張榮偉++劉文靜++張珣
[摘要] 目的 探討維生素D對(duì)老齡小鼠術(shù)后認(rèn)知功能的影響及作用機(jī)制。 方法 將老齡C57BL/6小鼠(18~20月齡)隨機(jī)分為對(duì)照組、手術(shù)組和維生素D治療組。對(duì)照組不做特殊處理,手術(shù)組在麻醉下行脾部分切除術(shù),維生素D治療組為術(shù)前3 d開始每天腹腔注射維生素D。T迷宮實(shí)驗(yàn)檢測(cè)實(shí)驗(yàn)小鼠的學(xué)習(xí)和記憶能力;HE染色光鏡及透射電鏡觀察實(shí)驗(yàn)小鼠海馬組織結(jié)構(gòu)病理改變;術(shù)后第3天處死實(shí)驗(yàn)小鼠,迅速獲取海馬組織,利用實(shí)時(shí)定量聚合酶鏈反應(yīng)(real time-PCR)檢測(cè)海馬組織Th17細(xì)胞亞群特異性細(xì)胞因子及其分化相關(guān)的細(xì)胞因子白細(xì)胞介素(IL)-17、IL-6、轉(zhuǎn)化生長因子-β(TGF-β)的mRNA表達(dá);利用酶聯(lián)免疫吸附測(cè)定(ELISA)檢測(cè)海馬組織IL-17、IL-6、TGF-β的蛋白表達(dá)。 結(jié)果 與對(duì)照組比較,手術(shù)組小鼠認(rèn)知功能于術(shù)后3 d明顯下降(P < 0.05);維生素D治療組小鼠認(rèn)知功能改變同手術(shù)組比較差異有統(tǒng)計(jì)學(xué)意義(P < 0.05)。術(shù)后3 d光鏡下維生素D治療組小鼠海馬組織炎癥細(xì)胞浸潤較手術(shù)組明顯減輕;透射電鏡下手術(shù)組可見海馬神經(jīng)元胞質(zhì)內(nèi)空泡形成明顯,部分出現(xiàn)裸核,線粒體腫脹,峭大部分消失,基質(zhì)呈空泡狀;突觸間隙增寬,電子密度降低,維生素D治療組海馬組織的超微結(jié)構(gòu)改變明顯減輕。術(shù)后3 d手術(shù)組小鼠海馬組織IL-17、IL-6、TGF-β的mRNA和蛋白表達(dá)增加,與對(duì)照組比較差異均有高度統(tǒng)計(jì)學(xué)意義(均P < 0.01);維生素D治療可明顯抑制術(shù)后海馬組織IL-17、IL-6、TGF-β的表達(dá)(P < 0.01)。 結(jié)論 維生素D可通過調(diào)控Th17細(xì)胞亞群的分化而改善老齡小鼠的術(shù)后認(rèn)知功能。
[關(guān)鍵詞] 維生素D;老齡;認(rèn)知;Th17
[中圖分類號(hào)] R657.62 [文獻(xiàn)標(biāo)識(shí)碼] A [文章編號(hào)] 1673-7210(2014)11(a)-0010-05
Influence and mechanism of Vitamin D against postoperative cognitive function in old partial splenectomy mice
ZHANG Rongwei LIU Wenjing ZHANG Xun
Department of Gerontology and Neurology, the First Affiliated Hospital of China Medical University, Liaoning Province, Shenyang 110001, China
[Abstract] Objective To investigate the efficacy and mechanism of Vitamin D against postoperative cognitive dysfunction (POCD) in old mice. Methods C57BL/6 (18-20 months old) female mice were randomly divided into control group, surgery group and Vitamin D group. Control group received no intervention. The surgery group underwent partial splenectomy under general anesthesia. The Vitamin D group was treated with administration of Vitamin D, qd, injection started at day 3 before operation. T maze was used to test the cognition of mice; the cellular ultrastructure of the hippocampus was observed through light microscope and transmission electronic microscope. Mice were sacrificed on postoperative day 3 after spatial working tests. Hippocampus tissues of mice in each group were quickly dissected and were assayed for Th17 cell subsets related cytokine mRNA of IL-17, IL-6, TGF-β by real time-PCR; the protein expression of IL-17, IL-6, TGF-β from hippocampus were detected by ELISA. Results The surgery group induced a significant cognitive impairment on day 3 after operation compared with control group (P < 0.05). The cognitive function of Vitamin D showed significant difference to those in the surgery group (P < 0.05). Compared with surgery group, the Vitamin D group showed mild inflammatory cells infiltration in hippocampus at day 3 after surgery by light microscope. Conspicuous intracytoplasmic vacuole formation was present in neurons and astrocytes of surgery mice and obvious chromosome aberrations, dilatate, widened synaptic as well as disappeared mitoehondriales crista were also observed in the surgery mice' hippocampus by TEM, conversely Vitamin D treated mice developed mild injury of hippocampus ultrastructure. At day 3 after surgery, the mRNA or protein expression of IL-17, IL-6, TGF-β from hippocampus tissues showed increase in surgery mice, and there were statistical differences compared with the control group (P < 0.01). Vitamin D treatment inhibited a prominent expression of IL-17, IL-6, TGF-β in hippocampus tissues at 3 days after surgery (P < 0.01). Conclusion Vitamin D can improve cognitive function by modulating Th17 cell differentiation after partial splenectomy in old mice.
[Key words] Vitamin D; Aged; Cognition; Th17
維生素D是人體所必需的營養(yǎng)素,也是一種激素前體,在體內(nèi)被轉(zhuǎn)化成1,25二羥維生素D[1,25(OH)2D3]而發(fā)揮作用。1,25二羥維生素D3的生物學(xué)效應(yīng)是由1,25二羥維生素D受體(VDR)介導(dǎo)的,VDR除對(duì)鈣、磷代謝有調(diào)節(jié)作用外,還具有多種重要的生物作用,如免疫調(diào)節(jié)、促進(jìn)細(xì)胞的增殖與分化、影響中樞神經(jīng)功能等。世界范圍內(nèi)維生素D不足和缺乏的發(fā)生較常見,與其相關(guān)的疾病由以往傳統(tǒng)的骨骼畸形、骨質(zhì)疏松等與骨相關(guān)的單一系統(tǒng)疾病延伸至腫瘤、自身免疫性疾病、炎癥性疾病、心血管疾病等多系統(tǒng)疾病。Duygu Oezen等[1]在VDR與阿爾茨海默病的關(guān)系一文中,證明了VDR多態(tài)性與后期阿爾茨海默病的發(fā)病具有關(guān)聯(lián)性。活性維生素D能夠減輕6-羥基多巴引起的大鼠中腦腹側(cè)多巴胺神經(jīng)元毒性損傷及運(yùn)動(dòng)減少[2]。另外,多巴胺神經(jīng)元受紋狀體神經(jīng)營養(yǎng)因子的支持[3],而維生素D能上調(diào)神經(jīng)營養(yǎng)因子的分泌,說明維生素D對(duì)多巴胺神經(jīng)元有保護(hù)作用,可預(yù)防神經(jīng)變性疾病。
術(shù)后認(rèn)知功能障礙(postoperative cognitive dysfunction,POCD)為術(shù)后中樞神經(jīng)系統(tǒng)并發(fā)癥,對(duì)大多數(shù)患者來說是可逆的,但仍有少數(shù)患者存在長期甚至永久的認(rèn)知功能障礙,會(huì)影響患者術(shù)后生活質(zhì)量,甚至發(fā)展為癡呆[4]。POCD的病理機(jī)制不清,炎癥機(jī)制是近年來研究的熱點(diǎn)。本文通過檢測(cè)維生素D對(duì)老齡小鼠術(shù)后海馬區(qū)Th17相關(guān)的炎癥細(xì)胞因子表達(dá)水平的影響,旨在探討維生素D對(duì)老齡小鼠術(shù)后認(rèn)知功能的影響機(jī)制。
1 材料與方法
1.1 實(shí)驗(yàn)動(dòng)物與分組
選擇健康18~20月齡的雌性C57BL/6小鼠,購自北京維通利華公司,許可證號(hào)為XC-XK(京)2012-0001。實(shí)驗(yàn)過程符合《中華人民共和國實(shí)驗(yàn)動(dòng)物管理?xiàng)l例》及倫理要求。將36只小鼠隨機(jī)分為三組(n = 12):對(duì)照組(C組)、手術(shù)組(S組)和維生素D治療組(D組)。C組小鼠不做特殊處理,S組小鼠在麻醉下行脾部分切除術(shù),D組小鼠手術(shù)同S組,同時(shí)自術(shù)前3 d開始腹腔注射1,25(OH)2D3(Sigma公司)50 ng/d,S組小鼠腹腔注射等量生理鹽水。
1.2 實(shí)驗(yàn)動(dòng)物認(rèn)知功能檢測(cè)
T迷宮是在T字型的迷宮里尋找食物以檢測(cè)動(dòng)物對(duì)食物的空間工作記憶情況。T迷宮兩臂長總長80 cm,開始臂長57 cm包括10 cm長的一個(gè)起始位置,高為10 cm,寬為10 cm。實(shí)驗(yàn)過程中,小鼠控制飲食,但可自由飲水。實(shí)驗(yàn)前2 d為適應(yīng)階段,每天撫摸小鼠5 min以消除緊張感。隨后使其在T迷宮中自由探究,至獲得目標(biāo)臂兩端食物獎(jiǎng)勵(lì)為止。術(shù)后第3天開始實(shí)驗(yàn),每只鼠訓(xùn)練5個(gè)實(shí)驗(yàn),每個(gè)實(shí)驗(yàn)包括一個(gè)預(yù)備實(shí)驗(yàn)和一個(gè)正式實(shí)驗(yàn)。預(yù)備實(shí)驗(yàn)中,將其中一臂關(guān)閉,允許小鼠進(jìn)臂獲取食物。取食結(jié)束,將小鼠放回起始區(qū),停留約10 s后,進(jìn)行正式實(shí)驗(yàn)測(cè)試。在正式實(shí)驗(yàn)中起始臂和目標(biāo)臂同時(shí)打開。若小鼠選擇未曾進(jìn)入的臂,為正確選擇,并獲得食物獎(jiǎng)勵(lì)。若小鼠重復(fù)進(jìn)入相同的臂,則為錯(cuò)誤選擇,不予獎(jiǎng)勵(lì)。實(shí)驗(yàn)之間間隔為10 min。延長預(yù)備實(shí)驗(yàn)和正式實(shí)驗(yàn)間的時(shí)間間隔至1、3 min進(jìn)行測(cè)試,以檢測(cè)小鼠的空間工作記憶能力。
1.3 形態(tài)學(xué)觀察
于術(shù)后第3天心臟灌注固定后處死動(dòng)物,各組動(dòng)物摘取雙側(cè)海馬,4%多聚甲醛及2.5%戊二醛固定后,常規(guī)方法制備石蠟及電鏡切片,進(jìn)行HE染色,分別進(jìn)行光鏡及電鏡觀察。
1.4 Real time PCR檢測(cè)細(xì)胞因子mRNA表達(dá)
采用Trizol法抽提各組海馬總RNA,將經(jīng)過稀釋后的RNA樣本進(jìn)行逆轉(zhuǎn)錄反應(yīng)。Real time PCR引物委托TaKaRa公司合成(表1),按照說明書用蒸餾水配成0.2 mol/L濃度,將制備好的cDNA進(jìn)行PCR擴(kuò)增。以標(biāo)準(zhǔn)品梯度的測(cè)量結(jié)果繪制標(biāo)準(zhǔn)曲線,以計(jì)算各樣品所測(cè)基因的含量,mRNA的量由特異性基因的mRNA和甘油醛-3-磷酸脫氫酶GAPDH(一種看家基因)mRNA的比值來表示。實(shí)驗(yàn)引物見表1。
1.5 酶聯(lián)免疫吸附測(cè)定(ELISA)檢測(cè)細(xì)胞因子蛋白表達(dá)
采用ELISA雙抗體夾心ABC法,加入酶標(biāo)板檢測(cè)。檢測(cè)程序按照試劑盒說明書進(jìn)行。洗板后加入TBM顯色,置反應(yīng)板于酶標(biāo)儀上讀取OD值,制備標(biāo)準(zhǔn)曲線,求出各組小鼠海馬IL-17、IL-6、TGF-β蛋白含量。
1.6 統(tǒng)計(jì)學(xué)方法
采用SPSS 15.0統(tǒng)計(jì)學(xué)軟件進(jìn)行分析,計(jì)量資料以均數(shù)±標(biāo)準(zhǔn)差(x±s)表示,采用兩獨(dú)立樣本t檢驗(yàn),以P < 0.05為差異有統(tǒng)計(jì)學(xué)意義。
2 結(jié)果
2.1 維生素D對(duì)手術(shù)小鼠認(rèn)知功能的影響(T maze)
分別檢測(cè)了10 s、90 s、3 min的延緩間隔,結(jié)果發(fā)現(xiàn)S組小鼠的正確率比C組小鼠低,而D組小鼠的正確率比S組小鼠高(均P < 0.05)(圖1),該實(shí)驗(yàn)表明維生素D治療小鼠的空間工作記憶能力得到了明顯改善。
C:對(duì)照組;S:手術(shù)組;D:維生素D治療組;與C組比較,*P < 0.05;與S組比較,#P < 0.05
圖1 各組實(shí)驗(yàn)動(dòng)物的空間記憶能力變化
2.2 維生素D對(duì)手術(shù)小鼠海馬形態(tài)學(xué)的影響
術(shù)后第3天光鏡下可見S組小鼠海馬區(qū)炎癥細(xì)胞浸潤明顯(圖2A),D組可明顯減輕手術(shù)小鼠的海馬區(qū)炎癥反應(yīng)(圖2B);透射電鏡下發(fā)現(xiàn)S組小鼠海馬神經(jīng)元及膠質(zhì)細(xì)胞核固縮、核內(nèi)染色質(zhì)邊集、線粒體腫脹及電子密度減低等(圖3A),D組可見神經(jīng)元及膠質(zhì)細(xì)胞形態(tài)較完整,線粒體腫脹減輕(圖3B)。
A:手術(shù)組;B:維生素D治療組
圖2 手術(shù)組與維生素D治療組海馬的形態(tài)學(xué)變化(HE染色,200×)
2.3 維生素D對(duì)手術(shù)小鼠海馬區(qū)細(xì)胞因子mRNA表達(dá)的影響
與C組比較,術(shù)后第3天S組小鼠海馬區(qū)細(xì)胞因子IL-17、IL-6及TGF-β mRNA表達(dá)增加,而D組可明顯降低IL-17、IL-6及TGF-β mRNA表達(dá)(P < 0.01)(圖4)。
C:對(duì)照組;S:手術(shù)組;D:維生素D治療組;與C組比較,**P < 0.01;與S組比較,##P < 0.01
圖4 各組實(shí)驗(yàn)動(dòng)物海馬區(qū)炎癥細(xì)胞因子mRNA表達(dá)變化
2.4 維生素D對(duì)手術(shù)小鼠海馬區(qū)細(xì)胞因子蛋白表達(dá)的影響
與對(duì)照組比較,術(shù)后第3天S組小鼠海馬區(qū)細(xì)胞因子IL-17、IL-6及TGF-β蛋白表達(dá)增加,而D組可明顯降低IL-17、IL-6及TGF-β蛋白表達(dá)(P < 0.01)(圖5)。
C:對(duì)照組,S:手術(shù)組,D:維生素D治療組;與C組比較,**P < 0.01;與S組比較,##P < 0.01
圖5 各組實(shí)驗(yàn)動(dòng)物海馬區(qū)炎癥細(xì)胞因子蛋白表達(dá)變化
3 討論
POCD是老年患者常見的術(shù)后并發(fā)癥之一,主要表現(xiàn)為認(rèn)知受損,包括學(xué)習(xí)記憶能力的下降、意識(shí)及信息處理障礙等中樞神經(jīng)系統(tǒng)功能障礙,嚴(yán)重的可出現(xiàn)癡呆[5-8]。有研究顯示25%~50%的住院患者在術(shù)后發(fā)生認(rèn)知功能的改變[7-8],同時(shí)將近40%在術(shù)后5年仍有認(rèn)知受損的表現(xiàn)[9]。
POCD確切的發(fā)病機(jī)制尚不明確,文獻(xiàn)報(bào)道手術(shù)可激活外周免疫系統(tǒng),導(dǎo)致炎性因子的釋放,破壞認(rèn)知功能[10]。也有文獻(xiàn)報(bào)道隨著年齡的增加,炎性因子IL-1β、IL-6和TNF-α表達(dá)也增加[11]。研究表明炎性因子的增加,特別在海馬區(qū)會(huì)導(dǎo)致LTP損傷,即海馬介導(dǎo)的認(rèn)知功能破壞[12]。
本實(shí)驗(yàn)探討了手術(shù)創(chuàng)傷對(duì)老年鼠海馬區(qū)Th17細(xì)胞亞群相關(guān)細(xì)胞因子表達(dá)的影響以及維生素D治療對(duì)老齡術(shù)后小鼠認(rèn)知功能的影響與機(jī)制。結(jié)果表明,手術(shù)創(chuàng)傷引起了老年鼠海馬區(qū)IL-17、IL-6和TGF-β表達(dá)的增加,手術(shù)組小鼠在給予維生素D治療后,小鼠的空間工作記憶能力明顯改善,同時(shí)伴海馬區(qū)IL-17、IL-6和TGF-β表達(dá)的下降。因此,本實(shí)驗(yàn)發(fā)現(xiàn)Th17細(xì)胞亞群相關(guān)細(xì)胞因子可能介導(dǎo)了實(shí)驗(yàn)鼠POCD,而維生素D可能通過抑制CD4+T細(xì)胞向具有致炎性的Th17細(xì)胞亞群的分化從而減少致炎細(xì)胞因子的表達(dá)。文獻(xiàn)提示IL-6和TGF-β共同作用會(huì)促使CD4+T細(xì)胞向Th17細(xì)胞亞群分化,而缺乏IL-6時(shí)則會(huì)向具有免疫抑制作用的Treg細(xì)胞亞群分化[13-14]。本研究發(fā)現(xiàn)維生素D治療可能通過抑制Th17細(xì)胞亞群分化的關(guān)鍵細(xì)胞因子IL-6、TGF-β而抑制手術(shù)小鼠CD4+T細(xì)胞向Th17細(xì)胞亞群的分化,從而改善手術(shù)小鼠的認(rèn)知功能。
維生素D缺乏與認(rèn)知功能障礙在老年人中普遍存在,近年來國外開始研究老年人維生素D缺乏與認(rèn)知功能障礙的關(guān)系,大部分研究提出了兩者存在相關(guān)關(guān)系的結(jié)論[15],更有研究提出兩者存在因果關(guān)系[16]。近幾年越來越多的研究集中在維生素D受體基因多態(tài)性與認(rèn)知功能的關(guān)系以及補(bǔ)充維生素D是否可以預(yù)防認(rèn)知功能下降這兩方面[17-18]。此外,文獻(xiàn)證實(shí)維生素D還可治療各種炎癥性疾病包括發(fā)生在中樞神經(jīng)系統(tǒng)的疾病,研究發(fā)現(xiàn)維生素D可通過調(diào)控Th17細(xì)胞的分化及IL-17的表達(dá)而治療多發(fā)性硬化及改善實(shí)驗(yàn)性變應(yīng)性腦脊髓炎病情[19-20]。Eva Losem等[21]證明活性維生素D和雌二醇的聯(lián)合使用可降低腦缺血所帶來的熱休克蛋白的表達(dá)。維生素D是通過與其受體結(jié)合而發(fā)揮神經(jīng)保護(hù)作用,VDR在中樞神經(jīng)系統(tǒng)神經(jīng)元及膠質(zhì)細(xì)胞的表達(dá)是維生素D的中樞作用的解剖學(xué)基礎(chǔ)[22-23]。
本研究結(jié)果豐富了維生素D的生物學(xué)作用,為其干預(yù)IL-17相關(guān)的炎癥性疾病提供了理論依據(jù)。
[參考文獻(xiàn)]
[1] Duygu Oezen-AK,Dursun E,Ertan T,et al. Association between vitamin D receptor gene polymorphism and Alzheimer's disease [J]. Tohoku J Exp Med,2007,212(3):275-282.
[2] Wang JY,Wu JN,Cherng TL,et al. Vitamin D3 attenuates 6-hydroxydopamine-jnduced neurotoxicity in rats [J]. Brain Res,2001,904(1):67-75.
[3] Mufson EJ,Kroin JS,Sendera TJ,et al. Distribution and,retrograde transport of trophic factors in the central nervous system:functional implications for the treatment of neurodegenerative diseases [J]. J Prog Nurdoic,1999,57(4):451-484.
[4] Bekker AY,Weeks EJ. Cognitive function after anaesthesia in the elderly [J]. Best Pratt Res Clin Anaestheyiol,2003, 17(2):259-272.
[5] Jeanine P,Wiener-Kronish MD. Miller's Anesthesia [M]. 7th. London:Churchill Livingstone,2009:89.
[6] Silbert B,Evered L,Scott DA. Cognitive decline in the elderly:Is anaesthesia implicated [J]. Best Practice & Research Clinical Anaesthesiology,2011,25(3):379-393.
[7] Newman S,Stygall J,Hirani S,et al. Postoperative cognitive dysfunction afternoncardiac surgery;a systematic review [J]. Anesthesiology,2007,106(3):572-590.
[8] Krenk L,Rasmussen LS,Kehlet H. New insights into the pathophysiology of postoperative cognitive dysfunction [J]. Acta anaesthesiologica Scandinavica,2010,54(8):951-956.
[9] Steinmetz J,Christensen KB,Lund T,et al. Long-term consequences of postoperative cognitive dysfunction [J]. Anesthesiology,2009,110(3):548-555.
[10] Asmussen LS. Postoperative cognitive dysfunction:incidence and prevention [J]. Best Pract Res Clin Anaesthesiol,2006,(20):315-330.
[11] Liu YH,Wang DX,Li H,et al. The effect of cardiopulmonary bypass on the number of cerebral microemboli and the incidence of cognitive function after artery bypass graft surgery [J]. Anesth Analg,2009,(109):1013-1022.
[12] Buchanan JB,Sparkman NL,Johnson RW. Cognitive and neuroinflammmatory consequence of mild repeated sreess are exacerbated in aged mice [J]. Psychoneuroendocrinology,2008,(33):755-765.
[13] Yang L,Anderson DE,Baecher-Allan C,et al. IL-21 and TGFbeta are required for differentiation of human T(H)17 cells [J]. Nature,2008,(454):350-352.
[14] Nurieva R,Yang XO,Martinez G,et al. Essential autocrine regulation by IL-21 in the generation of inflammatory T cells [J]. Nature,2007,(448):480-483.
[15] Menant J,Close JC,Delbare K,et al. Relationships between serum vitamin D levels,neuromuscular and neuropsychological function and falls in older man and women [J]. Osteoporos Int,2012,23(3):981-989.
[16] Annmeiler C,F(xiàn)antino B,Schott AM,et al. Vitamin D insufficiency and mild cognitive impairment:Cross-sectional association [J]. Eur J Neuro,2012,19(7):1023-1029.
[17] Van der Schaft J,Koek HL,Dijkstra E,et al. The association between Vitamin D and cognitive:A systematic review [J]. Ageing Res Rev,2013,12(4):1013-1023.
[18] Etgen T,Sander D,Bickel H,et al. Vitamin D deficiency,cognitive impairment and dementia:A systematic review and meta analysis [J]. Dement Geriatr Cogn Disord,2012,33(5):297-305.
[19] Manel N,Unutmaz D,Littman DR. The differentiation of human T(H)-17 cellsrequires transforming growth factor-beta and induction of the nuclear receptor RORgammat [J]. Nat Immunol,2008,(9):641-649.
[20] Zhou L,Lopes JE,Chong MM,et al. TGF-beta-induced Foxp3 inhibits T(H)17 cell differentiation by antagonizing RORgammat function [J]. Nature,2008,453:236-240.
[21] Eva Losem-H,Boris G,Axel S,et al. Bidmon:a combined treatment with 1α,25-djhydroxy-vitamin D3 and 17β-estradiol reduces the expression of heat shock proteim-32(HSP-32)following cerebral cortical ischemia [J]. Steroid Biochem Mol Biol,2004,(89-90):371-574.
[22] Zehnder D,Bland R,William MS,et al. Extrarenal expression of 25-hydroxy vitamin d(3)-1 alpha-hydroxylase [J]. J Clin Endocrinol Metab,2001,86(2):888-894.
[23] Burne T,McGrath JJ,Eyles DW,et al. Behavioural characterization of vitamin D receptor knockout mice [J]. Behavioural Brain Research,2005,57(2):299-308.
(收稿日期:2014-07-18 本文編輯:張瑜杰)
[7] Newman S,Stygall J,Hirani S,et al. Postoperative cognitive dysfunction afternoncardiac surgery;a systematic review [J]. Anesthesiology,2007,106(3):572-590.
[8] Krenk L,Rasmussen LS,Kehlet H. New insights into the pathophysiology of postoperative cognitive dysfunction [J]. Acta anaesthesiologica Scandinavica,2010,54(8):951-956.
[9] Steinmetz J,Christensen KB,Lund T,et al. Long-term consequences of postoperative cognitive dysfunction [J]. Anesthesiology,2009,110(3):548-555.
[10] Asmussen LS. Postoperative cognitive dysfunction:incidence and prevention [J]. Best Pract Res Clin Anaesthesiol,2006,(20):315-330.
[11] Liu YH,Wang DX,Li H,et al. The effect of cardiopulmonary bypass on the number of cerebral microemboli and the incidence of cognitive function after artery bypass graft surgery [J]. Anesth Analg,2009,(109):1013-1022.
[12] Buchanan JB,Sparkman NL,Johnson RW. Cognitive and neuroinflammmatory consequence of mild repeated sreess are exacerbated in aged mice [J]. Psychoneuroendocrinology,2008,(33):755-765.
[13] Yang L,Anderson DE,Baecher-Allan C,et al. IL-21 and TGFbeta are required for differentiation of human T(H)17 cells [J]. Nature,2008,(454):350-352.
[14] Nurieva R,Yang XO,Martinez G,et al. Essential autocrine regulation by IL-21 in the generation of inflammatory T cells [J]. Nature,2007,(448):480-483.
[15] Menant J,Close JC,Delbare K,et al. Relationships between serum vitamin D levels,neuromuscular and neuropsychological function and falls in older man and women [J]. Osteoporos Int,2012,23(3):981-989.
[16] Annmeiler C,F(xiàn)antino B,Schott AM,et al. Vitamin D insufficiency and mild cognitive impairment:Cross-sectional association [J]. Eur J Neuro,2012,19(7):1023-1029.
[17] Van der Schaft J,Koek HL,Dijkstra E,et al. The association between Vitamin D and cognitive:A systematic review [J]. Ageing Res Rev,2013,12(4):1013-1023.
[18] Etgen T,Sander D,Bickel H,et al. Vitamin D deficiency,cognitive impairment and dementia:A systematic review and meta analysis [J]. Dement Geriatr Cogn Disord,2012,33(5):297-305.
[19] Manel N,Unutmaz D,Littman DR. The differentiation of human T(H)-17 cellsrequires transforming growth factor-beta and induction of the nuclear receptor RORgammat [J]. Nat Immunol,2008,(9):641-649.
[20] Zhou L,Lopes JE,Chong MM,et al. TGF-beta-induced Foxp3 inhibits T(H)17 cell differentiation by antagonizing RORgammat function [J]. Nature,2008,453:236-240.
[21] Eva Losem-H,Boris G,Axel S,et al. Bidmon:a combined treatment with 1α,25-djhydroxy-vitamin D3 and 17β-estradiol reduces the expression of heat shock proteim-32(HSP-32)following cerebral cortical ischemia [J]. Steroid Biochem Mol Biol,2004,(89-90):371-574.
[22] Zehnder D,Bland R,William MS,et al. Extrarenal expression of 25-hydroxy vitamin d(3)-1 alpha-hydroxylase [J]. J Clin Endocrinol Metab,2001,86(2):888-894.
[23] Burne T,McGrath JJ,Eyles DW,et al. Behavioural characterization of vitamin D receptor knockout mice [J]. Behavioural Brain Research,2005,57(2):299-308.
(收稿日期:2014-07-18 本文編輯:張瑜杰)
[7] Newman S,Stygall J,Hirani S,et al. Postoperative cognitive dysfunction afternoncardiac surgery;a systematic review [J]. Anesthesiology,2007,106(3):572-590.
[8] Krenk L,Rasmussen LS,Kehlet H. New insights into the pathophysiology of postoperative cognitive dysfunction [J]. Acta anaesthesiologica Scandinavica,2010,54(8):951-956.
[9] Steinmetz J,Christensen KB,Lund T,et al. Long-term consequences of postoperative cognitive dysfunction [J]. Anesthesiology,2009,110(3):548-555.
[10] Asmussen LS. Postoperative cognitive dysfunction:incidence and prevention [J]. Best Pract Res Clin Anaesthesiol,2006,(20):315-330.
[11] Liu YH,Wang DX,Li H,et al. The effect of cardiopulmonary bypass on the number of cerebral microemboli and the incidence of cognitive function after artery bypass graft surgery [J]. Anesth Analg,2009,(109):1013-1022.
[12] Buchanan JB,Sparkman NL,Johnson RW. Cognitive and neuroinflammmatory consequence of mild repeated sreess are exacerbated in aged mice [J]. Psychoneuroendocrinology,2008,(33):755-765.
[13] Yang L,Anderson DE,Baecher-Allan C,et al. IL-21 and TGFbeta are required for differentiation of human T(H)17 cells [J]. Nature,2008,(454):350-352.
[14] Nurieva R,Yang XO,Martinez G,et al. Essential autocrine regulation by IL-21 in the generation of inflammatory T cells [J]. Nature,2007,(448):480-483.
[15] Menant J,Close JC,Delbare K,et al. Relationships between serum vitamin D levels,neuromuscular and neuropsychological function and falls in older man and women [J]. Osteoporos Int,2012,23(3):981-989.
[16] Annmeiler C,F(xiàn)antino B,Schott AM,et al. Vitamin D insufficiency and mild cognitive impairment:Cross-sectional association [J]. Eur J Neuro,2012,19(7):1023-1029.
[17] Van der Schaft J,Koek HL,Dijkstra E,et al. The association between Vitamin D and cognitive:A systematic review [J]. Ageing Res Rev,2013,12(4):1013-1023.
[18] Etgen T,Sander D,Bickel H,et al. Vitamin D deficiency,cognitive impairment and dementia:A systematic review and meta analysis [J]. Dement Geriatr Cogn Disord,2012,33(5):297-305.
[19] Manel N,Unutmaz D,Littman DR. The differentiation of human T(H)-17 cellsrequires transforming growth factor-beta and induction of the nuclear receptor RORgammat [J]. Nat Immunol,2008,(9):641-649.
[20] Zhou L,Lopes JE,Chong MM,et al. TGF-beta-induced Foxp3 inhibits T(H)17 cell differentiation by antagonizing RORgammat function [J]. Nature,2008,453:236-240.
[21] Eva Losem-H,Boris G,Axel S,et al. Bidmon:a combined treatment with 1α,25-djhydroxy-vitamin D3 and 17β-estradiol reduces the expression of heat shock proteim-32(HSP-32)following cerebral cortical ischemia [J]. Steroid Biochem Mol Biol,2004,(89-90):371-574.
[22] Zehnder D,Bland R,William MS,et al. Extrarenal expression of 25-hydroxy vitamin d(3)-1 alpha-hydroxylase [J]. J Clin Endocrinol Metab,2001,86(2):888-894.
[23] Burne T,McGrath JJ,Eyles DW,et al. Behavioural characterization of vitamin D receptor knockout mice [J]. Behavioural Brain Research,2005,57(2):299-308.
(收稿日期:2014-07-18 本文編輯:張瑜杰)