鄧?yán)^華+邵旭東+彭建新
摘要:針對(duì)混凝土斜拉橋等大跨柔性混凝土結(jié)構(gòu)同時(shí)存在的幾何非線性與收縮徐變問(wèn)題,基于微分法導(dǎo)出了隨轉(zhuǎn)坐標(biāo)系下平面梁在大轉(zhuǎn)動(dòng)小應(yīng)變時(shí)的幾何非線性平衡方程,該方程已計(jì)入初應(yīng)變效應(yīng).結(jié)合初應(yīng)變法計(jì)算混凝土梁收縮徐變等效節(jié)點(diǎn)力有限元列式,利用節(jié)點(diǎn)力之間和節(jié)點(diǎn)位移之間全量及增量的關(guān)系,獲得結(jié)構(gòu)坐標(biāo)系下平面梁?jiǎn)卧獛缀畏蔷€性分析中考慮收縮徐變效應(yīng)影響的實(shí)用算法,并給出了詳細(xì)的計(jì)算步驟.對(duì)某大跨徑混合梁斜拉橋混凝土橋塔進(jìn)行了考慮混凝土徐變效應(yīng)的幾何非線性分析,計(jì)算結(jié)果表明本文提出的算法能較好解決上述問(wèn)題,具有一定的工程應(yīng)用價(jià)值.
關(guān)鍵詞:混凝土平面梁;幾何非線性;收縮徐變;微分法;實(shí)用算法
中圖分類(lèi)號(hào):TU323 文獻(xiàn)標(biāo)識(shí)碼:A
Abstract:As there are geometrical nonlinearity and concrete shrinkage and creep in longspan flexible structures such as concrete cablestayed bridges, so, based on differential method, the geometrical nonlinearity balance equation for large rotation displacement small strain analysis was deduced under corotational coordinate system, which considered the initial strain. Combining with finite element formula for equivalent nodal force of shrinkage and creep by using initial strain method, then, through building total and incremental relationships derived from differential equations of nodal displacements and forces, a practical algorithm for geometrical nonlinearity analysis of the plane beam considering concrete shrinkage and creep under global coordinate was obtained, and its calculation flowchart was also given. The geometrical nonlinearity analysis of the tower of longspan concrete cablestayed bridge with hybrid girder considering concrete creep was performed. The results demonstrate that the algorithm developed can solve the above mentioned problems and has some engineering application value.
Key words:concrete plane beam;geometrical nonlinearity;creep and shrinkage;differential method;practical algorithm
隨著結(jié)構(gòu)計(jì)算理論、高強(qiáng)材料及施工裝備的快速發(fā)展,混凝土斜拉橋等大跨柔性混凝土結(jié)構(gòu)在跨度和高度上的記錄不斷被刷新,目前國(guó)內(nèi)已建成的蘇通長(zhǎng)江大橋主跨為1 088 m(主梁為鋼結(jié)構(gòu)),塔高達(dá)300 m(塔為混凝土結(jié)構(gòu)).分析此類(lèi)既有混凝土構(gòu)件又比較柔性的結(jié)構(gòu),同時(shí)考慮幾何非線性和收縮徐變是很有必要的\[1-2\],目前對(duì)幾何非線性平面梁?jiǎn)卧堰M(jìn)行了大量研究\[3-5\],理論已經(jīng)很成熟,對(duì)混凝土結(jié)構(gòu)的收縮徐變效應(yīng)分析也有很多研究成果\[6-8\],但對(duì)混凝土柔性結(jié)構(gòu)同時(shí)考慮幾何非線性和收縮徐變效應(yīng)的研究文獻(xiàn)非常少,筆者僅找到兩篇文獻(xiàn)\[9-10\],文獻(xiàn)\[9\]介紹了幾何非線性結(jié)構(gòu)進(jìn)行徐變效應(yīng)分析的原理和方法,提供了按施工階段進(jìn)行幾何非線性結(jié)構(gòu)徐變分析的增量形式和分析步驟.但該文采用按齡期調(diào)整的有效彈性模量法來(lái)求解結(jié)構(gòu)的徐變問(wèn)題,由于該方法既要形成結(jié)構(gòu)的彈性剛度矩陣,又要形成徐變剛度矩陣,在每一迭代步內(nèi)結(jié)構(gòu)的平衡方程還要求解兩次,這在計(jì)算量本來(lái)就很大的非線性計(jì)算中是很不合適的.同時(shí)該文算法是基于增量平衡,在進(jìn)行下一個(gè)增量步(施工階段)等效荷載列陣計(jì)算時(shí)未考慮上一個(gè)增量步(施工階段)的殘余力,更沒(méi)考慮由于徐變變形而導(dǎo)致上一個(gè)增量步(施工階段)已經(jīng)平衡的構(gòu)形被打破在下一個(gè)增量步(施工階段)會(huì)產(chǎn)生新的不平衡力,因此隨著施工階段數(shù)的增多誤差會(huì)越來(lái)越大.文獻(xiàn)\[10\]從虛功增量方程出發(fā),建立了桿系結(jié)構(gòu)的非線性與混凝土收縮徐變效應(yīng)耦合分析的有限元方法.該文采用初應(yīng)變法來(lái)計(jì)算分階段施工混凝土結(jié)構(gòu)的徐變、基于全量平衡且考慮了由于徐變變形而導(dǎo)致上一個(gè)增量步(施工階段)已經(jīng)平衡的構(gòu)形被打破在下一個(gè)增量步(施工階段)會(huì)產(chǎn)生新的不平衡力問(wèn)題.因此,從理論上講,相對(duì)于文獻(xiàn)\[9\]的算法而言,文獻(xiàn)\[10\]的算法無(wú)論在非線性計(jì)算效率還是精度方面均有提高.但仔細(xì)研究也會(huì)發(fā)現(xiàn)該文存在以下問(wèn)題,該文建立的非線性平衡方程本質(zhì)上是基于U.L列式的增量平衡方程,即計(jì)算單元切線剛度矩陣是基于每一迭代步的增量.但為了考慮由于徐變變形而導(dǎo)致的平衡構(gòu)形被打破及提高計(jì)算精度對(duì)不平衡力計(jì)算又采用全量方法,顯然兩者不一致會(huì)導(dǎo)致各種狀態(tài)變量數(shù)增加從而使計(jì)算量增加的缺點(diǎn).且該文是從張量分析出發(fā),推導(dǎo)過(guò)程也較復(fù)雜,較難為工程技術(shù)人員理解和應(yīng)用.鑒于此,本文在參考上述已有文獻(xiàn)的基礎(chǔ)上,首先基于微分法導(dǎo)出了隨轉(zhuǎn)坐標(biāo)系下平面梁在大轉(zhuǎn)動(dòng)小應(yīng)變時(shí)計(jì)入初應(yīng)變效應(yīng)的幾何非線性平衡方程,結(jié)合用初應(yīng)變法進(jìn)行節(jié)段施工混凝土梁計(jì)算中收縮徐變等效節(jié)點(diǎn)力計(jì)算的有限元列式,再利用隨轉(zhuǎn)坐標(biāo)系與結(jié)構(gòu)坐標(biāo)系下節(jié)點(diǎn)力之間和節(jié)點(diǎn)位移之間全量及增量的關(guān)系,最終獲得結(jié)構(gòu)坐標(biāo)系下平面梁?jiǎn)卧獛缀畏蔷€性分析中考慮收縮徐變效應(yīng)影響的實(shí)用算法,給出了詳細(xì)的計(jì)算步驟,最后對(duì)文獻(xiàn)\[10\]的算例1進(jìn)行了比較分析.
4同時(shí)考慮幾何非線性與收縮徐變的計(jì)算
步驟
從前面的整個(gè)推導(dǎo)過(guò)程及幾何非線性、收縮徐變效應(yīng)單獨(dú)分析時(shí)的計(jì)算步驟,可知同時(shí)考慮幾何非線性和收縮徐變效應(yīng)時(shí)的基本計(jì)算原理為:將不平衡力(由總外荷載減去節(jié)點(diǎn)位移產(chǎn)生的結(jié)構(gòu)總抗力及收縮徐變等效節(jié)點(diǎn)力總量得到)作用下經(jīng)過(guò)幾何非線性分析得到的變形作為每一工況初始瞬時(shí)彈性變形,徐變變形與之成線性關(guān)系,將上一階段的收縮徐變變形作為下一階段的初應(yīng)變,計(jì)算得到的等效節(jié)點(diǎn)力增量總是作用在單元隨轉(zhuǎn)坐標(biāo)系中,因此在各階段的累加計(jì)算過(guò)程中無(wú)須考慮坐標(biāo)系的轉(zhuǎn)換,可直接累加形成收縮徐變等效節(jié)點(diǎn)力總量,將收縮徐變等效節(jié)點(diǎn)力總量由結(jié)構(gòu)當(dāng)前構(gòu)形下的隨轉(zhuǎn)坐標(biāo)轉(zhuǎn)換到結(jié)構(gòu)坐標(biāo)系下就可參與不平衡力的計(jì)算.
6結(jié)論
1)基于隨轉(zhuǎn)坐標(biāo)系有關(guān)理論及收縮徐變分析的初應(yīng)變法建立了同時(shí)考慮幾何非線性和收縮徐變效應(yīng)的非線性平衡方程,為混凝土斜拉橋等大跨柔性混凝土結(jié)構(gòu)分析打下了理論基礎(chǔ).
2)本文算法采用外荷載、由于節(jié)點(diǎn)位移而產(chǎn)生的結(jié)構(gòu)抗力、混凝土收縮徐變產(chǎn)生的等效節(jié)點(diǎn)力的全量來(lái)計(jì)算節(jié)點(diǎn)不平衡力,故能有效消除時(shí)步間誤差累積的問(wèn)題.
3)算例表明,對(duì)于既有混凝土構(gòu)件又比較柔性的結(jié)構(gòu)進(jìn)行幾何非線性和收縮徐變效應(yīng)藕合分析是很有必要的,只考慮幾何非線性或考慮線性和徐變共同作用的計(jì)算結(jié)果與之差別很大.
4)按本文算法,可以方便地對(duì)現(xiàn)有平面桿系程序進(jìn)行改造,使之具有同時(shí)考慮幾何非線性和收縮徐變效應(yīng)的計(jì)算功能,使工程技術(shù)人員能更好地理解大跨柔性混凝土結(jié)構(gòu)的受力行為.
5)由于同時(shí)考慮幾何非線性與收縮徐變效應(yīng)共同作用的理論研究及結(jié)構(gòu)試驗(yàn)極少,而工程實(shí)際的發(fā)展已經(jīng)要求開(kāi)展這方面的理論研究及試驗(yàn)驗(yàn)證.
參考文獻(xiàn)
[1]MARU S,ASFAW M,SHARMA R K,et al. Effect of creep and shrinkage on RC frames with high beam stiffness\[J\].Journal of Structural Engineeirng, ASCE, 2003, 129(4):536-543.
[2]EDWARDS N P,BILLINGTON D P. FE analysis of tucker high school roof using nonlinear geometry and creep\[J\]. Journal of Structural Engineeirng,ASCE,1998, 124(9): 984-990.
[3]蔡松柏,沈蒲生.大轉(zhuǎn)動(dòng)平面梁有限元分析的共旋坐標(biāo)法\[J\].工程力學(xué),2006,23(增I): 69-72.
CAI Songbai, SHEN Pusheng. Corotational procedure for finite element analysis of plane beam element of large rotational displacement\[J\]. Engineering Mechanics, 2006, 23(z1): 69-72. (In Chinese)
[4]呂和祥, 朱菊芬, 馬莉穎. 大轉(zhuǎn)動(dòng)梁的幾何非線性分析討論\[J\]. 計(jì)算結(jié)構(gòu)力學(xué)及其應(yīng)用, 1995,12(4):485-490.
LV Hexiang, ZHU Jufen, MA Liying. Discussion of analyzing of geometric nonlinear beams with large rotations\[J\]. Chinese Journal of Computational Mechanics, 1995, 12(4): 485-490. (In Chinese)
[5]鄧?yán)^華,邵旭東. 基于U.L列式的帶剛臂平面梁元非線性分析\[J\]. 湖南大學(xué)學(xué)報(bào):自然科學(xué)版, 2012,39(5):8-12.
DENG Jihua, SHAO Xudong. Nonlinear analysis of plane beam element with rigid arms based on U.L formulation\[J\]. Journal of Hunan University: Natural Sciences, 2012,39(5): 8-12. (In Chinese)
[6]TAYLOR R L,PISTER K S,GOUDREAU G L.Thermomechanical analysis of viscoeoelastic solids\[J\].Num Meth Eng ,1970(2):45-60.
[7]方志,黃立葵,周樂(lè)農(nóng).砼結(jié)構(gòu)徐變的灰色系統(tǒng)預(yù)測(cè)\[J\].湖南大學(xué)學(xué)報(bào):自然科學(xué)版,1994,21(4):96-102.
FANG Zhi, HUANG Likui,ZHOU Lelong. Creep deformation prediction of concrete structure with grey system models\[J\]. Journal of Hunan University:Natural Sciences, 1994,21(4):96-102. (In Chinese)
參考文獻(xiàn)
[8]金成棣.混凝土徐變對(duì)超靜定結(jié)構(gòu)變形及內(nèi)力的影響——考慮分段加載齡期差異及延遲彈性影響\[J\].土木工程學(xué)報(bào),1981,14(3):19-32.
JIN Chengdi. Analysis of deformation and stress redistribution of continuous structure due to creep of concrete—taking account of loading at different age and delayed elasticity of concrete\[J\].China Civil Engineering Journal, 1981,14(3):19-32. (In Chinese)
[9]占玉林,向天宇,趙人達(dá). 幾何非線性結(jié)構(gòu)的徐變效應(yīng)分析\[J\]. 工程力學(xué),2006,23(7):45-48.
ZHAN Yulin,XIANG Tianyu,ZHAO Renda. Creep effect analysis of geometric nonlinear structures\[J\]. Engineering Mechanics, 2006, 23(7): 45-48. (In Chinese)
[10]陳常松,顏東煌,李學(xué)文. 混凝土收縮徐變分析的虛功增量方程及應(yīng)用\[J\]. 工程力學(xué),2010,27(10):139-144.
CHEN Changsong,YAN Donghuang,LI Xuewen.The incremental virtual work equation for concrete shrinkage and creep analysis and its applications\[J\]. Engineering Mechanics,2010,27(10): 139-144. (In Chinese)
[11]CRISFIELD M A. Nonlinear finite element analysis of solids and structures\[M\].Chichester: John Wiley & Sons Inc, 1997:26-45.
[12]李學(xué)文,姚康寧,顏東煌. 利用最小二乘法實(shí)現(xiàn)2004規(guī)范徐變系數(shù)的指數(shù)函數(shù)擬合\[J\]. 長(zhǎng)沙交通學(xué)院學(xué)報(bào),2006,22(3):21-24.
LI Xuewen,YAO Kangning,YAN Donghuang. Using least square method fitting the creep coefficient functions of concrete listed in the bridge criterion (JTG D62—2004) with exponential function model\[J\]. Journal of Changsha Communications University, 2006,22(3):21-24. (In Chinese)
[13]姚康寧.大跨度混凝土斜拉橋運(yùn)營(yíng)階段混凝土收縮徐變影響研究\[D\]. 長(zhǎng)沙: 長(zhǎng)沙理工大學(xué)土木與建筑學(xué)院, 2006:37-49.
YAO Kangning. The shrinkage and creep analysis of longspan concrete cablestayed bridges during operations\[D\]. Changsha: School of Civil Engineering and Architecture,Changsha University of Science and Technology, 2006: 37-49. (In Chinese)
[14]顏東煌,田仲初,李學(xué)文,等. 混凝土橋梁收縮徐變計(jì)算的有限元方法與應(yīng)用\[J\].中國(guó)公路學(xué)報(bào),2004,17(2):55-58.
YAN Donghuang,TIAN Zhongchu,LI Xuewen,et al. Finite element method and application for the shrinkage and creep of concrete bridge\[J\].China Journal of Highway and Transport, 2004,17(2):55-58. (In Chinese)
[15]蔡松柏,沈蒲生,胡柏學(xué),等. 基于場(chǎng)一致性的2D四邊形單元的共旋坐標(biāo)法\[J\].工程力學(xué),2009,26(12):31-34.
[9]占玉林,向天宇,趙人達(dá). 幾何非線性結(jié)構(gòu)的徐變效應(yīng)分析\[J\]. 工程力學(xué),2006,23(7):45-48.
ZHAN Yulin,XIANG Tianyu,ZHAO Renda. Creep effect analysis of geometric nonlinear structures\[J\]. Engineering Mechanics, 2006, 23(7): 45-48. (In Chinese)
[10]陳常松,顏東煌,李學(xué)文. 混凝土收縮徐變分析的虛功增量方程及應(yīng)用\[J\]. 工程力學(xué),2010,27(10):139-144.
CHEN Changsong,YAN Donghuang,LI Xuewen.The incremental virtual work equation for concrete shrinkage and creep analysis and its applications\[J\]. Engineering Mechanics,2010,27(10): 139-144. (In Chinese)
[11]CRISFIELD M A. Nonlinear finite element analysis of solids and structures\[M\].Chichester: John Wiley & Sons Inc, 1997:26-45.
[12]李學(xué)文,姚康寧,顏東煌. 利用最小二乘法實(shí)現(xiàn)2004規(guī)范徐變系數(shù)的指數(shù)函數(shù)擬合\[J\]. 長(zhǎng)沙交通學(xué)院學(xué)報(bào),2006,22(3):21-24.
LI Xuewen,YAO Kangning,YAN Donghuang. Using least square method fitting the creep coefficient functions of concrete listed in the bridge criterion (JTG D62—2004) with exponential function model\[J\]. Journal of Changsha Communications University, 2006,22(3):21-24. (In Chinese)
[13]姚康寧.大跨度混凝土斜拉橋運(yùn)營(yíng)階段混凝土收縮徐變影響研究\[D\]. 長(zhǎng)沙: 長(zhǎng)沙理工大學(xué)土木與建筑學(xué)院, 2006:37-49.
YAO Kangning. The shrinkage and creep analysis of longspan concrete cablestayed bridges during operations\[D\]. Changsha: School of Civil Engineering and Architecture,Changsha University of Science and Technology, 2006: 37-49. (In Chinese)
[14]顏東煌,田仲初,李學(xué)文,等. 混凝土橋梁收縮徐變計(jì)算的有限元方法與應(yīng)用\[J\].中國(guó)公路學(xué)報(bào),2004,17(2):55-58.
YAN Donghuang,TIAN Zhongchu,LI Xuewen,et al. Finite element method and application for the shrinkage and creep of concrete bridge\[J\].China Journal of Highway and Transport, 2004,17(2):55-58. (In Chinese)
[15]蔡松柏,沈蒲生,胡柏學(xué),等. 基于場(chǎng)一致性的2D四邊形單元的共旋坐標(biāo)法\[J\].工程力學(xué),2009,26(12):31-34.
[9]占玉林,向天宇,趙人達(dá). 幾何非線性結(jié)構(gòu)的徐變效應(yīng)分析\[J\]. 工程力學(xué),2006,23(7):45-48.
ZHAN Yulin,XIANG Tianyu,ZHAO Renda. Creep effect analysis of geometric nonlinear structures\[J\]. Engineering Mechanics, 2006, 23(7): 45-48. (In Chinese)
[10]陳常松,顏東煌,李學(xué)文. 混凝土收縮徐變分析的虛功增量方程及應(yīng)用\[J\]. 工程力學(xué),2010,27(10):139-144.
CHEN Changsong,YAN Donghuang,LI Xuewen.The incremental virtual work equation for concrete shrinkage and creep analysis and its applications\[J\]. Engineering Mechanics,2010,27(10): 139-144. (In Chinese)
[11]CRISFIELD M A. Nonlinear finite element analysis of solids and structures\[M\].Chichester: John Wiley & Sons Inc, 1997:26-45.
[12]李學(xué)文,姚康寧,顏東煌. 利用最小二乘法實(shí)現(xiàn)2004規(guī)范徐變系數(shù)的指數(shù)函數(shù)擬合\[J\]. 長(zhǎng)沙交通學(xué)院學(xué)報(bào),2006,22(3):21-24.
LI Xuewen,YAO Kangning,YAN Donghuang. Using least square method fitting the creep coefficient functions of concrete listed in the bridge criterion (JTG D62—2004) with exponential function model\[J\]. Journal of Changsha Communications University, 2006,22(3):21-24. (In Chinese)
[13]姚康寧.大跨度混凝土斜拉橋運(yùn)營(yíng)階段混凝土收縮徐變影響研究\[D\]. 長(zhǎng)沙: 長(zhǎng)沙理工大學(xué)土木與建筑學(xué)院, 2006:37-49.
YAO Kangning. The shrinkage and creep analysis of longspan concrete cablestayed bridges during operations\[D\]. Changsha: School of Civil Engineering and Architecture,Changsha University of Science and Technology, 2006: 37-49. (In Chinese)
[14]顏東煌,田仲初,李學(xué)文,等. 混凝土橋梁收縮徐變計(jì)算的有限元方法與應(yīng)用\[J\].中國(guó)公路學(xué)報(bào),2004,17(2):55-58.
YAN Donghuang,TIAN Zhongchu,LI Xuewen,et al. Finite element method and application for the shrinkage and creep of concrete bridge\[J\].China Journal of Highway and Transport, 2004,17(2):55-58. (In Chinese)
[15]蔡松柏,沈蒲生,胡柏學(xué),等. 基于場(chǎng)一致性的2D四邊形單元的共旋坐標(biāo)法\[J\].工程力學(xué),2009,26(12):31-34.