殷宇陽(yáng)+王宏光
文章編號(hào): 1008-8857(2014)02-0113-05DOI:10.13259/j.cnki.eri.2014.02.012
摘 要:
針對(duì)航空渦輪葉片的溫度場(chǎng)預(yù)測(cè)問(wèn)題,采用CFD(computational fluid dynamics)軟件和有限元計(jì)算理論與方法,以對(duì)流冷卻葉片的溫度場(chǎng)與熱應(yīng)力求解為例,分別計(jì)算了渦輪進(jìn)口溫度均勻和不均勻時(shí)葉片的溫度場(chǎng)和熱應(yīng)力,分析了渦輪進(jìn)口溫度不均勻?qū)θ~片熱應(yīng)力的影響,其中葉片溫度場(chǎng)的求解采用氣熱耦合的方法即直接應(yīng)用CFD軟件計(jì)算葉片溫度場(chǎng),再依據(jù)溫度場(chǎng)進(jìn)行了有限元熱應(yīng)力分析.結(jié)果表明,進(jìn)口溫度不均勻時(shí)比進(jìn)口溫度均勻時(shí)葉片的熱應(yīng)力增大10%左右.
關(guān)鍵詞:
燃?xì)鉁u輪; 氣熱耦合; 熱應(yīng)力; 有限元方法
中圖分類號(hào): TK 47文獻(xiàn)標(biāo)志碼: A
Effect of nonuniform inlet temperature profiles
on the thermal stress in turbine blade
YIN Yuyang, WANG Hongguang
(School of Energy and Power Engineering, University of Shanghai for
Science and Technology, Shanghai 200093, China)
Abstract: In order to predict temperature field for gas turbine blades,CFD and FEA methods were used to calculate the temperature field and thermal stress in a convective cooling blade with both uniform and nonuniform inlet temperature distribution.The temperature field of the blade was directly calculated with coupled thermal aerodynamics analysis,and then the thermal stress in the blade was analyzed with FEA method.It is found that thermal stress in the blade under nonuniform inlet temperature profile was 10%~30% higher than that under uniform inlet temperature profile.
Key words:
gas turbine; coupled thermal aerodynamics analysis; thermal stress; finite element method
隨著燃?xì)廨啓C(jī)技術(shù)的發(fā)展,渦輪進(jìn)口溫度已達(dá)到2 000 K以上,超過(guò)了材料的承受能力,必須通過(guò)葉片冷卻技術(shù)降低葉片溫度.采用葉片冷卻技術(shù)既要降低葉片平均溫度,滿足材料持久強(qiáng)度和壽命的要求,又要降低葉片的溫度梯度和熱應(yīng)力水平.目前在渦輪葉片溫度估計(jì)中,100 K的溫差將給葉片的壽命預(yù)測(cè)帶來(lái)一個(gè)數(shù)量級(jí)的誤差[1].因此,準(zhǔn)確預(yù)測(cè)葉片的溫度成為航空發(fā)動(dòng)機(jī)傳熱課題中重要組成部分,而燃?xì)鉁u輪進(jìn)口溫度不均勻又給渦輪葉片溫度場(chǎng)預(yù)測(cè)帶來(lái)了新的挑戰(zhàn).劉高文等[2]指出燃燒室出口“熱斑”對(duì)流場(chǎng)的壓力分布影響不大,但會(huì)造成渦輪前兩級(jí)動(dòng)靜葉壓力面過(guò)熱.但該文獻(xiàn)在計(jì)算中并未考慮葉片內(nèi)部冷卻流體對(duì)葉片的冷卻作用.胡捷等[3]對(duì)冷卻葉片進(jìn)行穩(wěn)態(tài)實(shí)驗(yàn),并與耦合算法與非耦合算法進(jìn)行對(duì)比,結(jié)果表明耦合算法的結(jié)果更接近實(shí)驗(yàn)值.文獻(xiàn)[4]對(duì)燃?xì)鉁u輪的進(jìn)口溫度不均勻進(jìn)行了耦合分析,主要對(duì)傳熱進(jìn)行分析但未深入分析進(jìn)口溫度不均勻?qū)θ~片強(qiáng)度的影響.傳統(tǒng)的熱應(yīng)力確定方法為通過(guò)CFD計(jì)算或?qū)嶒?yàn)測(cè)量葉片的表面溫度或其它參數(shù),然后應(yīng)用有限元方法計(jì)算葉片內(nèi)部溫度場(chǎng),最后依據(jù)葉片的溫度場(chǎng)和相應(yīng)的邊界條件求解葉片的熱應(yīng)力.文獻(xiàn)[5-7]通過(guò)實(shí)驗(yàn)測(cè)量葉片表面溫度,進(jìn)而計(jì)算葉片熱應(yīng)力.文獻(xiàn)[8]通過(guò)實(shí)驗(yàn)確定葉片表面的對(duì)流換熱系數(shù),計(jì)算二維葉片的熱應(yīng)力.以上兩種方法因采用實(shí)驗(yàn)數(shù)據(jù),結(jié)果可靠,但周期長(zhǎng),成本高.
本文使用商業(yè)軟件CFX對(duì)葉柵流場(chǎng)、內(nèi)部冷卻流道和葉片固體域進(jìn)行氣熱耦合換熱仿真分析,同時(shí)計(jì)算葉片外流場(chǎng)、葉片內(nèi)冷卻通道流場(chǎng)和葉片固體域的溫度場(chǎng),然后應(yīng)用ANSYS軟件計(jì)算葉片所受的熱應(yīng)力.由于采用了內(nèi)外流動(dòng)的耦合換熱分析,比傳統(tǒng)的非耦合算法計(jì)算得到的溫度場(chǎng)精度要高,減少了熱應(yīng)力計(jì)算的誤差.
1 氣熱耦合計(jì)算過(guò)程
為了計(jì)算葉片的熱應(yīng)力,首先計(jì)算葉柵流道的氣動(dòng)參數(shù)和葉片的溫度場(chǎng),并通過(guò)與實(shí)驗(yàn)值對(duì)比,分析誤差大小,然后依據(jù)計(jì)算所得的溫度場(chǎng)計(jì)算葉片熱應(yīng)力.
1.1 葉柵流道計(jì)算模型的建立
采用Allison公司設(shè)計(jì)的MarkⅡ葉片,葉片幾何數(shù)據(jù)可參見(jiàn)文獻(xiàn)[9].圖1為葉柵流道的網(wǎng)格圖.計(jì)算域分為三部分:葉柵流道、葉片內(nèi)部冷卻流道和葉片固體域,共2 079 881個(gè)網(wǎng)格單元.應(yīng)用ANSYS軟件中的ICEM網(wǎng)格劃分模塊,采用O型網(wǎng)格劃分方式,全部網(wǎng)格均為六面體網(wǎng)格,并且在各個(gè)流固耦合換熱面進(jìn)行局部加密,以保證計(jì)算過(guò)程數(shù)值傳遞的可靠性.
計(jì)算過(guò)程采用的湍流模型是CFX中的SST(shearstress transport)模型,流體工質(zhì)選用理想氣體,葉片材料采用文獻(xiàn)[9]中選用的ASTM(American Society for Testing and Materials)標(biāo)準(zhǔn)310不銹鋼(0Cr25Ni20),導(dǎo)熱系數(shù)k為溫度T的函數(shù),
圖1 葉柵流道的網(wǎng)格圖
Fig.1
Grid generation of the cascade passage
k=(0.011 15T/K+9.910 5) W?m-1?K-1,密度ρ=8 030 kg?m-3,比定壓熱容cp=502 J?kg-1?K-1.計(jì)算的邊界條件采用文獻(xiàn)[9]中的5411實(shí)驗(yàn)工況,葉柵流道和冷卻流道的進(jìn)、出口邊界條件設(shè)定如表1、表2所示.
表1 葉柵流道進(jìn)、出口邊界條件
Tab.1
Inlet and outlet boundary conditions of the cascade passage
進(jìn)口總壓/Pa進(jìn)口總溫/K進(jìn)口湍流強(qiáng)度/%進(jìn)口黏性比出口靜壓/Pa
337 0977886.510175 713
表2 對(duì)流冷卻流道的邊界條件
Tab.2
Boundary conditions of the convective cooling channels
冷卻孔序號(hào)直徑/mm流量/(kg?s-1)進(jìn)口總溫/K
16.300.024 60300
26.300.023 70300
36.300.023 80300
46.300.024 70300
56.300.023 30300
66.300.022 80300
76.300.023 80300
83.100.007 75300
93.100.005 11300
101.980.003 34300
冷卻孔設(shè)為出口靜壓100 kPa,各個(gè)流固交界面均設(shè)定為流固耦合換熱面,表面網(wǎng)格插值方式采用CFX中自帶的GGI (general grid interface),各計(jì)算域通過(guò)能量方程耦合計(jì)算彼此之間傳遞的熱量和對(duì)流換熱系數(shù).
為了模擬非均勻溫度進(jìn)口對(duì)渦輪葉片的溫度場(chǎng)的影響,本文參考工程設(shè)計(jì)中渦輪的進(jìn)口最高總溫比平均總溫高100~120 K的實(shí)際情況[10],模擬時(shí)選取的最高溫度為870 K,最低溫度為695 K,溫度沿葉高方向呈拋物線分布.圖2為自定義的進(jìn)口溫度不均勻時(shí)葉柵進(jìn)口溫度分布云圖.
圖2 渦輪進(jìn)口溫度不均勻時(shí)葉柵進(jìn)口溫度分布云圖
Fig.2
Temperature distribution at the cascade passage inlet
under nonuniform turbine inlet temperature profile
1.2 計(jì)算結(jié)果
圖3為葉片中徑處表面無(wú)量綱靜壓分布.其中,無(wú)量綱靜壓P—=葉片表面靜壓/葉柵進(jìn)口總壓;相對(duì)弧長(zhǎng)=距離前緣點(diǎn)位置的弧長(zhǎng)/葉片弧長(zhǎng).從中可看出,無(wú)量綱靜壓分布的模擬結(jié)果與實(shí)驗(yàn)結(jié)果基本符合,只是在吸力面弧長(zhǎng)的0.2~0.4處出現(xiàn)較大偏差.這是由于氣流在該處達(dá)到音速,產(chǎn)生激波的同時(shí)又出現(xiàn)邊界層分離,從而導(dǎo)致計(jì)算結(jié)果出現(xiàn)較大偏差.圖4為葉柵中徑截面馬赫數(shù)分布云圖和吸力面速度矢量圖,可知在吸力面頂部弧長(zhǎng)的0.3處氣流馬赫數(shù)達(dá)到1.52,并且發(fā)生了邊界層分離.
圖3 葉片中徑處表面無(wú)量綱靜壓分布
Fig.3
Dimensionless static pressure distribution at midspan of the blade surface
圖4 葉柵中徑截面馬赫數(shù)分布云圖和吸力面速度矢量圖
Fig.4
Mach number and suction surface velocity vector distribution at middle section of the cascade passage
圖5為葉片中徑處表面無(wú)量綱靜溫實(shí)驗(yàn)值和模擬值的分布,無(wú)量綱靜溫T—=葉片表面溫度/進(jìn)口總溫.通過(guò)對(duì)比可看出,壓力面上經(jīng)CFD軟件計(jì)算的無(wú)量綱靜溫略小于實(shí)驗(yàn)值,無(wú)量綱靜溫相差最大處可達(dá)0.05.而吸力面的靜溫模擬值基本都高于實(shí)驗(yàn)值,且邊界層分離和超音速氣流激波的交互作用導(dǎo)致計(jì)算結(jié)果與實(shí)驗(yàn)值相差很大,無(wú)量綱靜溫相差最大處可達(dá)0.1左右.文獻(xiàn)[9]的實(shí)驗(yàn)并沒(méi)有在葉片尾緣附近布置熱電偶,因此未測(cè)量尾緣附近的溫度.但是由計(jì)算結(jié)果可知,進(jìn)口溫度均勻時(shí)尾緣處葉片表面溫度最高.從圖3可看出,進(jìn)口溫度的分布對(duì)葉片表面的壓力分布幾乎沒(méi)有影響.而兩次模擬過(guò)程,除葉柵進(jìn)口溫度分布外其它條件不變.從圖5可看出,進(jìn)口溫度不均勻時(shí)葉片表面的無(wú)量綱靜溫度要比進(jìn)口溫度均勻時(shí)高0.05~0.09左右,壓力面的冷卻效果較好,兩者無(wú)量綱靜溫相差0.05左右,但是吸力面的冷卻效果略差些,兩者的無(wú)量綱靜溫相差0.07左右,最大處(葉片前緣附近)甚至達(dá)到0.09.雖然葉片溫度的計(jì)算存在一定誤差,但用于計(jì)算熱應(yīng)力仍具有一定的參考價(jià)值.
圖6(a)和(b)分別為進(jìn)口溫度不均勻與進(jìn)口溫度均勻的葉片中徑截面溫度.從圖中可見(jiàn),葉片前緣附近三個(gè)冷卻孔的冷卻效果非常明顯,雖然
圖5 葉片中徑處表面無(wú)量綱靜溫分布
Fig.5
Static temperature profile at midspan of the blade surface
圖6 葉片中徑截面溫度
Fig.6
Temperature distribution at middle section of the blade
葉片的溫度并不高,但是三個(gè)孔到葉片表面這個(gè)區(qū)域卻是葉片溫度變化最大的一段;葉片溫度沿葉片前緣到葉片尾緣方向逐漸升高,而從葉片表面到冷卻孔逐漸降低;葉片尾部溫度最高,可能是由于冷卻孔太少造成的,但是葉片溫度過(guò)高會(huì)造成葉片使用壽命降低.
2 有限元熱應(yīng)力分析
應(yīng)用ANSYS軟件計(jì)算熱應(yīng)力,采用solid186單元.圖7為葉片有限元模型,共150 800個(gè)網(wǎng)格單元.計(jì)算過(guò)程中施加由CFD軟件計(jì)算得出的葉片溫度載荷,此處利用ANSYS中的profile conservative插值方法,將氣熱耦合計(jì)算的葉片溫度場(chǎng)傳遞到有限元單元節(jié)點(diǎn)上.該差值方法可保證局部溫度值的精度[11].結(jié)構(gòu)計(jì)算中不對(duì)葉片施加約束邊界條件.
圖8、圖9分別為進(jìn)口溫度不均勻和均勻時(shí)葉片各處的熱應(yīng)力.從中可看出,渦輪進(jìn)口溫度不均勻時(shí)熱應(yīng)力最大集中在葉片前部三個(gè)冷卻孔的內(nèi)壁附近,而渦輪進(jìn)口溫度均勻時(shí)熱應(yīng)力最大在葉片頂部端面壓力面靠近冷卻孔處.
從葉片的壓力面和吸力面看,冷卻孔四周的熱應(yīng)力明顯大于冷卻孔之間的區(qū)域,葉片前部的熱應(yīng)力明顯大于葉片后部的熱應(yīng)力.從兩個(gè)工況比較來(lái)看,進(jìn)口溫度不均勻時(shí)葉片的熱應(yīng)力比進(jìn)口溫度均勻時(shí)高10%左右.
圖7 葉片有限元模型
Fig.7
Finite element model of a blade
圖8 進(jìn)口溫度不均勻時(shí)葉片各處熱應(yīng)力
Fig.8
Thermal stress in the blade under nonuniform inlet temperature profile
圖9 進(jìn)口溫度均勻時(shí)葉片各處熱應(yīng)力
Fig.9
Thermal stress in the blade under uniform inlet temperature profile
3 結(jié) 論
(1) 燃?xì)鉁u輪進(jìn)口溫度的分布不均對(duì)葉片表面的壓力分布幾乎沒(méi)有影響.該葉片壓力面的冷卻效果優(yōu)于吸力面的冷卻效果.
(2) 當(dāng)葉片吸力面氣流加速達(dá)到音速并發(fā)生邊界層分離時(shí),超音速的激波與邊界層分離的交互作用,難以準(zhǔn)確地對(duì)流動(dòng)進(jìn)行預(yù)測(cè).
(3) 燃?xì)廨啓C(jī)進(jìn)口溫度不均勻時(shí),葉片所受的熱應(yīng)力增大.就本文研究的葉片而言,葉片前緣所受的熱應(yīng)力遠(yuǎn)大于葉片尾緣,必要時(shí)應(yīng)適當(dāng)改進(jìn)冷卻方式以降低葉片的溫度梯度,從而降低葉片的熱應(yīng)力.而針對(duì)葉片尾部的溫度過(guò)高問(wèn)題,也應(yīng)加以改善,以延長(zhǎng)葉片的使用壽命.
參考文獻(xiàn):
[1] 曹玉璋.航空發(fā)動(dòng)機(jī)傳熱學(xué)[M].北京:北京航空航天大學(xué)出版社,2005.
[2] 劉高文,?jiǎng)⑺升g.熱斑在1-1/2級(jí)渦輪內(nèi)的非定常遷移數(shù)值模擬[J].航空動(dòng)力學(xué)報(bào),2004,19(6):855-859.
[3] 胡捷,?jiǎng)⒔ㄜ?江友鈿.燃?xì)廨啓C(jī)透平葉片氣熱耦合計(jì)算[J].航空動(dòng)力學(xué)報(bào),2011,26(2):349-354.
[4] 董平,郭兆元,王強(qiáng),等.進(jìn)口溫度不均勻?qū)饫錅u輪葉片傳熱的影響[J].工程熱物理學(xué)報(bào),2010,31(7):1109-1112.
[5] TRET'YACHENKO G N.Investigation of the failure of gas turbine blades under the effect of thermal changes[J].Strength of Materials,1971,3(2):147-153.
[6] TRET'YACHENKO G N,TERLETSKII V A,KRAVCHUK L V,et al.Methods of modeling thermal and stressed states in the edges of gas turbine blades[J].Strength of Materials,1972,4(10):1196-1201.
[7] TRUSHECHKIN V P,KOLETNIKOV M E.Theoreticalexperimental study of the theral fatigue of gasturbine blades[J].Strength of Materials,1988,20(2):223-229.
[8] CHEPASKINA S M,TRUSHECHKIN V P,LOMAKOVSKII I V.Certain characteristic features of the thermostressed state of cooled turbine blades in different cooling regimes[J].Strength of Materials,1989,21(10):1365-1369.
[9 ] HYLTON L D,MILHEC M S,TURNER E R,et al.Analytical and experimental evaluation of the heat transfer distribution over the surface of turbine vanes[R].NASA-CR-168015,1983.
[10] 彭澤琰,?jiǎng)?桂幸民,等.航空燃?xì)廨啓C(jī)原理(上冊(cè))[M].北京:國(guó)防工業(yè)出版社,2000.
[11] 宋學(xué)官,蔡林,張華.ANSYS流固耦合分析與工程實(shí)例[M].北京:中國(guó)水利水電出版社,2011.
[2] 劉高文,?jiǎng)⑺升g.熱斑在1-1/2級(jí)渦輪內(nèi)的非定常遷移數(shù)值模擬[J].航空動(dòng)力學(xué)報(bào),2004,19(6):855-859.
[3] 胡捷,?jiǎng)⒔ㄜ?江友鈿.燃?xì)廨啓C(jī)透平葉片氣熱耦合計(jì)算[J].航空動(dòng)力學(xué)報(bào),2011,26(2):349-354.
[4] 董平,郭兆元,王強(qiáng),等.進(jìn)口溫度不均勻?qū)饫錅u輪葉片傳熱的影響[J].工程熱物理學(xué)報(bào),2010,31(7):1109-1112.
[5] TRET'YACHENKO G N.Investigation of the failure of gas turbine blades under the effect of thermal changes[J].Strength of Materials,1971,3(2):147-153.
[6] TRET'YACHENKO G N,TERLETSKII V A,KRAVCHUK L V,et al.Methods of modeling thermal and stressed states in the edges of gas turbine blades[J].Strength of Materials,1972,4(10):1196-1201.
[7] TRUSHECHKIN V P,KOLETNIKOV M E.Theoreticalexperimental study of the theral fatigue of gasturbine blades[J].Strength of Materials,1988,20(2):223-229.
[8] CHEPASKINA S M,TRUSHECHKIN V P,LOMAKOVSKII I V.Certain characteristic features of the thermostressed state of cooled turbine blades in different cooling regimes[J].Strength of Materials,1989,21(10):1365-1369.
[9 ] HYLTON L D,MILHEC M S,TURNER E R,et al.Analytical and experimental evaluation of the heat transfer distribution over the surface of turbine vanes[R].NASA-CR-168015,1983.
[10] 彭澤琰,?jiǎng)?桂幸民,等.航空燃?xì)廨啓C(jī)原理(上冊(cè))[M].北京:國(guó)防工業(yè)出版社,2000.
[11] 宋學(xué)官,蔡林,張華.ANSYS流固耦合分析與工程實(shí)例[M].北京:中國(guó)水利水電出版社,2011.
[2] 劉高文,?jiǎng)⑺升g.熱斑在1-1/2級(jí)渦輪內(nèi)的非定常遷移數(shù)值模擬[J].航空動(dòng)力學(xué)報(bào),2004,19(6):855-859.
[3] 胡捷,?jiǎng)⒔ㄜ?江友鈿.燃?xì)廨啓C(jī)透平葉片氣熱耦合計(jì)算[J].航空動(dòng)力學(xué)報(bào),2011,26(2):349-354.
[4] 董平,郭兆元,王強(qiáng),等.進(jìn)口溫度不均勻?qū)饫錅u輪葉片傳熱的影響[J].工程熱物理學(xué)報(bào),2010,31(7):1109-1112.
[5] TRET'YACHENKO G N.Investigation of the failure of gas turbine blades under the effect of thermal changes[J].Strength of Materials,1971,3(2):147-153.
[6] TRET'YACHENKO G N,TERLETSKII V A,KRAVCHUK L V,et al.Methods of modeling thermal and stressed states in the edges of gas turbine blades[J].Strength of Materials,1972,4(10):1196-1201.
[7] TRUSHECHKIN V P,KOLETNIKOV M E.Theoreticalexperimental study of the theral fatigue of gasturbine blades[J].Strength of Materials,1988,20(2):223-229.
[8] CHEPASKINA S M,TRUSHECHKIN V P,LOMAKOVSKII I V.Certain characteristic features of the thermostressed state of cooled turbine blades in different cooling regimes[J].Strength of Materials,1989,21(10):1365-1369.
[9 ] HYLTON L D,MILHEC M S,TURNER E R,et al.Analytical and experimental evaluation of the heat transfer distribution over the surface of turbine vanes[R].NASA-CR-168015,1983.
[10] 彭澤琰,?jiǎng)?桂幸民,等.航空燃?xì)廨啓C(jī)原理(上冊(cè))[M].北京:國(guó)防工業(yè)出版社,2000.
[11] 宋學(xué)官,蔡林,張華.ANSYS流固耦合分析與工程實(shí)例[M].北京:中國(guó)水利水電出版社,2011.