabashniketal.,2008; van Rensburg,2007),使Bt作物的持續(xù)應(yīng)用受到嚴(yán)重的威脅。研發(fā)RNAi生物技術(shù)作物對害蟲Bt抗性治理具有重要意義。如有研究表明,喂食dsRNA沉默小菜蛾P(guān)lutellaxylostellaL.氯菊酯抗性品系過表達(dá)的細(xì)胞色素P450基因CYP6BG1,可顯著提高其對殺蟲劑氯菊酯的敏感性(Bautistaetal.,2009)。

早期的研究表明,經(jīng)口攝食的dsRNA對不同害蟲的作用效果不一致。如對斜紋夜蛾Spodopteralitura(Fabricius)幼蟲注射dsRNA能引發(fā)RNAi反應(yīng),而攝食dsRNA不能引起RNAi反應(yīng)(Rajagopaletal.,2002);而蘋淺褐卷蛾Epiphyaspostvittana(Walker)攝食大量的dsRNA能引發(fā)目標(biāo)基因轉(zhuǎn)錄水平(mRNA)下降,但未引起死亡(Turneretal.,2006)。近年來,許多研究表明,添加了dsRNA的人工飼料或表達(dá)dsRNA的轉(zhuǎn)基因植物均能成功殺死靶標(biāo)害蟲(Whyardetal.,2009),如鞘翅目昆蟲玉米根葉甲(WCR)DiabroticavirgiferavirgiferaLeConte、南方玉米根葉甲(SCR)DiabroticaundecimpunctatahowardiBarber和馬鈴薯甲蟲Leptinotarsadecemlineata(Say)(Baumetal.,2007),鱗翅目昆蟲棉鈴蟲HelicoverpaarmigeraHübner(Maoetal.,2007)和甜菜夜蛾SpodopteraexiguaHübner(Zhuetal.,2012),半翅目昆蟲褐飛虱Nilaparvatalugens(Stal)(Zhaetal.,2011),疾病媒介昆蟲采采蠅Glossina和埃及伊蚊(Coyetal.,2012; Walsheetal.,2009),以及筑巢昆蟲白蟻Reticulitermesflavipes(Kollar)(Zhouetal.,2008)等。

1.3 dsRNA作用機(jī)理的研究

dsRNA隨昆蟲攝食進(jìn)入中腸,被中腸細(xì)胞“吞食”,在RNaseⅢ核酶家族的Dicer作用下加工成小干涉(si)RNA(21 bp+每條鏈3′ 2個(gè)延長堿基)而啟動(dòng)RNAi信號(hào)通路,即siRNA結(jié)合到一個(gè)被稱作RNA誘導(dǎo)沉默復(fù)合體(RISC)的蛋白復(fù)合體上,由RISC啟動(dòng)降解特異性的目標(biāo)mRNA(Fireetal.,1998)。RNA依賴的RNA聚合酶(RdRp)利用siRNA為引物、目標(biāo)基因?yàn)槟0妫铣尚碌膁sRNA,進(jìn)而引起RNAi效應(yīng)在蟲體內(nèi)擴(kuò)散(Price & Gatehouse,2008)。如果目標(biāo)mRNA在昆蟲體內(nèi)編碼的是一個(gè)基本功能性蛋白,其表達(dá)受阻將導(dǎo)致昆蟲死亡。在昆蟲方面,經(jīng)口攝食dsRNA的RNAi系統(tǒng)作用機(jī)理已有報(bào)道(Bolognesietal.,2012),其整個(gè)作用時(shí)序過程一般包括:dsRNA攝食;1 d后,靶標(biāo)mRNA在中腸和體組織顯著下降,此時(shí)目標(biāo)蛋白水平還未受到影響,沒有出現(xiàn)死亡;3 d后,靶標(biāo)mRNA在中腸和體組織持續(xù)減少,并在組織中持續(xù)蔓延;5 d后靶標(biāo)蛋白顯著降低;隨分子水平靶標(biāo)基因表達(dá)的時(shí)序性降低及系統(tǒng)性擴(kuò)散,生物測定的幼蟲表現(xiàn)為生長受到抑制,繼而死亡。

在人工飼料中添加目標(biāo)dsRNA飼喂靶標(biāo)昆蟲的致死(或生長顯著受抑制)時(shí)間在12 d以上,125種dsRNA在52 ng·cm-2劑量下有顯著的殺蟲活性,其中14種dsRNA對WCR的LC50≤ 5.20 ng·cm-2,殺蟲效果最好的LC50達(dá)到0.57 ng·cm-2(Baumetal.,2007)。以能沉默WCR β-微管蛋白、V-ATPase A亞基和V-ATPase E亞基同源基因的dsRNA飼喂SCR,具有顯著的殺蟲活性;以能沉默WCR V-ATPase A亞基和V-ATPase E亞基同源基因的dsRNA飼喂馬鈴薯甲蟲,具有顯著的殺蟲活性;表達(dá)WCR V-ATPase A 亞基等目標(biāo)基因的dsRNA的轉(zhuǎn)基因玉米能顯著降低根的受害(Baumetal.,2007)。

2 RNAi生物技術(shù)作物的環(huán)境風(fēng)險(xiǎn)

與轉(zhuǎn)Bt基因生物技術(shù)作物相似,RNAi生物技術(shù)作物的環(huán)境風(fēng)險(xiǎn)主要包括遺傳穩(wěn)定性、生存競爭能力與雜草性、花粉介導(dǎo)的基因飄逸、潛在的接觸途徑和生態(tài)殘留、對非靶標(biāo)節(jié)肢動(dòng)物(包括天敵及有益昆蟲)的影響?;赗NAi生物技術(shù)作物的特異性,環(huán)境風(fēng)險(xiǎn)尤其要考察以下幾個(gè)方面。

2.1 非期望的基因沉默(unintended gene silencing)

基于RNAi的生物技術(shù)作物對生活和棲息在其植株、組織器官或殘留秸稈等中的非靶標(biāo)生物可能存在風(fēng)險(xiǎn),即RNAi有時(shí)錯(cuò)誤沉默了其他生物的基因。據(jù)報(bào)道,取食了siRNA的昆蟲由于液泡膜上ATP酶看家基因(housekeeping gene)的mRNA被切割而使其生長受抑制或死亡(Baumetal.,2007)。如果靶標(biāo)害蟲的看家基因和其他非靶標(biāo)如有益昆蟲等的同源性足夠高,就有可能引起非期望的基因沉默負(fù)效應(yīng)(Bachmanetal.,2013)。基因組數(shù)據(jù)庫和科學(xué)設(shè)計(jì)的室內(nèi)喂食生測試驗(yàn)為確定非期望基因沉默的影響提供了依據(jù)。但是,目前許多非靶標(biāo)生物基因組數(shù)據(jù)相對短缺。

可遺傳的基因突變(即堿基替換、刪除、插入)發(fā)生在包括作物及其害蟲等在內(nèi)的所有生物中。同時(shí),在種群內(nèi)個(gè)體間存在遺傳多態(tài)性(即DNA序列的微小變異)(Gordon & Waterhouse,2007; Whangbo & Hunter,2008)。因此,非靶標(biāo)生物如發(fā)生突變,就可能對RNAi生物技術(shù)作物產(chǎn)生敏感。

2.2 靶外結(jié)合(off-target binding)

大量文獻(xiàn)報(bào)道了siRNA引發(fā)的各種基因沉默現(xiàn)象(Hammondetal.,2001)。由于RNAi可能沉默完全錯(cuò)誤的基因(Jacksonetal.,2003; Jarosch & Moritz,2012; Scacherietal.,2004),siRNA介導(dǎo)的基因沉默的特異性是一個(gè)在RNAi應(yīng)用中必須要考慮的關(guān)鍵因素。研究表明,由于靶標(biāo)位點(diǎn)單核苷酸錯(cuò)配和G∶U間的搖擺配對,可能引起潛在的靶外結(jié)合(Saxenaetal.,2003),導(dǎo)致非靶標(biāo)內(nèi)源基因表達(dá)的沉默。RNAi生物技術(shù)作物也可能發(fā)生變異,改變siRNA分子的堿基序列和基因沉默模式,進(jìn)而產(chǎn)生靶外結(jié)合效應(yīng)。有學(xué)者認(rèn)為,siRNA介導(dǎo)的基因沉默的特異性是siRNA特異,而不是靶標(biāo)基因特異,即使siRNA和mRNA之間的部分互補(bǔ)(僅11個(gè)連續(xù)的核苷酸)可改變非特異性mRNA的轉(zhuǎn)錄水平,siRNA也可能交互沉默序列或相似度較低的非靶標(biāo)mRNA(Birminghametal.,2006; Haley & Zamore,2004; Jacksonetal.,2003)。靶外結(jié)合沉默能引起明顯表型效應(yīng)(Fedorovetal.,2006; Linetal.,2005),且其主要是由于siRNA的RISC-entering strand存在一個(gè)4個(gè)堿基的基序UGCC (Fedorovetal.,2006)。

為避免靶外結(jié)合引起的沉默效應(yīng),簡單的預(yù)防方法是比對生物基因組數(shù)據(jù)庫是否存在與siRNA靶標(biāo)基因同源的基因。此外,通過化學(xué)修飾siRNA,特別是先導(dǎo)鏈第2位進(jìn)行2′-O-甲基核糖取代(Jacksonetal.,2006),可降低或消除非期望的靶外結(jié)合沉默效應(yīng)。

2.3 靶標(biāo)害蟲的抗性

由于害蟲種群內(nèi)某些個(gè)體靶標(biāo)mRNA突變和多態(tài)性可能引起其對某一特定的dsRNA序列的基因沉默產(chǎn)生抗性,從而導(dǎo)致RNAi生物技術(shù)作物防治效果下降。目前,有關(guān)靶標(biāo)害蟲對于RNAi產(chǎn)生抗性的模式缺乏研究。如果這一問題發(fā)生,可選擇或針對同一基因的其他部位或某一新基因設(shè)計(jì)一種新的dsRNA來治理(Yuetal.,2013)。

2.4 siRNA的環(huán)境持久性

實(shí)驗(yàn)室土壤微環(huán)境中Bt棉花和Bt玉米表達(dá)的Cry1Ac和Cry1Ab殺蟲蛋白會(huì)很快降解,半衰期為16 d或更短(Badeaetal.,2010; Sims & Holden,1996; Sims & Ream,1997);在連續(xù)種植Cry1Ac棉或Cry1Ab玉米多年的農(nóng)田土壤中也未檢測到相應(yīng)Bt殺蟲蛋白的殘留或富集(Headetal.,2002)。據(jù)此,美國環(huán)保署發(fā)布,連續(xù)種植Bt作物,在土壤中不會(huì)出現(xiàn)Bt殺蟲蛋白富集現(xiàn)象(Kough & Edelstein,2012)。有關(guān)植物組織或胞外DNA在微生態(tài)土壤環(huán)境中的降解動(dòng)態(tài)已有報(bào)道。如轉(zhuǎn)基因和非轉(zhuǎn)基因大豆冷凍干燥葉子DNA在土壤中的半衰期僅1.4 d(Levy-Boothetal.,2008);轉(zhuǎn)基因和非轉(zhuǎn)基因玉米和大豆的DNA于室溫下在土壤滲濾液中的半衰期分別不到2和4 h(Guldenetal.,2005)。在一項(xiàng)土壤中添加干燥的DNA或RNA,通過分析氮的釋放情況衡量核酸的降解,結(jié)果表明,RNA和DNA在各種土壤中的降解速度相同(Keownetal.,2004)。體外轉(zhuǎn)錄的純WCR的空泡排序蛋白基因DvSnf7的dsRNA或來自抗WCR的轉(zhuǎn)基因玉米殘?bào)w的DvSnf7 dsRNA在不同土壤中(包括不同土壤結(jié)構(gòu)、pH、黏性等)的半衰期為15~28 h,2 d內(nèi)檢測不到生物活性(Dubelmanetal.,2014)。由此可見,裸露的核酸會(huì)在土壤中很快分解,為界定基于RNAi的農(nóng)業(yè)生物技術(shù)產(chǎn)品在環(huán)境中殘留的潛在生態(tài)風(fēng)險(xiǎn)提供了依據(jù)。

2.5 不確定性

在任何生態(tài)風(fēng)險(xiǎn)評(píng)估中,認(rèn)知的不確定性是固有的,評(píng)估者應(yīng)了解不確定性的范圍(Suter,2007)?;诘鞍椎纳锛夹g(shù)作物已商業(yè)化種植20年,對其風(fēng)險(xiǎn)評(píng)估的研究時(shí)間可能更長。這不僅明確了外源基因表達(dá)的蛋白尤其是Bt蛋白的殺蟲作用模式,而且回答了許多生態(tài)風(fēng)險(xiǎn)問題(Conneretal.,2003; Sanvidoetal.,2007)。von Kraussetal.(2008)對不確定性進(jìn)行了評(píng)估,認(rèn)為在田間多變的條件下和隨時(shí)間推移基因沉默表現(xiàn)原理不確定,專家之間對于基因沉默的因果關(guān)系看法不盡相同。在風(fēng)險(xiǎn)評(píng)估基礎(chǔ)上做決策時(shí),監(jiān)管者和利益相關(guān)方需要找到風(fēng)險(xiǎn)和不確定性相關(guān)的風(fēng)險(xiǎn)評(píng)估之間的平衡點(diǎn)。RNAi技術(shù)整體上呈現(xiàn)低環(huán)境風(fēng)險(xiǎn),但如果了解到這些低風(fēng)險(xiǎn)的高度不確定性,在商業(yè)化之前就必須進(jìn)行大量的試驗(yàn)和管理方法的研究。

3 RNAi生物技術(shù)作物的環(huán)境風(fēng)險(xiǎn)評(píng)估

RNAi和Bt生物技術(shù)作物都是通過作物系統(tǒng)表達(dá)能啟動(dòng)RNAi的dsRNA或具有殺蟲作用的Bt殺蟲蛋白,而棲息于作物田的生物種類不會(huì)因此而改變。因此,暴露于二者的生物種類理論上相同或相似;為使作物整個(gè)生育期都能受到保護(hù),目的基因在整個(gè)生育期都能表達(dá)。但是,RNAi生物技術(shù)作物的靶標(biāo)對象更多,殺蟲劑量閾值較高,致死或生長顯著受抑制的時(shí)間較長,需要特殊的生測方法測定致死效應(yīng)。因此,RNAi與轉(zhuǎn)Bt基因等生物技術(shù)作物的環(huán)境風(fēng)險(xiǎn)評(píng)估既有相同的框架,亦有不同的內(nèi)容。

3.1 功能基因及其表達(dá)特征

Bt作物外源目的基因編碼Bt殺蟲蛋白,與害蟲中腸緣膜上的受體結(jié)合使細(xì)胞溶解,作用位點(diǎn)在昆蟲中腸上(Bravoetal.,2007)。目的基因表達(dá)的穩(wěn)定性通過特定的免疫試紙條進(jìn)行定性檢測,ELISA進(jìn)行蛋白定量檢測。RNAi作物外源目的基因編碼20~24 nt siRNA,siRNA與昆蟲體內(nèi)蛋白形成RISC,導(dǎo)致靶標(biāo)mRNA降解,引起目的基因沉默(Fireetal.,1998; Ghildiyal & Zamore,2009; Obbardetal.,2009; Price & Gatehouse,2008)。雖然在模式植物擬南芥Arabidopsis中已明確多種作用模式,但在多數(shù)農(nóng)作物中還缺乏相應(yīng)的數(shù)據(jù)。影響RNAi效果的因素主要有以下幾個(gè)方面。

(1)dsRNA序列。Tereniusetal.(2011)系統(tǒng)分析總結(jié)了鱗翅目中不同種類昆蟲和功能基因與RNAi效果的關(guān)系。除靶標(biāo)基因沉默效果外,還與靶外結(jié)合和非期望的非靶標(biāo)生物影響有關(guān)。Whyardetal.(2009)認(rèn)為,dsRNA可作為種特異性的“胃毒”殺蟲劑,如利用種特異性的dsRNA可分別沉默果蠅DrosophilamelanogasterMeigen、赤擬谷盜Triboliumcastaneum(Herbst)、桃蚜Acyrthosiphonpisum(Harris)和煙草天蛾Manducasexta(L.) 4種害蟲的V-ATP酶基因,針對靶標(biāo)γ微管蛋白基因3′ UTR區(qū)(不存在19~21 nt序列片段的匹配)設(shè)計(jì)短(<40 nt)的dsRNA也可選擇性殺死果蠅屬Drosophila的4種果蠅。

(2)dsRNA長度。不同長度的dsRNA引起RNAi的效果不同(Whyardetal.,2009)。WCR和馬鈴薯甲蟲的DvSnf7 dsRNA與目標(biāo)基因最少有21 nt的連續(xù)匹配才能有顯著的RNAi生物活性;對于相似種,DvSnf7同源序列上最少有3個(gè)21 nt的匹配才能在甄別高劑量下產(chǎn)生顯著的活性(Bachmanetal.,2013)。多數(shù)喂食試驗(yàn)中獲得較好效果的dsRNA長度為300~600 nt。dsRNA長度影響昆蟲細(xì)胞系(Salehetal.,2006)以及昆蟲(Maoetal.,2007)的攝取和沉默效果。研究表明,較長dsRNA的沉默效果較好,可能與其在環(huán)境中存留時(shí)間更長有關(guān)(Baumetal.,2007)。

(3)dsRNA濃度。取得最佳沉默效果的dsRNA濃度因靶標(biāo)基因和生物種類而異,并不是dsRNA的濃度越高越好(Meyering-Vos & Muller,2007; Shakesbyetal.,2009)。

(4)沉默效果的持續(xù)性。給橘小實(shí)蠅Bactroceradorsalis(Hendel)分別喂食沉默核糖體蛋白R(shí)pl19、V-ATPaseD亞基、脂肪酸碳鏈延長酶 Noa 和一種小型GTP酶 Rab11基因的4種dsRNAds-rpl19、ds-v-ATP-d、ds-noa、ds-rab11溶液和表達(dá)dsRNA的轉(zhuǎn)基因大腸桿菌(Escherichiacolistrain HT115),可使目標(biāo)基因沉默,引起20%蟲體死亡或雌蠅產(chǎn)卵量下降,然而,當(dāng)持續(xù)飼喂14 d后,目標(biāo)基因的表達(dá)反而上調(diào)(Lietal.,2011)。

3.2 殺蟲譜及非靶標(biāo)生物的影響

RNAi生物技術(shù)作物的作用方式是通過攝食進(jìn)入生物體內(nèi)。因此,應(yīng)該建立農(nóng)業(yè)生態(tài)系統(tǒng)中生物多樣性數(shù)據(jù),明確接觸RNAi生物技術(shù)作物的種類,且建立這些種類的基因組數(shù)據(jù)庫,清楚與siRNA具有同源性序列基因的表現(xiàn)型,就能確定RNAi生物技術(shù)作物的殺蟲活性譜。

有關(guān)Bt作物對非靶標(biāo)生物的影響評(píng)價(jià),各國要求有異,根據(jù)Bt蛋白殺蟲作用譜的特異性,通常在各生態(tài)功能團(tuán)內(nèi)選擇一定的相關(guān)指示性生物進(jìn)行生物測定和分級(jí)啟動(dòng)測試(Romeisetal.,2008)。

通過靶外結(jié)合和非期望的基因沉默的毒理基因組學(xué)分析RNAi生物技術(shù)作物防治害蟲的靶標(biāo),可能是分類學(xué)上特異性的一種(Whyardetal.,2009)。靶標(biāo)害蟲分類學(xué)上高度特異性的優(yōu)點(diǎn)在于僅有靶標(biāo)害蟲的近似種受到dsRNA的影響(Romiesetal.,2008)。因此,要確定某一dsRNA的殺蟲譜,必須評(píng)估其對與靶標(biāo)害蟲親緣相近種類的潛在影響。

3.3 環(huán)境殘留

明確生物技術(shù)作物外源性狀表達(dá)產(chǎn)物(無論是殺蟲蛋白還是dsRNA)在環(huán)境中的時(shí)空分布是生態(tài)安全評(píng)價(jià)的重要內(nèi)容之一,同時(shí)可界定環(huán)境中非靶標(biāo)生物接觸的客觀途徑和劑量。因此,應(yīng)加強(qiáng)對sRNA在環(huán)境中的持久性和位移趨勢,如基因飄逸、sRNA在土壤和水體中的存留時(shí)間、被非靶標(biāo)生物攝入的可能性,以及發(fā)生系統(tǒng)性基因沉默后的表型特征等方面的研究。生態(tài)毒理學(xué)模式生物的基因文庫比對和DNA芯片法是開展該項(xiàng)評(píng)價(jià)的重要方法(Robbensetal.,2007)。

3.4 功能性狀的持續(xù)穩(wěn)定性

在評(píng)價(jià)RNAi生物技術(shù)作物功能性狀的遺傳穩(wěn)定性時(shí),編碼siRNA基因比編碼蛋白基因的變異率高(Obbardetal.,2009)。因此,應(yīng)分析害蟲的抗性發(fā)展,評(píng)估其發(fā)生時(shí)間、影響規(guī)模(局部的、區(qū)域的或全國性的),以及嚴(yán)重程度,并建立預(yù)測模型。此外,只有建立統(tǒng)一的sRNA活性標(biāo)準(zhǔn),才能開展可比性評(píng)價(jià)(von Kraussetal.,2008)。

4 結(jié)束語

具有植物保護(hù)性狀的RNAi作物是繼Bt作物之后推動(dòng)害蟲防治技術(shù)提升的又一重要成就。同時(shí),為研發(fā)對重大害蟲,如蚜蟲(Muttietal.,2006; Whyardetal.,2009)、飛虱(Chenetal.,2010; Upadhyayetal.,2011)、蝽(Araujoetal.,2006)具有殺蟲譜專一(Alsfordetal.,2011; Haas & Zody,2010)的新一代生物技術(shù)作物提供了廣闊的前景。此外,dsRNA制劑的研發(fā)和應(yīng)用將極大地豐富農(nóng)作物病蟲害防治技術(shù)(Burand & Hunter,2013; Huvenne & Smagghe,2010)。如噴施dsRNA粗提液可有效控制植物病毒病的發(fā)生,且目的dsRNA可在葉面存留數(shù)天(Tenlladoetal.,2004)。納米包裹(Zhangetal.,2010)、土壤處理和拌種等方法可用于防治地下害蟲。工程菌是大量生產(chǎn)dsRNA的重要途徑之一(Timmons & Fire,1998)。

現(xiàn)行的轉(zhuǎn)基因生物環(huán)境風(fēng)險(xiǎn)評(píng)估程序需要進(jìn)一步完善,以適應(yīng)新的RNAi生物技術(shù)作物研發(fā)和應(yīng)用的需求。建立專家意見庫,進(jìn)而準(zhǔn)確提出潛在風(fēng)險(xiǎn)問題,以確保收集有價(jià)值的科學(xué)數(shù)據(jù),甄別風(fēng)險(xiǎn)評(píng)估中的不確定性;確立科學(xué)合理的室內(nèi)和田間可控條件下的評(píng)價(jià)試驗(yàn)設(shè)計(jì)和實(shí)施方案;提供有關(guān)遺傳穩(wěn)定性、靶外結(jié)合(或脫靶效應(yīng))、非期望的基因沉默(包括非靶標(biāo)的影響),以及sRNA在各種生境中殘留時(shí)間的科學(xué)評(píng)估數(shù)據(jù)。

生物信息學(xué)方法將是風(fēng)險(xiǎn)評(píng)估的最基本的方法。因此,需要解決環(huán)境監(jiān)測中sRNA的提取和鑒定方法;建立標(biāo)準(zhǔn)化的生態(tài)毒理學(xué)模式生物的基因文庫和DNA芯片(Robbensetal.,2007);研究RNAi作物身份驗(yàn)證、監(jiān)測等的定量和定性檢測方法。從科學(xué)的角度來看,具有作物保護(hù)性狀的RNAi作物的環(huán)境風(fēng)險(xiǎn)是可預(yù)測的,且在科學(xué)管理?xiàng)l件下是可避免或可控的。

Ali M I, Luttrell R G and Young S Y. 2006. Susceptibilities ofHelicoverpazeaandHeliothisvirescens(Lepidoptera: Noctuidae) populations to Cry1Ac insecticidal protein.JournalofEconomicEntomology, 99: 164-175.

Alsford S, Turner D J, Obado S O, Sanchez-Flores A, Glover L, Berriman M, Hertz-Fowler C and Horn D. 2011. High-throughput phenotyping using parallel sequencing of RNA interference targets in the African trypanosome.GenomeResearch, 21: 915-924.

Amdam G V, Simoes Z L P, Guidugli K R, Norberg K and Omholt S W. 2003. Disruption of vitellogenin gene function in adult honeybees by intra-abdominal injection of double-stranded RNA.BMCBiotechnology, 3: 1-8.

Araujo R N, Santos A, Pinto F S, Gontijo N F, Lehane M J and Pereira M H. 2006. RNA interference of the salivary gland nitrophorin 2 in the triatomine bugRhodniusprolixus(Hemiptera: Reduviidae) by dsRNA ingestion or injection.InsectBiochemistryandMolecularBiology, 36: 683-693.

Aronstein K, Pankiw T and Saldivar E. 2006. SID-1 is implicated in systemic gene silencing in the honey bee.JournalofApiculturalResearch, 45: 20-24.

Bachman P M, Bolognesi R, Moar W J, Mueller G M, Paradise M S, Ramaseshadri P, Tan J G, Uffman J P, Warren J, Wiggins B E and Levine S L. 2013. Characterization of the spectrum of insecticidal activity of a double-stranded RNA with targeted activity against Western Corn Rootworm (DiabroticavirgiferavirgiferaLeConte).TransgenicResearch, 22: 1207-1222.

Badea E M, Chelu F and Lacatusu A. 2010. Results regarding the levels of Cry1Ab protein in transgenic corn tissue (MON810) and the fate of Bt protein in three soil types.RomanianBiotechnologicalLetters, 15(1): 55-62.

Baulcombe D. 2004. RNA silencing in plants.Nature, 431: 356-363.

Baum J A, Bogaert T, Clinton W, Heck G R, Feldmann P, Ilagan O, Johnson S, Plaetinck G, Munyikwa T, Pleau M, Vaughn T and Roberts J. 2007. Control of coleopteran insect pests through RNA interference.NatureBiotechnology, 25: 1322-1326.

Bautista M A M, Miyata T, Miura K and Tanaka T. 2009. RNA interference-mediated knockdown of a cytochrome P450,CYP6BG1, from the diamondback moth,Plutellaxylostella, reduces larval resistance to permethrin.InsectBiochemistryandMolecularBiology, 39: 38-46.

Bettencourt R, Terenius O and Faye I. 2002. Hemolin gene silencing by ds-RNA injected intoCecropiapupae is lethal to next generation embryos.InsectMolecularBiology, 11: 267-271.

Birmingham A, Anderson E M, Reynolds A, Ilsley-Tyree D, Leake D, Fedorov Y, Baskerville S, Maksimova E, Robinson K, Karpilow J, Marshall W S and Khvorova A. 2006. 3′ UTR seed matches, but not overall identity, are associated with RNAi off-target.NatureMethods, 3: 199-204.

Bolognesi R, Ramaseshadri P, Anderson J, Bachman P, Clinton W, Flannagan R, Ilagan O, Lawrence C, Levine S, Moar W, Mueller G, Tan J, Uffman J, Wiggins E, Heck G and Segers G. 2012. Characterizing the mechanism of action of double-stranded RNA activity against western corn rootworm (DiabroticavirgiferavirgiferaLeConte).PLoSONE, 7: e47534.

Bravo A, Gill S S and Soberon M. 2007. Mode of action ofBacillusthuringiensisCry and Cyt toxins and their potential for insect control.Toxicon, 49: 423-435.

Brown S J, Mahaffey J P, Lorenzen M D, Denell R E and Mahaffey J W. 2009. Using RNAi to investigate orthologous homeotic gene function during development of distantly related insects.EvolutionandDevelopment, 1: 11-15.

Bucher G, Scholten J and Klingler M. 2002. Parental RNAi inTribolium(Coleoptera).CurrentBiology, 12: R85-R86.

Burand J P and Hunter W. 2013. RNAi: future in insect management.JournalofInvertbratePathology, 112: S68-S74.

Chen J, Zhang D, Yao Q, Zhang J, Dong X, Tian H, Chen J and Zhang W. 2010. Feeding-based RNA interference of a trehalose phosphate synthase gene in the brown planthopper,Nilaparvatalugens.InsectMolecularBiology, 19: 777-786.

Conner A J, Glare T R and Nap J P. 2003. The release of genetically modified crops into the environment. Part Ⅱ. Overview of ecological risk assessment.PlantJournal, 33: 19-46.

Coy M R, Sanscrainte N D, Chalaire K C, Inberg A, Maayan I, Glick E, Paldi N and Becnel J J. 2012. Gene silencing in adultAedesaegyptimosquitoes through oral delivery of double-stranded RNA.JournalofAppliedEntomology, 136: 741-748.

Dubelman S, Fischer J, Zapata F, Huizinga K, Jiang C J, Uffman J, Levine S and Carson D. 2014. Environmental fate of double-stranded RNA in agricultural soils.PLoSONE, 9: e93155.

Eaton B A, Fetter R D and Davis G W. 2002. Dynactin is necessary for synapse stabilization.Neuron, 34: 729-741.

Fedorov Y, Anderson E M, Birmingham A, Reynolds A, Karpilow J, Robinson K, Leake D, Marshall W S and Khvorova A. 2006. Off-target effects by siRNA can induce toxic phenotype.RNA, 12: 1188-1196.

Fire A, Xu S Q, Montgomery M K, Kostas S A, Driver S E and Mello C C. 1998. Potent and specific genetic interference by double-stranded RNA inCaenorhabditiselegans.Nature, 391: 806-811.

Gatehouse J A and Price D R G. 2011. Protection of crops against insect pests using RNA interference.InsectBiotechnology,Biologically-InspiredSystems, 2: 145-168.

Ghildiyal M and Zamore P D. 2009. Small silencing RNAs: an expanding universe.NatureReviewsGenetics, 10: 94-108.

Gordon K H J and Waterhouse P M. 2007. RNAi for insect-proof plants.NatureBiotechnology, 25: 1231-1232.

Griebler M, Westerlund S A, Hoffmann K H and Meyering-Vos M. 2008. RNA interference with the allatoregulating neuropeptide genes from the fall armywormSpodopterafrugiperdaand its effects on the JH titer in the homolymph.JournalofInsectPhysiology, 54: 997-1007.

Gulden R H, Lerat S, Hart M M, Powell J R, Trevors J T, Pauls K P, Klironomos J N and Swanton C J. 2005. Quantitation of transgenic plant DNA in leachate water: real-time polymerase chain reaction analysis.JournalofAgriculturalandFoodChemistry, 53: 5858-5865.

Gura T. 2000. A silence that speaks volumes.Nature, 404: 804-808.

Haas B J and Zody M C. 2010. Advancing RNA-Seq analysis.NatureBiotechnology, 28: 421-423.

Haley B and Zomre P D. 2004. Kinetic analysis of the RNAi enzyme complex.NatureStructural&MolecularBiology, 11: 599-606.

Hammond S M, Caudy A A and Haanon G J. 2001. Post transcriptional gene silencing by double-stranded RNA.NatureReviewsGenetics, 2: 110-119.

Hannon G J. 2002. RNA interference.Nature, 418: 244-251.

Head G, Surber J B, Watson J A, Martin J W and Duan J J. 2002. No detection of Cry1Ac protein in soil after multiple years of transgenic Bt cotton (Bollgard) use.EnvironmentalEntomology, 31(1): 30-36.

Huvenne H and Smagghe G. 2010. Mechanisms of dsRNA uptake in insects and potential of RNAi for pest control: a review.JournalofInsectPhysiology, 56: 227-235.

Jackson A L, Bartz S R, Schelter J, Kobayashi S V, Burchard J, Mao M, Li B, Cavet G and Linsley P S. 2003. Expression profiling reveals off-target gene regulation by RNAi.NatureBiotechnology, 21: 635-637.

Jackson A L, Burchard J, Leake D, Reynolds A, Schelter J, Guo J, Johnson J M, Lim L, Karpilow J, Nichols K, Marshall W, Khvorova A and Linsley P S. 2006. Position-specific chemical modification of siRNAs reduces "off-target" transcript silencing.RNA, 12: 1197-1205.

James C. 2014. 2013 年全球生物技術(shù)/轉(zhuǎn)基因作物商業(yè)化發(fā)展態(tài)勢. 中國生物工程雜志, 34(1): 1-8.

Jarosch A and Moritz R F A. 2012. RNA interference in honeybees: off-target effects caused by dsRNA.Apidologie, 43: 128-138.

Keown H, O′Callaghan M and Greenfield L G. 2004. Decomposition of nucleic acids in soil.NewZealandNaturalSciences, 29: 13-19.

Kough J L and Edelstein R. 2012. EPA regulatory requirements for plant incorporated protectants∥Wozniak C A and McHughen A.RegulationofAgriculturalBiotechnology:TheUnitedStatesandCanada. Netherlands: Springer, 163-174.

Levy-Booth D J, Campbell R G, Gulden R H, Hart M M, Powell J R, Klironomos J N, Pauls K P, Swanton C J, Trevors J T and Dunfield K E. 2008. Real-time polymerase chain reaction monitoring of recombinant DNA entry into soil from decomposing roundup ready leaf biomass.JournalofAgriculturalandFoodChemistry, 56: 6339-6347.

Li G P, Wu K M, Gould F, Feng H Q, He Y Z and Gou Y Y. 2004. Frequency of Bt resistance genes inHelicoverpaarmigerapopulations from the Yellow River cotton-farming region of China.EntomologiaExperimentalisetApplicata, 112: 135-143.

Li G P, Wu K M, Gould F, Wang F, Mikao J, Gao X and Guo Y Y. 2007. Increasing tolerance to Cry1Ac cotton from cotton bollworm,Helicoverpaarmigera, was confirmed in Bt cotton farming area of China.EcologicalEntomology, 32: 366-375.

Li X X, Zhang M Y and Zhang H Y. 2011. RNA interference of four genes in adultBactroceradorsalisby feeding their dsRNA.PLoSONE, 6: e17788.

Lin X Y, Ruan X, Anderson M G, McDowell J A, Kroeger P E, Fesik S W and Shen Y. 2005. siRNA-mediated off-target gene silencing triggered by a 7 nt complementation.NucleicAcidsResearch, 33: 4527-4535.

Lu Y H, Wu K M, Jiang Y Y, Xia B, Li P, Feng H Q, Wyckhuys K A G and Guo Y Y. 2010. Mirid Bug outbreaks in multiple crops correlated with wide-scale adoption of Bt cotton in China.Science, 328: 1151-1154.

Mao Y B, Cai W J, Wang J W, Hong G J, Tao X Y, Wang L J, Huang Y P and Chen X Y. 2007. Silencing a cotton bollworm P450 monooxygenase gene by plant-mediated RNAi impairs larval tolerance of gossypol.NatureBiotechnology, 25: 1307-1313.

Matten S R, Head G P and Quemada H D. 2008. How government regulation can help or hinder the integration of Bt crops with IPM programs∥Romeis J, Shelton A M and Kennedy G G.IntegrationofInsect-resistantGeneticallyModifiedCropswithinIPMPrograms. Springer, New York, 27-39.

Meyering-Vos M and Muller A. 2007. RNA interference suggests sulfakinins as satiety effectors in the cricketGryllusbimaculatus.JournalofInsectPhysiology, 53: 840-848.

Mutti N S, Park Y, Reese J C and Reeck G R. 2006. RNAi knockdown of a salivary transcript leading to lethality in the pea aphid,Acyrthosiphonpisum.JournalofInsectScience, 6: 1-7.

Obbard D J, Gordon K H J, Buck A H and Jiggins F M. 2009. The evolution of RNAi as a defence against viruses and transposable elements.PhilosophicalTransactionsoftheRoyalSocietyB-BiologicalSciences, 364: 99-115.

Price D R G and Gatehouse J A. 2008. RNAi-mediated crop protection against insects.TrendsinBiotechnology, 26: 393-400.

Pridgeon J W, Zhao L, Becnel J J, Strickman D A, Clark G G and Linthicum K J. 2008. Topically applied AaeIAP1 double-stranded RNA kills female adults ofAedesaegypti.JournalofMedicalEntomology, 45: 414-420.

Quan G X, Kanda T and Tamura T. 2002. Induction of the white egg 3 mutant phenotype by injection of the double-stranded RNA of the silkworm white gene.InsectMolecularBiology, 11: 217-222.

Rajagopal R, Sivakumar S, Agrawal N, Malhotra P and Bhatnagar R K. 2002. Silencing of midgut aminopeptidase N ofSpodopteralituraby double-stranded RNA establishes its role asBacillusthuringiensistoxin receptor.JournalofBiologicalChemistry, 277: 46849-46851.

Rajamohan F, Lee M K and Dean D H. 1998.Bucillusthuringiensisinsecticidal proteins: molecular mode of action.ProgressinNucleicAcidResearchandMolecularBiology, 60: 1-27.

Robbens J, van der Ven K, Maras M, Blust R and De Coen W. 2007. Ecotoxicological risk assessment using DNA chips and cellular reporters.TrendsBiotechnology, 25: 460-466.

Romeis J, Bartsch D, Bigler F, Candolfi M P, Gielkens M M C, Hartley S E, Hellmich R L, Huesing J E, Jepson P C, Layton R, Quemada H, Raybould A, Rose R I, Schiemann J, Sears M K, Shelton A M, Sweet J, Vaituzis Z and Wolt J D. 2008. Assessment of risk of insect-resistant transgenic crops to nontarget arthropods.NatureBiotechnology, 26: 203-208.

Saleh M C, Van Rij R P, Hekele A, Gillis A, Foley E, O′Farrell P H and Andino R. 2006. The endocytic pathway mediates cell entry of dsRNA to induce RNAi silencing.NatureCellBiology, 8: 793-802.

Sanvido O, Romeis J and Bigler F. 2007. Ecological impacts of genetically modified crops: ten years of field research and commercial cultivation.AdvancesinBiochemicalEngineering/Biotechnology, 107: 235-278.

Saxena S, Jonsson Z O and Dutta A. 2003. Small RNAs with imperfect match to endogenous mRNA repress translation — implications for off-target activity of small inhibitory RNA in mammalian cells.JournalofBiologicalChemistry, 278: 44312-44319.

Scacheri P C, Rozenblatt-Rosen O, Caplen N J, Wolfsberg T G, Umayam L, Lee J C, Hughes C M, Shanmugam K S, Bhattacharjee A, Meyerson M and Collins F S. 2004. Short interfering RNAs can induce unexpected and divergent changes in the levels of untargeted proteins in mammalian cells.ProceedingsoftheNationalAcademyofSciencesoftheUnitedStatesofAmerica, 101: 1892-1897.

Shakesby A J, Wallace I S, Isaacs H V, Pritchard J, Roberts D M and Douglas A E. 2009. A water specific aquaporin involved in aphid osmoregulation.InsectBiochemistryandMolecularBiology, 39: 1-10.

Sims S R and Holden L R. 1996. Insect bioassay for determining soil degradation ofBacillusthuringiensissubspkurstakiCryIA(b) protein in corn tissue.EnvironmentalEntomology, 25: 659-664.

Sims S R and Ream J E. 1997. Soil inactivation of theBacillusthuringiensissubspkurstakiCryIIA insecticidal protein within transgenic cotton tissue: laboratory microcosm and field studies.JournalofAgriculturalandFoodChemistry, 45: 1502-1505.

Suazo A, Gore C and Schal C. 2009. RNA interference-mediated knock-down of Bla g 1 in the German cockroachBlattellagermanicaL., implicates this allergen-encoding gene in digestion and nutrient absorption.InsectMolecularBiology, 18: 727-736.

Suter G W. 2007.EcologicalRiskAssessment. 2nd ed. London: CRC Press.

Tabashnik B E, Gassmann A J, Crowder D W and Carrière Y. 2008. Insect resistance to Bt crops: evidence versus theory.NatureBiotechnology, 26: 199-202.

Tenllado F, Llave C and Diaz-Ruiz J R. 2004. RNA interference as a new biotechnological tool for the control of virus diseases in plants.VirusResearch, 102: 85-96.

Terenius O, Papanicolaou A, Garbutt J S, Eleftherianos I, Huvenne H, Kanginakudru S, Albrechtsen M, An C J, Aymeric J L, Barthel A, Bebas P, Bitra K, Bravo A, Chevalieri F, Collinge D P, Crava C M, de Maagd R A, Duvic B, Erlandson M, Faye I, Felfoldi G, Fujiwara H, Futahashi R, Gandhe A S, Gatehouse H S, Gatehouse L N, Giebultowicz J M, Gomez I, Grimmelikhuijzen C J P, Groot A T, Hauser F, Heckel D G, Hegedus D D, Hrycaj S, Huang L H, Hull J J, Iatrou K, Iga M, Kanost M R, Kotwica J, Li C Y, Li J H, Liu J S, Lundmark M, Matsumoto S, Meyering-Vos M, Millichap P J, Monteiro A, Mrinal N, Niimi T, Nowara D, Ohnishi A, Oostra V, Ozaki K, Papakonstantinou M, Popadic A, Rajam M V, Saenko S, Simpson R M, Soberon M, Strand M R, Tomita S, Toprak U, Wang P, Wee C W, Whyard S, Zhang W Q, Nagaraju J, Ffrench-Constant R H, Herrero S, Gordon K, Swelters L and Smagghe G. 2011. RNAi interference in Lepidoptera: an overview of successful and unsuccessful studies and implications for experimental design.JournalofInsectPhysiology, 57: 231-245.

Timmons L and Fire A. 1998. Specific interference by ingested dsRNA.Nature, 395: 854.

Tomoyasu Y and Denell R E. 2004. Larval RNAi inTribolium(Coleoptera) for analyzing adult development.DevelopmentGenesandEvolution, 214: 575-578.

Turner C T, Davy M W, MacDiarmid R M, Plummer K M, Birch N P and Newcomb R D. 2006. RNA interference in the light brown apple moth,Epiphyaspostvittana(Walker) induced by double-stranded RNA feeding.InsectMolecularBiology, 15: 383-391.

Upadhyay S K, Chandrashekar K, Thakur N, Verma P C, Borgio J F, Singh P K and Tuli R. 2011. RNA interference for the control of whiteflies (Bemisiatabaci) by oral route.JournalofBiosciences, 36: 153-161.

van Rensburg J B J. 2007. First report of field resistance by the stem borer,Busseolafusca(Fuller) to Bt-transgenic maize.SouthAfricanJournalofPlantandSoil, 24: 147-151.

Vaughn T, Cavato T, Brar G, Coombe T, DeGooyer T, Ford S, Groth M, Howe A, Johnson S, Kolacz K, Pilcher C, Purcell J, Romano C, English L and Pershing J. 2005. A method of controlling corn rootworm feeding using aBacillusthuringiensisprotein expressed in transgenic maize.CropScience, 45: 931-938.

von Krauss M P K, Kaiser M, Almaas V, van der Sluijs J and Kloprogge P. 2008. Diagnosing and prioritizing uncertainties according to their relevance for policy: the case of transgene silencing.ScienceoftheTotalEnvironment, 390: 23-34.

Walshe D P, Lehane S M, Lehane M J and Haines L R. 2009. Prolonged gene knockdown in the tsetse flyGlossinaby feeding double stranded RNA.InsectMolecularBiology, 18: 11-19.

Wang Y, Zhang H, Li H and Miao X. 2011. Second-generation sequencing supply an effective way to screen RNAi targets in large scale for potential application in pest insect control.PLoSONE, 6: e18644.

Whangbo J S and Hunter C P. 2008. Environmental RNA interference.TrendsinGenetics, 24: 297-305.

Whyard S, Singh A D and Wong S. 2009. Ingested double-stranded RNAs can act as species-specific insecticides.InsectBiochemistryandMolecularBiology, 39: 824-832.

Wu K M, Lu Y H, Feng H Q, Jiang Y Y and Zhao J Z. 2008. Suppression of cotton bollworm in multiple crops in china in areas with Bt toxin-containing cotton.Science, 321: 1676-1678.

Yu N, Christiaens O, Liu J, Niu J, Cappelle K, Caccia S, Huvenne H and Smagghe G. 2013. Delivery of dsRNA for RNAi in insects: an overview and future directions.InsectScience, 20: 4-14.

Yuen J L, Read S A, Brubacher J L, Singh A D and Whyard S. 2008. Biolistics for high-throughput transformation and RNA interference inDrosophilamelanogaster.Fly(Austin), 2: 247-254.

Zha W J, Peng X X, Chen R Z, Du B, Zhu L L and He G G. 2011. Knockdown of midgut genes by dsRNA-transgenic plant-mediated RNA interference in the Hemipteran insectNilaparvatalugens.PLoSONE, 6: e20504.

Zhang X, Zhang J and Zhu K Y. 2010. Chitosan/double-stranded RNA nanoparticle-mediated RNA interference to silence chitin synthase genes through larval feeding in the African malaria mosquito (Anophelesgambiae).InsectMolecularBiology, 19: 683-693.

Zhou X G, Wheeler M M, Oi F M and Scharf M E. 2008. RNA interference in the termiteReticulitermesflavipesthrough ingestion of double-stranded RNA.InsectBiochemistryandMolecularBiology, 38: 805-815.

Zhu J Q, Liu S M, Ma Y, Zhang J Q, Qi H S, Wei Z J, Yao Q, Zhang W Q and Li S. 2012. Improvement of pest resistance in transgenic tobacco plants expressing dsRNA of an insect associated gene EcR.PLoSONE, 7: e38572.

猜你喜歡
殺蟲靶標(biāo)轉(zhuǎn)基因
探秘轉(zhuǎn)基因
轉(zhuǎn)基因,你吃了嗎?
“百靈”一號(hào)超音速大機(jī)動(dòng)靶標(biāo)
納米除草劑和靶標(biāo)生物的相互作用
以“肥”殺蟲 藥肥兩用 一舉多得
常用殺蟲中藥殺蟲效果比較及其配伍的初步研究
復(fù)雜場景中航天器靶標(biāo)的快速識(shí)別
天然的轉(zhuǎn)基因天然的轉(zhuǎn)基因“工程師”及其對轉(zhuǎn)基因食品的意蘊(yùn)
前列腺特異性膜抗原為靶標(biāo)的放射免疫治療進(jìn)展
冬青油對蠕形螨體外殺蟲的作用研究
榆社县| 宝应县| 碌曲县| 岗巴县| 涡阳县| 金门县| 孟村| 华坪县| 上犹县| 特克斯县| 原阳县| 津市市| 石家庄市| 仁布县| 九江县| 崇左市| 景德镇市| 博乐市| 桂阳县| 浏阳市| 双牌县| 永丰县| 大洼县| 河曲县| 当雄县| 沐川县| 尚义县| 廉江市| 花莲县| 万安县| 迁安市| 峨眉山市| 余干县| 马龙县| 西充县| 静海县| 祁阳县| 丹寨县| 志丹县| 仁寿县| 鹿邑县|