鄒海明,呂錫武,顧 倩
(1.東南大學(xué) 能源與環(huán)境學(xué)院,江蘇 南京 210096;2.安徽科技學(xué)院 資環(huán)系,安徽 鳳陽(yáng) 233100)
氮、磷元素是引起水體富營(yíng)養(yǎng)化的兩個(gè)重要因子,眾多國(guó)家對(duì)其排放濃度都有著嚴(yán)格限制.我國(guó)國(guó)家環(huán)境保護(hù)部要求城鎮(zhèn)污水處理廠出水排入重點(diǎn)流域及湖泊、水庫(kù)等封閉、半封閉水域時(shí),執(zhí)行《城鎮(zhèn)污水處理廠污染物排放標(biāo)準(zhǔn)》(GB 18918-2002)的一級(jí)A 標(biāo)準(zhǔn).隨著氮、磷排放標(biāo)準(zhǔn)的提高,在新建污水處理廠或舊工藝升級(jí)改造過(guò)程中,高效率低能耗的生物脫氮除磷技術(shù)應(yīng)用尤為重要.
目前,生物強(qiáng)化除磷工藝(enhanced biological phosphorus removal,EBPR)因其效率高、成本低和環(huán)境友好而備受學(xué)者關(guān)注.該工藝中主要的功能微生物是聚磷菌(Accumulibacter),其主要特點(diǎn)是:在厭氧條件下細(xì)胞內(nèi)聚磷水解產(chǎn)生能量(adenosine triphosphate,ATP)和還原型輔酶NADH,用于揮發(fā)性脂肪酸(volatile fatty acid,VFA)的吸收并儲(chǔ)存為聚-β-羥丁酸(poly-β-h(huán)ydroxybutyrate,PHB);然后在好氧條件下以PHB 為電子供體,以氧為電子受體進(jìn)行過(guò)量吸磷,從而以剩余污泥排放的形式去除污水中的磷[1].隨著學(xué)者對(duì)聚磷菌的深入研究[2-3],發(fā)現(xiàn)存在著一種聚磷菌可以在缺氧條件下以硝酸鹽為電子受體進(jìn)行同步反硝化脫氮除磷,稱(chēng)為反硝化聚磷菌.反硝化聚磷菌相比于好氧聚磷菌可節(jié)省曝氣量30%,減少污泥產(chǎn)生量50%,降低碳源需求量50%,特別適合低C/N 比生活污水的處理[4].無(wú)論是好氧聚磷菌還是反硝化聚磷菌在富集過(guò)程中都極易受到具有類(lèi)似代謝類(lèi)型但不具備釋磷和吸磷功能的聚糖菌競(jìng)爭(zhēng),而pH,DO,碳源和溫度等因素[5-7]將影響著聚磷菌和聚糖菌的富集環(huán)境[8].在這些影響因素中,溫度是聚磷菌和聚糖菌富集的主要影響因素[9].Winkler等人[10]研究發(fā)現(xiàn)當(dāng)溫度從20 ℃上升到30 ℃時(shí),磷去除率從79%降至32%;當(dāng)溫度由20 ℃上升到35 ℃時(shí)類(lèi)似的結(jié)果同樣被發(fā)現(xiàn)[6];亢涵等人[11]在溫度為15 ℃的情況下成功富集到大量的聚磷菌而淘汰了聚糖菌.在已有的溫度研究范圍內(nèi)(15 ℃~40 ℃)溫度越低越有利于聚磷菌的生長(zhǎng)繁殖,然而關(guān)于低溫下(<15 ℃)富集聚磷菌的文獻(xiàn)尚未見(jiàn)報(bào)道.研究低溫環(huán)境下聚磷菌的富集馴化狀況,對(duì)EBPR 系統(tǒng)應(yīng)用于實(shí)踐有著重要的指導(dǎo)意義(尤其是冬季).
為此,本課題在低溫(冬季室溫為8~11 ℃時(shí))情況下開(kāi)展好氧聚磷菌和反硝化聚磷菌的富集馴化,探究一種可以實(shí)現(xiàn)低溫啟動(dòng)運(yùn)行EBPR 系統(tǒng)的策略;通過(guò)進(jìn)出水工藝參數(shù)化學(xué)分析,考察系統(tǒng)啟動(dòng)運(yùn)行狀況;通過(guò)不同環(huán)境下的批次試驗(yàn),考察聚磷菌吸磷和釋磷特征;利用FISH 分子生物學(xué)分析手段,考察反應(yīng)器啟動(dòng)前后活性污泥中聚磷菌數(shù)量的動(dòng)態(tài)變化.結(jié)合本試驗(yàn)化學(xué)分析和微生物分析結(jié)果,以期為低溫環(huán)境下啟動(dòng)運(yùn)行EBPR 系統(tǒng)提供參考,同時(shí)為EBPR 技術(shù)應(yīng)用于實(shí)踐中提供借鑒.
試驗(yàn)裝置為有機(jī)玻璃材質(zhì)(內(nèi)徑15cm,總高度33cm,有效容積3.3L),見(jiàn)圖1.整個(gè)裝置通過(guò)電子控制器(上海天那電器有限公司)控制進(jìn)水、出水、攪拌和曝氣,其運(yùn)行周期為8h(進(jìn)水0.5h,厭氧2 h,缺氧或好氧4h,沉淀1h和排水0.5h).厭氧段控制溶解氧DO(dissolved oxygen)為0.1mg/L以下,好氧段控制DO 為2.0mg/L 以上,缺氧段控制氧化還原電位ORP(oxidation-reduction potential)為-100~-40mV,溫度為8~11 ℃(室溫),控制pH 7.0±0.5.由于本試驗(yàn)是在低溫下運(yùn)行,故采用“高注水比(0.58)、高污泥濃度、先高后低底物負(fù)荷”工況啟動(dòng)厭氧/好氧(anaerobic/aerobic)和厭氧/缺氧(anaerobic/anoxic)反應(yīng)器(簡(jiǎn)稱(chēng)RAO,RAA),水力停留時(shí)間HRT(hydraulic detention time)為13.9h.在厭氧/缺氧反應(yīng)器運(yùn)行之前,先通入氮?dú)猓?.5L/min)5min排除殘余氧氣.好氧段通入空氣速率為2.0L/min.整個(gè)試驗(yàn)過(guò)程中除進(jìn)水、出水和沉淀期間外,均采用懸臂式攪拌機(jī)攪拌,速率為200 r/min.
圖1 試驗(yàn)裝置示意圖Fig.1 Schematic diagram of experimental setup
試驗(yàn)所用接種污泥取自江蘇省南京市城東污水處理廠A2O(厭氧/缺氧/好氧,anaerobic/anoxic/aerobic)工藝好氧池,主要參數(shù):混合液懸浮固體濃度MLSS(mixed liquor suspended solids)為4 200 mg/L,混合液揮發(fā)性懸浮固體濃度MLVSS(mixed liquor volatile suspended solids)為3 600mg/L.
試驗(yàn)用水采用人工配水,其主要成分為,每升(L):CH3COONa,1.025g;KH2PO4,0.176g;(NH4)2SO4,0.471g;CaCl2,0.021g;MgSO4·7H2O,0.180g.營(yíng)養(yǎng)液0.60mL;營(yíng)養(yǎng)液組成,每升(L):FeCl3·6H2O ,1.50g;H3BO3,0.15g;Cu-SO4·5H2O,0.03g;KI,0.18g;MnCl2·4H2O,0.12g;Na2MoO4·2H2O,0.06g;ZnSO4·7H2O,0.12g;CoCl2·6H2O,0.15g;EDTA,10.00g,其水質(zhì):化學(xué)需氧量COD(chemical oxygen demand)800mg/L,PO43--P 40mg/L.
1.3.1 富集試驗(yàn)
厭氧/好氧和厭氧/缺氧兩個(gè)反應(yīng)器內(nèi)污泥富集過(guò)程分為兩個(gè)階段:階段一(0~30d),為了在低溫環(huán)境下有利于微生物生長(zhǎng)采用高底物負(fù)荷進(jìn)水,進(jìn)水中COD 800 mg/L,PO43--P 40 mg/L,缺氧時(shí)加NO3--N 50mg/L,此階段不排泥;階段二(31~80d),為了適應(yīng)生活污水水質(zhì)和成功富集聚磷菌,此階段降低進(jìn)水中的底物負(fù)荷和COD/P 比[14],進(jìn)水中COD 300 mg/L,PO43--P 20 mg/L,缺氧時(shí)加NO3--N 30 mg/L,每天厭氧/好氧反應(yīng)器排泥330mL,厭氧/缺氧反應(yīng)器排泥115 mL,使其污泥停留時(shí)間(sludge retention time,SRT)分別為10d和20d,污泥濃度(mixed liquor suspended solid,MLSS)分別為4 500mg/L和3 700mg/L.
1.3.2 批次試驗(yàn)
為了探究好氧聚磷菌以硝酸鹽為電子受體的除磷能力和反硝化聚磷菌以氧為電子受體的除磷能力,在兩個(gè)反應(yīng)器運(yùn)行達(dá)到穩(wěn)定狀態(tài)時(shí)進(jìn)行污泥樣品的批次試驗(yàn).在好氧段和缺氧段結(jié)束取污泥樣品0.5L,立即用營(yíng)養(yǎng)液(不含C,N,P)沖洗2次.處理后的好氧聚磷菌污泥和反硝化聚磷菌污泥樣品平均分為兩部分,加入到批次試驗(yàn)容器中(有效容積1 L),見(jiàn)圖2.好氧聚磷菌污泥和反硝化聚磷菌污泥分別在厭氧/好氧和厭氧/缺氧兩種模式下進(jìn)行對(duì)比試驗(yàn),進(jìn)水濃度與富集試驗(yàn)階段二一致.各階段運(yùn)行時(shí)間為:厭氧2h,缺氧或好氧4h,每隔15min采集一次樣品.
圖2 批次試驗(yàn)裝置示意圖Fig.2 Schematic diagram of batch tests
1.3.3 熒光原位雜交
為了探究厭氧/好氧和厭氧/缺氧兩個(gè)反應(yīng)器內(nèi)富集前后聚磷菌動(dòng)態(tài)變化,此處采用熒光原位雜交(FISH)技術(shù)原位分析接種污泥、好氧聚磷菌污泥和反硝化聚磷菌污泥聚磷菌豐度.取培養(yǎng)馴化前接種污泥、厭氧/好氧和厭氧/缺氧反應(yīng)器穩(wěn)定階段污泥各5mL進(jìn)行FISH 分析,其操作步驟[13]為:樣品前處理、4%的多聚甲醛固定、乙醇梯度脫水、原位雜交、洗脫、DAPI染色和風(fēng)干備觀察.
1.4.1 化學(xué)分析
PO43--P 和NO3--N采用流動(dòng)分析儀測(cè)定(AutoAnalyzer3,SEAL,英國(guó));COD,MLSS,MLVSS根據(jù)標(biāo)準(zhǔn)方法[15]測(cè) 定;DO 采 用 溶 解 氧 測(cè)定儀(YSI DO 200,美國(guó))測(cè)定;pH,ORP采用復(fù)合測(cè)定儀(YSI pH 100,美國(guó))測(cè)定.
1.4.2 微生物分析
試驗(yàn)使用的16SrRNA 寡核苷酸熒光探針[16]由上海生物工程公司合成,PAO651(5’-CCCTCTGCCAAACTCCAG-3’), PAO462 (5’-CCGTCATCTACWCAGGGTATTAAC-3’), PAO846(5’-GTTAGCTACGGCACTAAAAGG-3’)以上均由熒光染料Cy3標(biāo)記為紅色.使用時(shí)將PAO651,PAO462,PAO846 3種熒光探針按等體積混合配制成PAOmix,濃度為50ng/μL,用于探測(cè)聚磷菌Accumulibacter.此外,DAPI(4',6-二脒基-2-苯基吲哚)染色用于檢測(cè)全細(xì)菌[17].
1.4.3 數(shù)據(jù)處理
數(shù)據(jù)統(tǒng)計(jì)分析和圖形繪制采用origin 8.0 軟件;試驗(yàn)裝置圖繪制采用Visio 2003 軟件;FISH 圖片觀察通過(guò)熒光顯微鏡(FSX100,Olympus,日本),具備圖像導(dǎo)航功能且?guī)в蠴lympus FSX-BSW軟件;FISH 圖片熒光強(qiáng)度分析采用Image-Pro Plus軟件[18].
2.1.1 出水磷濃度的變化
取自A2O 工藝好氧池的接種污泥在低溫情況下(8 ℃~11 ℃)通過(guò)厭氧/好氧和厭氧/缺氧兩種模式富集好氧聚磷菌和反硝化聚磷菌,定期監(jiān)測(cè)出水中磷(PO43--P)濃度,結(jié)果見(jiàn)圖3.厭氧/好氧反應(yīng)器在40d時(shí)達(dá)到穩(wěn)定狀態(tài),其出水PO43--P濃度為0.5mg/L,而厭氧/缺氧反應(yīng)器則通過(guò)80d的富集馴化過(guò)程達(dá)到與厭氧/好氧相類(lèi)似的穩(wěn)定狀態(tài).通過(guò)試驗(yàn)發(fā)現(xiàn):在低溫情況下采用“高注水比、高污泥濃度、先高后低底物負(fù)荷”可以成功地富集到好氧聚磷菌和反硝化聚磷菌,但達(dá)到穩(wěn)定階段(即微生物馴化成熟)所需的時(shí)間與高溫富集時(shí)相比較長(zhǎng)[11,19].在污泥培養(yǎng)馴化開(kāi)始階段,兩個(gè)反應(yīng)器內(nèi)均表現(xiàn)出一定的磷去除能力,這是由于接種污泥取自A2O 工藝,該工藝中污泥經(jīng)歷厭氧/缺氧/好氧過(guò)程可以富集到一定量的聚磷微生物,F(xiàn)ISH 分析顯示接種污泥中含有9.3%的Accumulibacter(見(jiàn)2.5節(jié)).
2.1.2 MLVSS/MLSS比值的變化
在生物強(qiáng)化除磷系統(tǒng)中,MLSS由MLVSS和灰分組成,MLVSS包括:生物細(xì)胞體、PHB和糖原,灰分則95%以上是聚磷,((KMg)1/3PO3)n.因 此,通 常 用MLVSS/MLSS比值大小表征聚磷微生物含磷量的多寡[20].接種污泥、厭氧/好氧和厭氧/缺氧反應(yīng)器啟動(dòng)完成后污泥MLSS,MLVSS和MLVSS/MLSS比值見(jiàn)表1.由表1可知,厭氧/好氧和厭氧/缺氧反應(yīng)器內(nèi)污泥含磷量要明顯高于接種污泥含磷量,其MLVSS/MLSS比值分別為0.70,0.78和0.86,與Lu等人[21]在實(shí)驗(yàn)室條件下富集聚磷菌MLVSS/MLSS變化一致(從0.84降至0.71),表明了聚磷菌已在兩個(gè)反應(yīng)器內(nèi)成為優(yōu)勢(shì)種群.
圖3 厭氧/好氧和厭氧/缺氧反應(yīng)器啟動(dòng)過(guò)程中出水磷濃度變化Fig.3 Variations of effluent PO43--P concentration of RAA and RAO during their start-up period
表1 厭氧/好氧和厭氧/缺氧反應(yīng)器啟動(dòng)前后MLSS和MLVSS的變化Tab.1 Variations of MLSS,MLVSS and MLVSS/MLSS before and after RAA and RAO start-up
對(duì)于增強(qiáng)的生物除磷系統(tǒng)EBPR 來(lái)說(shuō),厭氧釋磷越充分,越有利于好氧或缺氧條件下過(guò)量吸磷從而有效去除廢水中的磷[22].為此,通過(guò)批次試驗(yàn)考察厭氧/好氧和厭氧/缺氧兩個(gè)反應(yīng)器啟動(dòng)完成后污泥厭氧釋磷特征,接種污泥做同樣的試驗(yàn)作為對(duì)照.
2.2.1 污泥厭氧釋磷量的變化
在2h的厭氧過(guò)程中好氧聚磷菌污泥、反硝化聚磷菌污泥和接種污泥釋磷量的變化和總釋磷量,見(jiàn)圖4和圖5.
在整個(gè)厭氧釋磷過(guò)程中,接種污泥在前30min內(nèi)表現(xiàn)了一定的釋磷能力(7.8 mg P/g MLVSS),表明在A2O 工藝中有一定數(shù)量的聚磷菌存在,這為低溫環(huán)境下富集好氧聚磷菌和反硝化聚磷菌提供了幫助.因此,在富集聚磷菌試驗(yàn)中所用的接種污泥應(yīng)取自含有厭氧/缺氧/好氧過(guò)程的工藝(如A2O,氧化溝),若從傳統(tǒng)的僅為去除有機(jī)物為目的的工藝中取泥則增加了聚磷菌的富集難度,這一點(diǎn)在Hu等人[23]的試驗(yàn)中得到了證實(shí).好氧聚磷菌單位污泥釋磷量要高于反硝化聚磷菌釋磷量,分別為27.7 mg P/g MLVSS,17.4mg P/g MLVSS,但通過(guò)增加厭氧/缺氧反應(yīng)器內(nèi)污泥濃度可以彌補(bǔ)釋磷總量的差距.此外通過(guò)MLVSS/MLSS比值(見(jiàn)表2)在厭氧前后的變化也可以看出兩個(gè)反應(yīng)器內(nèi)聚磷菌細(xì)胞內(nèi)聚磷含量逐漸減少,表明好氧聚磷菌和反硝化聚磷菌均發(fā)揮了生物除磷功能.
圖4 厭氧/好氧,厭氧/缺氧和接種污泥厭氧釋磷過(guò)程Fig.4 Phosphorus release performance of sludge from RAA,RAO and seed in anaerobic condition
圖5 厭氧/好氧,厭氧/缺氧和接種污泥釋磷量和吸磷量Fig.5 Amount of phosphorus release and uptake of sludge from RAA,RAO and seed in anaerobic,aerobic or anoxic conditions
2.2.2 污泥厭氧釋磷過(guò)程中碳源吸收量的變化
聚磷菌在好氧或缺氧階段完成過(guò)量的吸磷工作,其能量主要來(lái)源于降解細(xì)胞內(nèi)儲(chǔ)存的PHB,而細(xì)胞內(nèi)PHB的儲(chǔ)存水平與厭氧階段碳源吸收量有著直接關(guān)系[24].單位MLVSS污泥吸收碳源量(以COD 計(jì))及與釋磷量的關(guān)系見(jiàn)表2和圖6.由表2可知,不同環(huán)境下富集的聚磷菌其單位污泥吸收碳源的能力有明顯差異,好氧聚磷菌比反硝化聚磷菌有更強(qiáng)的吸收碳源能力,相應(yīng)地其釋磷能力也更強(qiáng).
在EBPR 系統(tǒng)中,當(dāng)好氧聚磷菌或反硝化聚磷菌培養(yǎng)馴化完成(即在反應(yīng)器內(nèi)占優(yōu)勢(shì)地位)時(shí),厭氧階段碳源吸收量與釋磷量有明顯的正相關(guān)關(guān)系[25].由圖6可知,厭氧/好氧和厭氧/缺氧污泥在厭氧階段其碳源消耗量與釋磷量表現(xiàn)了較好的相關(guān)關(guān)系,其決定系數(shù)R2分別為0.9411和0.9712,而接種污泥的這種相關(guān)關(guān)系較差(R2=0.7098)且碳源消耗量、釋磷量低,表明聚磷菌在傳統(tǒng)的脫氮除磷降解有機(jī)物系統(tǒng)中數(shù)量較少,不占優(yōu)勢(shì)地位.FISH 分析(見(jiàn)2.5節(jié))也同樣顯示了在厭氧/好氧和厭氧/缺氧兩個(gè)EBPR 反應(yīng)器內(nèi)聚磷菌為優(yōu)勢(shì)種群.
表2 厭氧/好氧和厭氧/缺氧過(guò)程中污泥化學(xué)計(jì)量值的變化Tab.2 Variations of stoichiometry of sludge samples from RAA,RAO and seed at the anaerobic-aerobic or anoxic modes
圖6 厭氧/好氧,厭氧/缺氧和接種污泥在厭氧階段碳源消耗量與釋磷量的關(guān)系Fig.6 Relationships of carbon consumption with phosphorus release of sludge from RAA,RAO and seed in anaerobic phase
Zeng等人[26]在脫氮除磷理論與實(shí)踐研究過(guò)程中發(fā)現(xiàn),聚磷菌并不是專(zhuān)屬好氧菌,存在一類(lèi)可以以硝酸鹽為電子受體進(jìn)行同步反硝化脫氮除磷的聚磷菌,即聚磷菌存在著兩種類(lèi)型:一種是僅以氧為電子受體;另一種是既可以以氧也可以以硝酸鹽為電子受體,即反硝化聚磷菌.在此,通過(guò)批次試驗(yàn)比較厭氧/好氧和厭氧/缺氧反應(yīng)器內(nèi)污泥以氧為電子受體好氧吸收磷的能力,結(jié)果見(jiàn)圖5和圖7.
厭氧/好氧反應(yīng)器啟動(dòng)成功后,好氧聚磷菌表現(xiàn)出良好的好氧吸磷能力,其單位污泥磷量為35.2mg P/g MLVSS,與厭氧釋磷量(見(jiàn)2.2.1)之比為1.27,也證實(shí)了該反應(yīng)器污泥已馴化完成,存在較多數(shù)量的聚磷菌[19].與厭氧/好氧反應(yīng)器污泥好氧吸磷能力相比,盡管厭氧/缺氧反應(yīng)器內(nèi)污泥吸磷能力較低(23.1mg P/g MLVSS),但是在缺氧環(huán)境下富集的反硝化聚磷菌當(dāng)提供氧為電子受體時(shí),立即表現(xiàn)出較好的好氧吸磷能力,這也表明了確實(shí)存在既可以以氧為電子受體也可以以硝酸鹽為電子受體的反硝化聚磷菌這一類(lèi)型,類(lèi)似的結(jié)果也被其它研究所證實(shí)[27-28].取自A2O工藝的接種污泥同樣也可以去除厭氧出水中的磷(但是吸磷量低,10.9mg P/g MLVSS),主要是該工藝長(zhǎng)期在厭氧/缺氧/好氧條件下運(yùn)行,污泥存在一定數(shù)量的聚磷菌,具備一定的厭氧釋磷和好氧吸磷能力;此外工藝中其它微生物(C60H87O23N12P)的生長(zhǎng)繁殖也需要一定數(shù)量的磷.
圖7 厭氧/好氧,厭氧/缺氧和接種污泥好氧吸磷過(guò)程Fig.7 Aerobic phosphorus uptake performance of sludge from RAA,RAO and seed
類(lèi)似于2.3節(jié),此節(jié)同樣通過(guò)批次試驗(yàn)比較了厭氧/好氧和厭氧/缺氧反應(yīng)器內(nèi)污泥以硝酸鹽為電子受體缺氧吸磷的能力,結(jié)果見(jiàn)圖5和圖8;反硝化除磷是基于同步脫氮除磷理論,因此也考察了硝酸鹽濃度的變化情況,結(jié)果見(jiàn)圖9.
厭氧/缺氧污泥在缺氧條件下吸收磷的能力稍微低于好氧條件下吸收磷的能力,分別為22.9 mg P/g MLVSS 和23.1 mg P/g MLVSS,表明在厭氧/缺氧條件下富集的反硝化聚磷菌能較好地以氧或硝酸鹽為電子受體進(jìn)行吸磷,相應(yīng)地硝酸鹽利用率也較高,與文獻(xiàn)[29,30]中結(jié)果一致.然而厭氧/好氧環(huán)境中富集的好氧聚磷菌,用硝酸鹽代替氧作為電子受體進(jìn)行同步反硝化脫氮除磷效果較差,好氧聚磷菌并不能立即進(jìn)行反硝化脫氮除磷,其吸磷能力為6.9 mg P/g MLVSS 遠(yuǎn)低于好氧吸磷能力(35.2mg P/g MLVSS).反硝化聚磷菌可以很容易地利用氧為電子受體進(jìn)行吸磷,而好氧聚磷菌不易利用硝酸鹽作為電子受體立即吸磷,這主要因?yàn)榉聪趸哿拙诤醚鯒l件下較容易合成與缺氧代謝酶相類(lèi)似的好氧代謝酶,而好氧聚磷菌在缺氧條件下很難迅速合成缺氧代謝酶[31].接種污泥盡管缺氧吸磷能力較低(3.9 mg P/g MLVSS),但是硝酸鹽的利用率較高,主要是因?yàn)榉聪趸?xì)菌利用殘余的碳源和加入的硝酸鹽進(jìn)行反硝化脫氮,此外也有少量的反硝化聚磷菌同步脫氮除磷作用.
結(jié)合2.3節(jié)和2.4節(jié),厭氧/缺氧反應(yīng)器富集的反硝化聚磷菌在缺氧條件下的吸磷能力(22.9 mg P/g MLVSS)低于厭氧/好氧反應(yīng)器富集的好氧聚磷菌在好氧條件下的吸磷能力(35.2 mg P/g MLVSS),這主要是因?yàn)榉聪趸哿拙韵跛猁}為電子受體產(chǎn)生的能量(ATP)約為好氧聚磷菌以氧為電子受體產(chǎn)生ATP的40%[32].在實(shí)踐中可以通過(guò)提高反硝化聚磷菌污泥濃度來(lái)彌補(bǔ)吸磷能力低的差距,因?yàn)榉聪趸哿拙暑w粒狀有著很好的沉降性能,而好氧聚磷菌呈絮狀沉降性能較差[33].
圖9 厭氧/好氧,厭氧/缺氧和接種污泥缺氧條件下硝酸鹽去除情況Fig.9 Nitrate removal performance of sludge from RAA,RAO and seed in anoxic conditions
為了考察厭氧/好氧和厭氧/缺氧反應(yīng)器內(nèi)啟動(dòng)前后聚磷菌(Accumulibacter)的動(dòng)態(tài)變化,利用熒光原位雜交技術(shù)(FISH)分析了接種污泥、厭氧/好氧反應(yīng)器和厭氧/缺氧反應(yīng)器污泥聚磷菌的豐度,結(jié)果見(jiàn)圖10,粉紅色是由Cy3標(biāo)記的熒光探針PAOmix(紅色)和DPAI染色(藍(lán)色)的疊加色,表征污泥中聚磷菌的分布,通過(guò)生物圖像分析軟件Image-Pro Plus計(jì)算熒光強(qiáng)度得到聚磷菌占總細(xì)菌的比例.
通過(guò)FISH 分析發(fā)現(xiàn),聚磷菌已成功大量富集在厭氧/好氧和厭氧/缺氧反應(yīng)器內(nèi),取自A2O 工藝的接種污泥、厭氧/缺氧反應(yīng)器內(nèi)污泥和厭氧/好氧反應(yīng)器內(nèi)污泥Accumulibacter含量分別為9.3%,61.6%和79.3%,多以團(tuán)聚結(jié)構(gòu)分布在污泥中.本試驗(yàn)兩個(gè)反應(yīng)器內(nèi)富集的聚磷菌占總細(xì)菌的比例要低于Lu等人[34]的研究結(jié)果(90%),但高于亢涵[11]和Crocetti等人[35]的研究結(jié)果(42%左右),這種差別可能由于不同操作條件(pH,DO,碳源種類(lèi)等)導(dǎo)致聚磷菌富集能力的差異.
圖10 厭氧/好氧,厭氧/缺氧和接種污泥聚磷菌原位分析Fig.10 FISH analysis images(×50)of sludge from RAA,RAO and seed
1)在低溫(8 ℃~11 ℃)情況下采用“高注水比、高污泥濃度、先高后低底物負(fù)荷”策略可以有效地富集到好氧聚磷菌和反硝化聚磷菌,其中厭氧/好氧反應(yīng)器在啟動(dòng)40d后達(dá)到穩(wěn)定狀態(tài),厭氧/缺氧反應(yīng)器在啟動(dòng)80d后達(dá)到類(lèi)似的穩(wěn)定狀態(tài).啟動(dòng)完成后,兩個(gè)反應(yīng)器內(nèi)污泥均表現(xiàn)出較好的釋磷和吸磷能力;且單位污泥濃度好氧聚磷菌的釋磷和吸磷能力均高于反硝化聚磷菌,分別為27.7 mg P/g MLVSS,35.2 mg P/g MLVSS,17.4 mg P/g MLVSS和23.1mg P/g MLVSS.
2)通過(guò)批次試驗(yàn)發(fā)現(xiàn),反硝化聚磷菌可以在好氧條件下以氧為電子受體快速吸收磷,而好氧聚磷菌在缺氧環(huán)境中以硝酸鹽為電子受體進(jìn)行同步脫氮除磷的能力較弱,僅為6.9mgP/gMLVSS,占好氧吸磷的19.6%,這將大大促進(jìn)既經(jīng)濟(jì)又環(huán)境友好的反硝化同步脫氮除磷技術(shù)應(yīng)用于實(shí)踐中.
3)熒光原位雜交(FISH)分析表明,厭氧/好氧和厭氧/缺氧反應(yīng)器啟動(dòng)完成后聚磷菌(Accumulibacter)已成為優(yōu)勢(shì)種群,分別占細(xì)菌總數(shù)的61.6%和79.3%,明顯高于接種污泥中Accumulibacter的豐度(9.3%).此外,采用含有一定數(shù)量聚磷菌的A2O工藝好氧池污泥作為接種污泥,可以促進(jìn)EBPR 系統(tǒng)中Accumulibacter的有效富集.
[1]ZHANG Hai-ling,F(xiàn)ANG Wei,WANG Yong-peng,etal.Phosphorus removal in an enhanced biological phosphorus removal process:roles of extracellular polymeric substances[J].Environmental Science &Technology,2013,47(20):11482-11489.
[2]PENG Zhao-xu,PENG Yong-zhen,GUI Li-juan,etal.Competition for single carbon source between denitrification and phosphorus release in sludge under anoxic condition[J].Chinese Journal of Chemical Engineering,2010,18(3):472-477.
[3]JIANG X X,YANG J X,MA F,etal.Denitrifying phosphorous removal in anaerobic/anoxic SBR system with different startup operation mode[J].Journal of Harbin Institute of Technology,2010,17(6):824-829.
[4]田文德,李偉光,張卉,等.兩級(jí)生物選擇同步除磷脫氮新工藝[J].中國(guó)環(huán)境科學(xué),2012,32(2):221-225.
TIAN Wen-de,LI Wei-guang,ZHANG Hui,etal.Bi-bio-selective simultaneous phosphorus and nitrogen removal (BBSPN)novel process[J].China Environmental Science,2012,32(2):221-225.(In Chinese)
[5]侯紅勛,王淑瑩,閆駿,等.不同碳源類(lèi)型對(duì)生物除磷過(guò)程釋放磷的影響[J].化工學(xué)報(bào),2007,58(8):2081-2086.
HOU Hong-xun,WANG Shu-ying,YAN Jun,etal.Effect of different types carbon sources on phosphorus release in enhanced biological phosphorus removal process[J].CIESC Journal,2007,58(8):2081-2086.(In Chinese)
[6]PANSWAD T,DOUNGCHAI A,ANOTAI J.Temperature effect on microbial community of enhanced biological phosphorus removal system[J].Water Research,2003,37(2):409-415.
[7]CARVALHO G,LEMOS P C,OEHMEN A,etal.Denitrifying phosphorus removal:linking the process performance with the microbial community structure[J].Water Research,2007,41(19):4383-4396.
[8]郭春艷,王淑瑩,李夕耀,等.聚磷菌和聚糖菌的競(jìng)爭(zhēng)影響因素研究進(jìn)展[J].微生物學(xué)通報(bào),2009,36(2):267-275.
GUO Chun-yan,WANG Shu-ying,LI Xi-yao,etal.Review on the factors affecting the enrichment culture of PAOs and GAOs[J].Microbiology,2009,36(2):267-275.(In Chinese)
[9]REN N,KANG H,WANG X,etal.Short-term effect of temperature variation on the competition between PAOs and GAOs during acclimation period of an EBPR system[J].Frontiers of Environmental Science &Engineering in China,2011,5(2):277-282.
[10]WINKLER M K H,BASSIN J P,KLEEREBEZEM R,etal.Selective sludge removal in a segregated aerobic granular biomass system as a strategy to control PAO-GAO competition at high temperatures[J].Water Research,2011,45(11):3291-3299.
[11]亢涵,李楠,任南琪.低溫強(qiáng)化生物除磷反應(yīng)器中微生物的競(jìng)爭(zhēng)關(guān)系[J].哈爾濱工業(yè)大學(xué)學(xué)報(bào),2010,42(6):881-885.
KANG Han,LI Nan,REN Nan-qi.Competition between phosphate-accumulating organisms and glycogen-accumulating organisms and the phosphate removal efficiency in EBPR reactor at low temperature[J].Journal of Harbin Institute of Technology,2010,42(6):881-885.(In Chinese)
[12]HE S,GU A Z,MCMAHON K D.Fine-scale differences between Accumulibacter-like bacteria in enhanced biological phosphorus removal activated sludge[J].Water Science Technology,2006,54(1):111-118.
[13]ZOU Hai-ming,LU Xi-wu,SHI Jing.Investigation of denitrifying phosphorus removal organisms in a two-sludge denitrifying phosphorus removal process[J].Asian Journal of Chemistry,2013,25(12):6826-6830.
[14]GUERRERO J,TAYA C,GUISASOLA A,etal.Glycerol as a sole carbon source for enhanced biological phosphorus removal[J].Water Research,2012,46:2983-2991.
[15]國(guó)家環(huán)保總局.水和廢水監(jiān)測(cè)[M].北京:中國(guó)環(huán)境科學(xué)出版社,2002.
Ministry of Environmental Protection of China.Monitoring analysis method of water and wastewater[M].Beijing:China Environmental Science Press,2002.(In Chinese)
[16]SILVA A F,CARVALHO G,OEHMEN A,etal.Microbial population analysis of nutrient removal-related organisms in membrane bioreactors[J].Applied Microbiology and Biotechnology,2012,93(5):2171-2180.
[17]RUIZ-ARBAJOSA P,DE REGT M,BONTEN M,etal.Highdensity fecal enterococcus faecium colonization in hospitalized patients is associated with the presence of the polyclonal subcluster CC17[J].European Journal of Clinical Microbiology &Infectious Diseases,2012,31(4):519-522.
[18]高景峰,陳冉妮,蘇凱,等.同步脫氮除磷好氧顆粒污泥形成與反應(yīng)機(jī)制的研究[J].環(huán)境科學(xué),2010,31(4):1021-1029.
GAO Jin-feng,CHEN Ran-ni,SU Kai,etal.Formation and reaction mechanism of simultaneous nitrogen and phosphorus removal by aerobic granular sludge[J].Environmental science,2010,31(4):11021-1029.(In Chinese)
[19]盧文健,楊殿海,郭云,等.聚磷菌的快速富集及其除磷特性研究[J].環(huán)境污染與防治,2012,34(6):31-36.
LU Wen-jian,YANG Dian-h(huán)ai,GUO Yun,etal.Rapid enrichment of polyphosphate accumulating organisms and its characteristics of phosphorus removal[J].Environmental Pollution and Control,2012,34(6):31-36.(In Chinese)
[20]ACEVEDO B,OEHMEN A,CARVALHO G,etal.Metabolic shift of polyphosphate-accumulating organisms with different levels of polyphosphate storage[J].Water Research,2012,46:1889-1900.
[21]GUERRERO J,TAYA C,GUISASOLA A,etal.Glycerol as a sole carbon source for enhanced biological phosphorus removal[J].Water Research,2012,46:2983-2991.
[22]BUCCI V,MAJED N,HELLWEGER F L,etal.Heterogeneity of intracellular polymer storage states in enhanced biological phosphorus removal(EBPR)-observation and modeling[J].Environmental Sci-ence &Technology,2012,46(6):3244-3252.
[23]HU J Y,ONG S L,NG W J,etal.A new method for characterizing denitrifying phosphorus removal bacteria by using three different types of electron acceptors[J].Water Research,2003,37(14):3463-3471.
[24]ZHANG L,MA J,LIU Y,etal.Improvement of biological total phosphorus release and uptake by low electrical current application in lab-scale bio-electrochemical reactors[J].Bioelectrochemistry,2012,88:92-96.
[25]KUBA T,MUMLEITNER E,VAN L M,etal.A metabolic model for biological phosphorus removal by denitrifying organisms[J].Biotechnology Bioengineering,2000,52(6):685-695.
[26]ZENG R J,SAUNDERS A M,YUAN Z,etal.Identification and comparison of aerobic and denitrifying polyphosphate‐accumulating organisms[J].Biotechnology Bioengineering,2003,83(2):140-148.
[27]亢涵,王秀蘅,李楠,等.生物除磷系統(tǒng)啟動(dòng)期聚磷菌的FISH 原位分析與聚磷特性[J].環(huán)境科學(xué),2009,30(1):80-84.
KANG Han,WANG Xiu-h(huán)eng,LI Nan,etal.Characterization of phosphate-accumulating organisms in starting-up EBPR by FISH analysis[J].Environmental Science,2009,30(1):80-84.(In Chinese)
[28]PODEDWOMA J,ZUBROWSKA-SUDOL M.Nitrogen and phosphorus removal in a denitrifying phosphorus removal process in a sequencing batch reactor with a forced anoxic phase[J].Environmental Technology,2012,33(2):237-245.
[29]ZENG T,WANG D,LI X,etal.Comparison between acetate and propionate as carbon sources for phosphorus removal in the aerobic/extended-idle regime[J].Biochemical Engineering Journal,2013,70:151-157.
[30]李勇智,王淑瀅,吳凡松,等.強(qiáng)化生物除磷體系中反硝化聚磷菌的選擇與富集[J].環(huán)境科學(xué)學(xué)報(bào),2004,24(1):45-49.
LI Yong-zhi,WANG Shu-ying,WU Fan-song,etal.Selection and enrichment of denitrifying phosphate accumulating bacteria in biologically enhanced phosphate removal process[J].Acta Scienctiae Circumstantiae,2004,24(1):45-49.(In Chinese)
[31]MARTIN H G,IVANOVA N,KUNIN V,etal.Metagenomic analysis of two enhanced biological phosphorus removal(EBPR)sludge communities[J].Nature Biotechnology,2006,24(10):1263-1269.
[32]MONCLUS H,SIPMA J,F(xiàn)ERRERO G,etal.Biological nutrient removal in an MBR treating municipal wastewater with special focus on biological phosphorus removal[J].Bioresource Technology,2010,101(11):3984-3991.
[33]WINKLER M K H,KLEEREBEZEM R,DE BRUIN L M M,et al.Microbial diversity differences within aerobic granular sludge and activated sludge flocs[J].Applied Microbiology and Biotechnology,2012:1-12.
[34]LU H B,OEHMEN A,VIRDIS B,etal.Obtaining highly enriched cultures of candidatus Accumulibacter phosphates through alternating carbon sources[J].Water Research,2006,40(20):3838-3848.
[35]CROCETTI G R,HUGENHOLTZ P,BOND P L,etal.Identification of polyphosphate-accumulating organisms and design of 16S rRNA-directed probes for their detection and quantitation[J].Applied and Environmental Microbiology,2000,66(3):1175-1182.