李向宇 周丹秋 關(guān)明
摘 要 近年來,高尿酸血癥和痛風(fēng)的發(fā)病率呈逐年升高趨勢,已引起人們的廣泛重視。最近研究發(fā)現(xiàn),尿酸鹽轉(zhuǎn)運(yùn)體的基因變異與高尿酸血癥和痛風(fēng)的發(fā)生高度相關(guān),在疾病的發(fā)病機(jī)制中起著重要的作用。本文介紹ABCG2的2個單核苷酸多態(tài)性Q141K和Q126X的功能以及與高尿酸血癥和痛風(fēng)發(fā)生的關(guān)系。
關(guān)鍵詞 痛風(fēng) 高尿酸血癥 ABCG2
中圖分類號:R589.7; R363.25 文獻(xiàn)標(biāo)識碼:A 文章編號:1006-1533(2014)15-0040-04
Relationship between ABCG2 genetic polymorphism and risk of gout*
Li Xiangyu1**, Zhou Danqiu2, Guan Ming3
(1. Department of Laboratory Medicine, Huashan Hospital North, Fudan University, Shanghai 201907, China;
2. Department of Laboratory Medicine, Jinshan Hospital, Fudan University, Shanghai 201508, China;
3. Department of Laboratory Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China)
Abstract Hyperuricemia and gout incidence have been steadily increased year by year, which has attracted widespread attention. Recent studies have shown that the variation of the gene responsible for urate transporter is highly correlated with hyperuricemia and gout and plays a very important role in the pathogenesis of the diseases. This article focuses on the function of two single nucleotide polymorphism Q141K and Q126X in ABCG2 and their relationship with hyperuricemia and gout.
Key words gout; hyperuricemia; ABCG2
痛風(fēng)是由嘌呤代謝紊亂造成血尿酸水平過高或(和)尿酸排泄減少所致尿酸鹽結(jié)晶沉著于關(guān)節(jié)及其周圍結(jié)締組織而引起病損和炎癥反應(yīng)的一種疾病,其特征性的病理改變是尿酸鹽沉積,病變主要發(fā)生在關(guān)節(jié)軟骨、骨骺、滑膜、肌腱、血管較稀少的膠原纖維組織和腎臟等部位。隨著飲食結(jié)構(gòu)的變化、攝入動物蛋白及脂肪的增多,高尿酸血癥和痛風(fēng)的發(fā)病率有升高趨勢。尤其是近年來我國人民由于生活水平提高和生活習(xí)慣改變,痛風(fēng)發(fā)病率急劇升高并呈低齡化趨勢[1]。一般認(rèn)為10% ~ 35%的痛風(fēng)患者有家族史。在痛風(fēng)患者的家族成員中,無癥狀的高尿酸血癥發(fā)生率為25% ~ 70%[2]。
尿酸在血液中的水平取決于2個因素。一是尿酸在肝臟中合成的速度。尿酸是嘌呤的代謝產(chǎn)物,尿酸水平既受控于機(jī)體的嘌呤合成量,也受控于從飲食中吸收的嘌呤量。二是尿酸自腎臟排泄的速度。尿酸排泄對血尿酸水平的影響最大,約有90%的高尿酸血癥患者是由于尿酸排泄減少引起的。尿酸排泄障礙的最常見原因是尿酸鹽轉(zhuǎn)運(yùn)體在腎臟的表達(dá)異常。尿酸鹽轉(zhuǎn)運(yùn)體控制尿酸通過腎臟近曲小管,目前對原發(fā)性高尿酸血癥和痛風(fēng)相關(guān)的基因研究主要集中于腎臟尿酸鹽轉(zhuǎn)運(yùn)系統(tǒng)[3]。尿酸的排泄是一組表達(dá)在腎近曲小管上的尿酸鹽轉(zhuǎn)運(yùn)分子協(xié)同運(yùn)作的結(jié)果。最近,數(shù)個獨(dú)立的全基因組關(guān)聯(lián)研究都顯示,尿酸鹽轉(zhuǎn)運(yùn)體的基因多態(tài)性與血尿酸水平升高和痛風(fēng)相關(guān) [4-6]。
三磷酸腺苷結(jié)合盒G超家族成員2(ATP-binding cassette subfamily G member 2, ABCG2)是一種三磷酸腺苷結(jié)合轉(zhuǎn)運(yùn)蛋白[7],在人的正常細(xì)胞和腫瘤組織中均有表達(dá),具有抑制消化道吸收某些外源性物質(zhì)以及參與形成血-腦、胎-血屏障等生理功能。ABCG2也是一種藥物排出泵,是導(dǎo)致腫瘤多藥耐藥的重要機(jī)制之一[8]。最近的研究還顯示,ABCG2也大量表達(dá)于腎近曲小管刷狀緣膜上,負(fù)責(zé)尿酸的排泄,與高尿酸血癥和痛風(fēng)的發(fā)生也密切相關(guān)[3,9-10]。
目前認(rèn)為,相比其他尿酸鹽轉(zhuǎn)運(yùn)體(URAT1和GLUT9),ABCG2的基因變異種類最多,對血尿酸水平的影響最大[3,11-14]。除腎臟外,ABCG2同樣也是尿酸排泄的腎臟外調(diào)節(jié)器,其除表達(dá)于腎近曲小管刷狀緣膜上外,還大量表達(dá)于小腸上皮細(xì)胞的頂端膜和肝臟細(xì)胞中,負(fù)責(zé)尿酸在腎臟外的代謝[15]。
通過對ABCG2的基因序列分析發(fā)現(xiàn),它有超過80個不同的單核苷酸多態(tài)性(single nucleotide polymorphism, SNP)位點(diǎn)。其中,421位點(diǎn)的C>A的SNP位于5號外顯子,易導(dǎo)致谷氨酰胺殘基被帶正電荷的賴氨酸殘基取代。這種SNP變異幾乎在所有接受試驗(yàn)的人群中都能檢測到,等位基因頻率為0% ~ 35%(其中撒哈拉沙漠以北和以南地區(qū)的非洲人群以及非洲裔美洲人群的等位基因頻率較低,而日本和中國人的等位基因頻率較高)[16-20]。
對ABCG2的功能研究發(fā)現(xiàn),純合子Q141K變異的個體,其轉(zhuǎn)運(yùn)蛋白的表達(dá)明顯較低,而雜合子則呈中等程度的表達(dá)[20]?;诖税l(fā)現(xiàn)可以推測,Q141K變異的ABCG2的穩(wěn)定性顯著下降,而mRNA水平未顯示有明顯的變化?,F(xiàn)有證據(jù)表明,ABCG2的Q141K變異體的降解是通過泛素為媒介的蛋白酶體介導(dǎo)的[21-25]。在體外試驗(yàn)中,當(dāng)?shù)鞍酌阁w介導(dǎo)的降解被MG132抑制時,Q141K變異體的水平可以恢復(fù)。Q141K變異并不干擾核苷酸結(jié)合區(qū)域和細(xì)胞內(nèi)環(huán)的相互作用,但會在很大程度上影響蛋白和蛋白間的相互作用,而這種相互作用是ABCG2二聚化所不可或缺的。ABCG2中的2個氨基酸殘基賴氨酸473和苯丙氨酸142在ABCG2的二聚化中起著關(guān)鍵性的作用[26]。Woodward等[9]進(jìn)行了一項(xiàng)納入14 783人的人群調(diào)查,將421位點(diǎn)C>A的SNP作為一個偶發(fā)的變異進(jìn)行檢測,結(jié)果發(fā)現(xiàn)與高血尿酸水平和痛風(fēng)發(fā)生間存在著高度相關(guān)性(校準(zhǔn)后的OR=1.68),且資料提示所有白種人痛風(fēng)患者發(fā)病原因中至少有10%可歸于421位點(diǎn)出現(xiàn)的C>A的SNP(Q141K變異)。
除Q141K變異外,4號外顯子存在一個376位點(diǎn)的C>T的SNP,它以1個終止密碼子替代了126位的谷氨酰胺,被命名為Q126X變異。Q126X變異是首先在日本人群中發(fā)現(xiàn)的,其等位基因頻率為2.4%[27]。研究顯示,Q126X變異可能對ABCG2的表達(dá)有較大影響,因?yàn)闊o法從變異的等位基因合成有活性的ABCG2。Q126X變異雖在日本人群中已被發(fā)現(xiàn),但在白種人群和非洲裔美洲人群中卻不存在[17,19,28]。
Matsuo等[29]報道,對Q141K和Q126X進(jìn)行聯(lián)合基因分型可作為重要的臨床生物標(biāo)志物。他們對705名日本男性痛風(fēng)患者的發(fā)病年齡與基因分型進(jìn)行統(tǒng)計(jì)和分析,同時以1 887名健康男性作對照。在對Q141K和Q126X進(jìn)行聯(lián)合基因分型的基礎(chǔ)上再對ABCG2的功能進(jìn)行檢測,結(jié)果發(fā)現(xiàn)ABCG2功能嚴(yán)重失活者的痛風(fēng)發(fā)病年齡較ABCG2功能正常者早6.5年。ABCG2功能嚴(yán)重失活者占痛風(fēng)早期發(fā)病患者(<20歲)的88.2%。ABCG2功能嚴(yán)重失活會大大增加痛風(fēng)早期發(fā)病的危險(OR=22.2)?;谶@些發(fā)現(xiàn),研究者得出這樣的結(jié)論:ABCG2功能失活是痛風(fēng)早期發(fā)病的主要原因。
目前,藥物基因?qū)W被廣泛用于預(yù)測藥物治療的療效和副作用[30]。個體化醫(yī)療可以提高藥物的療效,同時提高治療的安全性。事實(shí)上,一些涉及藥物代謝的酶基因和轉(zhuǎn)運(yùn)體基因的數(shù)個基因多態(tài)性已被列入了個體化醫(yī)療的基因測試項(xiàng)目。痛風(fēng)早期發(fā)病會給患者的生活質(zhì)量帶來負(fù)面影響并需終生服藥,而早期篩查ABCG2的基因功能、早期介入干預(yù)有利于及時控制和管理疾病。ABCG2基因中Q141K和Q126X的SNP可用作高尿酸血癥和痛風(fēng)發(fā)生的臨床生物標(biāo)志物。
參考文獻(xiàn)
閻勝利. 痛風(fēng)的流行病學(xué)資料特點(diǎn)[J]. 山東醫(yī)藥, 2010, 50(43): 107.
Wilk JB, Djousse L, Boreeki I, et al. Segregation analysis of uric acid in the NHLBI family heart study [J]. Hum Genet, 2000, 106(3): 355-359.
Matsuo H, Takada T, Ichida K, et al. Common defects of ABCG2, a high-capacity urate exporter, cause gout. A function-based genetic analysis in a Japanese population [J]. Sci Transl Med, 2009, 1(5): 5-11.
Deghan A, K?ttgen A, Yang Q, et al. Association of three genetic loci with uric acid concentration and risk of gout: a genome-wide association study [J]. Lancet, 2008, 372(9654): 1953-1961.
Kolz M, Johnson T, Sanna S, et al. Meta-analysis of 28,141 individuals identifies common variants within five new loci that influence uric acid concentrations [J/OL]. PLoS Genet, 2009, 5(6): e1000504 [2013-07-25]. http://www.plosgenetics.org/article/info%3Adoi%2F10.1371%2Fjournal.pgen.1000504.
Stark K, Reinhard W, Grassi M, et al. Common polymorphisms influencing serum uric acid levels contribute to susceptibility to gout, but not to coronary artery disease [J/OL]. PLoS One, 2009, 4(11): e7729 [2013-07-25]. http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0007729.
Giacomini KM, Huang SM, Tweedie DJ, et al. Membrane transporters in drug development: report from the FDA critical path initiative-sponsored workshop [J]. Nat Rev Drug Discov, 2010, 9(3): 215-236.
Doyle LA, Yang W, Abruzzo LV, et al. A multidrug resistance transporter from human MCF-7 breast cancer cells [J]. Proc Natl Acad Sci USA, 1998, 95(26): 15665-15670.
Woodward O, K?ttgen A, Coresh J, et al. Identification of a urate transporter, ABCG2, with a common functional polymorphism causing gout [J]. Proc Natl Acad Sci USA, 2009, 106(25): 10338-10342.
Zhang L, Spencer KL, Voruganti VS, et al. Association of functional polymorphism rs2231142 (Q141K) in the ABCG2 gene with serum uric acid and gout in 4 US populations: the PAGE study [J]. Am J Epidemiol, 2013, 177(9): 923-932.
Rizwan AN, Burckhardt G. Organic anion transporters of the SLC22 family: biopharmaceutical, physiological, and pathological roles [J]. Pharm Res, 2007, 24(3): 450-470.
van Aubel RA, Smeets PH, van den Heuvel JJ, et al. Human organic anion transporter MRP4 (ABCC4) is an efflux pump for the purine end metabolite urate with multiple allosteric substrate binding sites [J]. Am J Physio Renal Physiol, 2005, 288(2): F327-F333.
Huls M, Brown CD, Windass AS, et al. The breast cancer resistance protein transporter ABCG2 is expressed in the human kidney proximal tubule apical membrane [J]. Kidney Int, 2008, 73(2): 220-225.
Krishnamurthy P, Schuetz JD. Role of ABCG2/BCRP in biology and medicine [J]. Annu Rev Pharmacol Toxicol, 2006, 46: 381-410.
Woodward OM, K?ttgen A, K?ttgen M. ABCG transporters and disease [J]. FEBS J, 2011, 278(18): 3215-3225.
Ishikawa T, Tamura A, Saito H, et al. Pharmacogenomics of the human ABC transporter ABCG2: from functional evaluation to drug molecular design [J]. Naturwissenschaften, 2005, 92(10): 451-463.
Imai Y, Nakane M, Kage K, et al. C421A polymorphism in the human breast cancer resistance protein gene is associated with low expression of Q141K protein and low-level drug resistance [J]. Mol Cancer Ther, 2002, 1(8): 611-616.
Zamber CP, Lamba JK, Yasuda K, et al. Natural allelic variants of breast cancer resistance protein (BCRP) and their relationship to BCRP expression in human intestine [J]. Pharmacogenetics, 2003, 13(1): 19-28.
de Jong FA, Marsh S, Mathijssen RH, et al. ABCG2 pharmacogenetics: ethnic differences in allele frequency and assessment of influence on irinotecan disposition [J]. Clin Cancer Res, 2004, 10(17): 5889-5894.
Kobayashi D, Ieiri I, Hirota T, et al. Functional assessment of ABCG2 (BCRP) gene polymorphisms to protein expression in human placenta [J]. Drug Metab Dispos, 2005, 33(1): 94-101.
Tamura A, Wakabayashi K, Onishi Y, et al. Re-evaluation and functional classification of nonsynonymous single nucleotide polymorphisms of human ABC transporter ABCG2 [J]. Cancer Sci, 2007, 98(2): 231-239.
Nakagawa H, Tamura A, Wakabayashi K, et al. Ubiquitin-mediated proteasomal degradation of non-synonymous SNP variants of human ABC transporter ABCG2 [J]. Biochem J, 2008, 411(3): 623-631.
Furukawa T, Wakabayashi K, Tamura A, et al. Major SNP (Q141K) variant of human ABC transporter ABCG2 undergoes lysosomal and proteosomal degradations [J]. Pharm Res, 2009, 26(2): 469-479.
Wakabayashi-Nakao K, Tamura A, Furukawa T, et al. Quality control of human ABCG2 protein in the endoplasmeic reticulm: ubiquitination and proteasomal degradation [J]. Adv Drug Deliv Rev, 2009, 61(1): 66-72.
Nakagawa H, Toyoda Y, Wakabayashi-Nakao K, et al. Ubiquitin-mediated proteasomal degradation of ABC transporters: a new aspect of genetic polymorphisms and clinical impacts [J]. J Parm Sci, 2011, 100(9): 3602-3619.
Woodward OM, Tukaye DN, Cui J, et al. Gout-causing Q141K mutation in ABCG2 leads to instability of the nucleotide-binding domain and can be corrected with small molecules [J]. Proc Natl Acad Sci USA, 2013, 110(13): 5223-5228.
Honjo Y, Morisaki K, Huff LM, et al. Single-nucleotide polymorphism (SNP) analysis in the ABC half-transporter ABCG2 (MXR/BCRP/ABCP1) [J]. Cancer Biol Ther, 2002, 1(6): 696-702.
Itoda M, Saito Y, Shirao K, et al. Eight novel single nucleotide polymorphisms in ABCG2/BCRP in Japanese cancer patients administered irinotecan [J]. Drug Metab Pharmacokin, 2003, 18(3): 212-217.
Matsuo H, Ichida K, Takada T, et al. Common dysfunctional variants in ABCG2 are a major cause of early-onset gout [J/OL]. Sci Rep, 2013, 3: 2014 [2013-09-30]. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3684804/pdf/srep02014.pdf.
Ishikawa T, Ware J. Future Perspectives [M]//Ishikawa T, Kim RB, K?nig J. Pharmacogenomics of human drug transporters: clinical impacts. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2013: 401-416.
(收稿日期:2014-01-23)