周 林,曹成堂
(連云港廣播電視大學(xué) 建筑工程系,江蘇 連云港 222006)
本文將要討論的算子如下:
引理1[5]設(shè)f∈B,那么對于任意正整數(shù)n,
‖f‖B?∑|f(j)(0)|+
引理2[5]在B0中的一個(gè)閉子集K是緊的充要條件是K是有界的且滿足
由Montel定理及緊算子定義,可以得出下面的引理.
(1)
證明首先假設(shè)(1)成立,那么對于任意f∈B,由引理1可得
(1-|z|2)|u(z)f(n)(φ(z))|≤
C‖
(2)
所以
C<∞.
(3)
(4)
又因?yàn)?/p>
浙江力普在精制棉制備纖維素粉碎加工技術(shù)領(lǐng)域更是一枝獨(dú)秀———“醫(yī)藥輔料纖維素醚專用高效剪切粉碎機(jī)的研究和產(chǎn)業(yè)化項(xiàng)目”“GWM-730纖維素高效剪切磨開發(fā)”相繼被列入省市科技項(xiàng)目;高效纖維素剪切粉碎機(jī)、短纖維粉碎機(jī)均已獲得國家專利。為我國纖維素粉體行業(yè)提供了一種技術(shù)國際領(lǐng)先的超細(xì)纖維粉碎設(shè)備。
C<∞.
由上式以及(3),(4)可得(1)成立.
(5)
(6)
(7)
由(6)以及(7)可知,當(dāng)i>i0時(shí),有
下證‖φ‖∞=1的情況.令(zi)i∈∈D是使得|φ(zi)|→1,i→∞的點(diǎn)列.
(8)
(1-|z|2)|u(z)p(n)(φ(z))|≤
(1-|z|2)|u(z)|‖p(n)(φ(z))‖B.
(9)
證明首先假設(shè)(9)成立.在(2)中對‖f‖B≤1的f取上確界,且讓|z|→1,可得
(10)
由(8)成立可得,?δ∈(0,1),當(dāng)δ<|z|<1時(shí),
(1-|z|2)|u(z)|≤ε(1-r2)n.
(11)
由(10)可得,當(dāng)δ<|z|<1,r<|φ(z)|<1時(shí),
(12)
由(11)可得,當(dāng)δ<|z|<1,|φ(z)|≤r時(shí),
(13)
由(12)以及(13)可得(9)成立.
參考文獻(xiàn):
[1] ZHAO Ruhan. Composition operators from Bloch type spaces to Hardy and Besov spaces[J]. Journal of Mathematics Analysis and Applications, 1999, 233(2): 749-766.
[2] ZHU Kehe. Bloch type spaces of analytic functions[J]. Rocky Mountain Journal of Mathematics, 1993, 23(3): 1143-1177.
[3] STEVIC S. On an integral operator from the Zygmund space to the Bloch-type space on the unit ball[J]. Bulletin des Sciences Mathematiques, 2010, 134(4): 329-339.
[4] STEVIC S. On an integral operator between Bloch-type spaces on the unit ball[J]. Glasgow Mathematical Journal, 2009, 51(2): 275-287.
[5] STEVIC S. Composition by followed by differentiation fromH∞and Bloch spaces to nth weight-type spaces on the unit disk[J]. Applied Mathematics and Computation, 2010, 216(12): 3450-3458.
[6] YU Yanyan, LIU Yongmin. The product of differentiation and multiplication operator from the mixed-norm to the Bloch-type space[J]. Acta Mathematics Science Series A, 2012, 32(1): 103-122.
[7] LI Songxiao, STEVI’C S. Products of Volterra type operator and composition operator fromH∞and Bloch spaces to Zygmund spaces[J]. Journal of Mathematics Analysis and Application, 2008, 345: 40-52.