鄧 歡 賴 星 孫志洪 陳 澄 石寶石 唐志如
(西南大學(xué)動(dòng)物科技學(xué)院,生物飼料與分子營(yíng)養(yǎng)實(shí)驗(yàn)室,重慶 400715)
1917年,志賀菌痢爆發(fā),德國(guó)醫(yī)生 Alfred Nissle從疫區(qū)一位未患腸炎的士兵糞便中分離了1株無(wú)致病性的大腸桿菌(E.coli)菌株,命名為 E.coli Nissle1917(EcN)。隨后,科學(xué)家分離到一些新的益生E.coli菌種,如 SK22(保存于德國(guó)菌種中心,編號(hào)為DSM6601),并探索了它們對(duì)動(dòng)物健康的益生機(jī)理[1-2]。作為一種腸道微生物,EcN能定植于腸道中并與其他微生物抗衡。了解EcN特殊的表型、定植機(jī)理、免疫調(diào)節(jié)機(jī)理和在仔豬方面應(yīng)用的研究現(xiàn)狀對(duì)其他益生革蘭氏陰性桿菌在腸道中的研究具有重要參考意義。
在瓊脂固體營(yíng)養(yǎng)培養(yǎng)基上,EcN菌落呈半粗糙型,較光滑、透明、黏稠,易挑取,大而平坦,菌落正反面或邊緣與中央部位的顏色一致。EcN的O6抗原聚合酶wzy基因終止子上的點(diǎn)突變使得O6抗原多糖側(cè)鏈很短,由單個(gè)寡糖骨架“重復(fù)單位”組成O6抗原,其低聚糖骨架直接與“重復(fù)單位”相連,而不與長(zhǎng)鏈多糖相連[3]。這種古怪脂多糖(lipopolysaccharide,LPS)結(jié)構(gòu)決定了 EcN的菌落半粗糙表型(圖1),又稱為半粗糙 O6-LPS表型。這種表型決定了EcN的血清敏感性和免疫調(diào)節(jié)性[4]。EcN具有K5型莢膜(圖1),在與腸上皮細(xì)胞相互作用時(shí),K5型莢膜產(chǎn)生特異性趨化因子反應(yīng)[4]。EcN基因組編碼F1A、F1C和卷曲菌毛(圖1),這3種菌毛替代了P-和S-菌毛(具有血凝反應(yīng)因子,是致病大腸桿菌代表性特征)[4-5]。
雖然EcN血清型為 O6∶K5∶H1,但無(wú)致病性。而與尿道感染相關(guān)的大腸桿菌菌種血清型也為O6∶K5∶H1,卻具有致病性。原因在于EcN基因組缺少其他大腸桿菌的毒力因子致病基因[3]。EcN適應(yīng)性因子位于基因組的4個(gè)染色體組小島上,有助于定植于宿主(圖1)。
EcN最大的特點(diǎn)是具有獲取鐵營(yíng)養(yǎng)素的多重機(jī)制(圖1)。EcN的6種鐵攝取系統(tǒng)能產(chǎn)生鐵螯合劑腸菌素、桿菌素、產(chǎn)氣菌素、鐵攝取有關(guān)氣菌素、枸櫞酸鐵運(yùn)輸系統(tǒng)和儲(chǔ)血紅素運(yùn)輸場(chǎng)所,有利于其利用環(huán)境中的 Fe3+[3,6]。EcN 具有氯高鐵血紅素和檸檬酸鹽依賴性鐵攝取系統(tǒng)[7]。EcN能產(chǎn)生EfeU[一種氧化酶依賴性鐵轉(zhuǎn)運(yùn)(OFeT)家族的亞鐵系統(tǒng)攝取系統(tǒng)][8]。EcN也能分泌小菌素M、小菌素H47、溶血素和細(xì)胞毒素壞死因子,從而抑制致病微生物[9]。
圖1 EcN的表型特征及其在基因組上的位置Fig.1 Phenotypical characteristics of EcN and its location in genome[3]
EcN表達(dá)3種菌毛有利于其定植于腸上皮細(xì)胞,形成生物被膜,最終形成自然屏障來(lái)抵御致病菌的入侵[4-5]。EcN的K5型莢膜對(duì)黏附和定植起重要作用(圖 2)[10]。K5不產(chǎn)生血清抗性,同時(shí)EcN在血清抗性試驗(yàn)中很快被殺死[11]。EcN表達(dá)的K5型莢膜能在腸上皮細(xì)胞和體內(nèi)鼠小腸中激活Toll樣受體5(TLR5)產(chǎn)生化學(xué)增活素[12-13]。
EcN特有的6種鐵攝取系統(tǒng)有利于其在腸道中定植。EcN能提高豬的小腸鈣網(wǎng)蛋白(calprotectin),這提示了鈣網(wǎng)蛋白可能在EcN的益生作用中發(fā)揮了作用[14]。EcN能促進(jìn)炎癥腸道中抗菌的脂質(zhì)運(yùn)載蛋白-2(lipocalin-2)和鈣網(wǎng)蛋白高表達(dá),但EcN的定植和益生功能是否增強(qiáng)有待進(jìn)一步研究。高親和力金屬運(yùn)載體可以增強(qiáng)EcN在炎癥的腸道中的定植力,并為其與包括病原菌在內(nèi)的其他微生物之間競(jìng)爭(zhēng)提供手段。
研究發(fā)現(xiàn)EcN能分泌抵抗菌物質(zhì)(小菌素H47和小菌素M 等)來(lái)抵抗病原體[15]。小菌素是一種低分子質(zhì)量的抗菌肽,類似于革蘭氏陽(yáng)性桿菌的細(xì)菌素,對(duì)于補(bǔ)償免疫蛋白不足的細(xì)菌在種族發(fā)育中發(fā)揮了有力的殺菌作用[15]。小菌素H47和小菌素M與鐵螯合劑salmochelin結(jié)合,并為受體所感應(yīng),從而展示一種進(jìn)入菌體的“Trojan horse”機(jī)制(圖 2)[6,16]。因此小菌素 H47 和小菌素M可增強(qiáng)EcN與腸道中其他微生物之間的競(jìng)爭(zhēng)力。
圖2 益生菌EcN所具備的多種適應(yīng)性因子Fig.2 The multiple fitness factors of probiotic EcN[16]
EcN通過(guò)鞭毛蛋白經(jīng)核轉(zhuǎn)錄因子-κB(NF-κB)和AP-1-依賴性途徑產(chǎn)生人抗菌肽β-防御素2(β-defensin 2),從而增強(qiáng)結(jié)腸上皮細(xì)胞化學(xué)防御(圖 3)[14,17-18]。通過(guò)上調(diào)腸上皮細(xì)胞緊密連接蛋白 ZO-2水平,EcN 能提高黏膜屏障(圖 3)[19]。EcN能阻礙致腸病的大腸桿菌感染引起ZO-2表達(dá)下降。EcN通過(guò)上調(diào)閉鎖小帶(OZ-1、OZ-2)的表達(dá),增強(qiáng)腸上皮細(xì)胞的緊密連接,減少因?yàn)槟c漏引起的細(xì)菌異位與代謝產(chǎn)物穿過(guò)腸上皮細(xì)胞[20]。
EcN能下調(diào)炎癥,研究發(fā)現(xiàn)EcN具有調(diào)節(jié)致炎和抗炎的局部細(xì)胞因子的平衡(圖3)[21-22]。體外試驗(yàn)表明,EcN的生物學(xué)功能與在腸道微生物的調(diào)控和腸內(nèi)細(xì)胞因子引起免疫反應(yīng)相關(guān)聯(lián)[23]。EcN抑制炎癥反應(yīng)維持腸道免疫穩(wěn)態(tài)的機(jī)理之一在于EcN能通過(guò)激活T細(xì)胞誘導(dǎo)天生性和記憶性外周血CD4+T細(xì)胞同源細(xì)胞的生長(zhǎng)(圖3)[24]。EcN也能加速γδT細(xì)胞周期和細(xì)胞因子分泌(圖3)。γδT細(xì)胞的激活和脫噬作用是限制腸道炎癥的一種可能方式[25]。在變應(yīng)原誘導(dǎo)的Th2反氣管炎癥,EcN被發(fā)現(xiàn)通過(guò)誘導(dǎo)不產(chǎn)生免疫球蛋白E(IgE)的 Th1模型來(lái)減輕癥狀[26]。許多研究發(fā)現(xiàn),EcN通過(guò)提高分泌型免疫球蛋白A(sIgA)[2],改變致炎和抗炎細(xì)胞因子[27-28]及調(diào)節(jié)T細(xì)胞的分化[29]來(lái)進(jìn)行免疫調(diào)控。EcN能減少試驗(yàn)小鼠大腸桿菌數(shù)量,降低通過(guò) Toll樣受體 4(TLR4)和TLR5產(chǎn)生的炎癥細(xì)胞因子和干擾素-γ(IFN-γ)(圖3)[30]??诜﨓cN能產(chǎn)生黏膜特異性免疫球蛋白G(IgG)與免疫球蛋白M(IgM)抗體而誘導(dǎo)嬰兒體液免疫(圖3)[31]。EcN的免疫調(diào)控作用也被發(fā)現(xiàn)在結(jié)腸上皮細(xì)胞,EcN提取物能促進(jìn)細(xì)胞白介素-8(IL-8)的分泌[2],降低結(jié)腸致癌指示物環(huán)氧酶-2(COX-2)和前列腺素E2(PGE2)的表達(dá)水平(圖 3)[32]。
Kleta等[33]從仔豬腸內(nèi)容物中篩選到EcN,證實(shí)了EcN也存在于豬小腸中,表明EcN是豬腸道微生物的一部分。同時(shí)Kleta等[33]研究了EcN對(duì)仔豬腸相關(guān)淋巴組織的影響,試驗(yàn)中采用109和1011CFU/d EcN飼喂仔豬21 d,定量分析了腸免疫細(xì)胞(粒性白細(xì)胞、肥大細(xì)胞 CD4+、CD8+、CD25+、IgA+淋巴細(xì)胞)的數(shù)量和分布及黏膜細(xì)胞因子[IFN-γ、腫瘤壞死因子-α(TNF-α)、轉(zhuǎn)化生子因子-β(TGF-β)、細(xì)胞白介素-10(IL-10)]和抗菌肽 (PR-39、NK-lysin、pre-defensin-β1、protegrins)mRNA的表達(dá)水平,結(jié)果表明,各組中腸免疫細(xì)胞(粒性白細(xì)胞、肥大細(xì)胞 CD4+、CD8+、CD25+和IgA+淋巴細(xì)胞)的數(shù)量和分布小腸與結(jié)腸存在較大的差異,低劑量EcN各組間差異不顯著,高劑量EcN(1011CFU/d)使結(jié)腸升段黏膜CD8+細(xì)胞數(shù)量顯著增加。mRNA分析表明,飼喂EcN對(duì)黏膜細(xì)胞因子(IFN-γ、TNF-α、TGF-β、IL-10)和抗菌肽(PR-39、NK-lysin、pre-defensin-β1、protegrins)mRNA的表達(dá)水平無(wú)顯著影響,EcN對(duì)健康仔豬腸免疫細(xì)胞的分布影響較小。EcN的預(yù)防作用可能與除腸免疫細(xì)胞的分布的單一調(diào)節(jié)以外的其他機(jī)制有關(guān)。仔豬口服109CFU/d的EcN不會(huì)引起小豬結(jié)腸炎和泌尿生殖器感染[34]。唐志如等[35]研究發(fā)現(xiàn),在大腸桿菌Abbottstown攻毒的斷奶仔豬中,口服1010CFU/d的EcN顯著下調(diào)空腸黏膜雙鏈RNA依賴的蛋白質(zhì)激酶(PKR)、真核生物翻譯起始因子5A(eIF-5A)和TLR2 mRNA相對(duì)表達(dá)豐度,顯著降低空腸黏膜淋巴細(xì)胞數(shù)量,顯著提高空腸黏膜occludin蛋白水平,顯著上調(diào)空腸黏膜胰島素樣生長(zhǎng)因子-Ⅰ(IGF-Ⅰ)、肝細(xì)胞生長(zhǎng)因子(HGF)、三葉草肽-3(TFF-3)和表皮生長(zhǎng)因子(EGF)mRNA相對(duì)表達(dá)豐度,提示EcN能維持腸道功能完整性,并保護(hù)腸道屏障。
圖3 益生菌EcN對(duì)宿主免疫系統(tǒng)的調(diào)節(jié)途徑Fig.3 The probiotic EcN modulates the host immune system in multiple ways[31]
EcN對(duì)傳染性腹瀉具有良好的治療效果。Duncker等[36]對(duì)EcN預(yù)防21日齡斷奶仔豬急性分泌性腹瀉進(jìn)行研究,試驗(yàn)分為以下4組:1組[-腸毒性大腸桿菌(EcA)/-EcA,n=6]、2組(-EcN/+EcA,n=7)、3 組(+EcN/-EcA,n=4)和4組(+EcN/+EcA,n=4);將 1010CFU/d EcA 和EcN通過(guò)口胃管飼喂21日齡斷奶仔豬,攻毒48 h后,屠宰取空腸上皮置于Ussing chambers上測(cè)定空腸上皮電生理的參數(shù)的變化,結(jié)果表明,EcN預(yù)處理后的仔豬能完全控制仔豬急性分泌性腹瀉。唐志如等[35]研究發(fā)現(xiàn),在大腸桿菌Abbottstown攻毒的斷奶仔豬中,口服1010CFU/d的EcN能顯著降低腹瀉率,顯著改善生長(zhǎng)性能。Splichalova等[37]研究發(fā)現(xiàn),豬感染沙門氏菌后血漿中 IL-10、TNF-α和腸道TNF-α濃度顯著增加,但在感染沙門氏菌前口服 EcN,血漿中IL-10、TNF-α和腸道TNF-α濃度無(wú)顯著影響,這提示了EcN能競(jìng)爭(zhēng)性阻礙沙門氏菌的入侵。Schroeder等[38]研究表明提前口服EcN能預(yù)防斷奶仔豬受產(chǎn)毒型大腸桿菌的感染。
EcN由于其特殊的基因型,決定了其半粗糙O6-LPS 表型、O6∶K5∶H1F1A 的血清型、特殊的菌毛與莢膜、適應(yīng)性因子和鐵攝取系統(tǒng),從而使得EcN在腸道中具有穩(wěn)定定植機(jī)制和免疫調(diào)節(jié)功能。以仔豬為對(duì)象的研究發(fā)現(xiàn)口服EcN能維護(hù)腸道形態(tài)結(jié)構(gòu),提高腸黏膜緊密連接性,維持腸道功能完整性,保護(hù)腸道屏障,進(jìn)而提高斷奶仔豬生長(zhǎng)性能和降低斷奶仔豬腹瀉率。
[1] SMITH F,CLARK J E,OVERMAN B L,et al.Early weaning stress impairs development of mucosal barrier function in the porcine intestine[J].American Journal of Physiolog:Gastrointestinal and Liver Physiology,2010,298(3):G352-G363.
[2] CUKROWSKA B,LODLNOVA-ZADNLKOVA R,ENDERS C,et al.Specific proliferative and antibody responses of premature infants to intestinal colonization with nonpathogenic probiotic E.coli strain Nissle 1917[J].Scandinavian Journal of Immunology,2002,55(2):204-209.
[3] GROZDANOV L,RAASCH C,SCHULZE J,et al.A-nalysis of the genome structure of the nonpathogenic probiotic Escherichia coli strain Nissle 1917[J].Journal of Bacteriology,2004,186(16):5432-5441.
[4] BLUM G,HACKER J,MARRE R.Properties of Escherichia coli strains of serotype O6[J].Infection,1995,23:234-236.
[5] LASARO M A,SALINGER N,ZHANG J,et al.F1C fimbriae play an important role in biofilm formation and intestinal colonization by the Escherichia coli commensal strain Nissle 1917[J].Applied and Environmental Microbiology,2009,75:246-251.
[6] VALDEBENITO M,CRUMBLISS A L,WINKELMANN G,et al.Environmental factors influence the production of enterobactin,salmochelin,aerobactin,and yersiniabactin in Escherichia coli strain Nissle 1917[J].International Journal of Medical Microbiology,2006,296:513-520.
[7] LéVEILLé S,CAZA M,JOHNSON J R,et al.Iha from an Escherichia coli urinary tract infection outbreak clonal group A strain is expressed in vivo in the mouse urinary tract and functions as a catecholate siderophore receptor[J].Infection and Immunity,2006,74:3427-3436.
[8] HANCOCK V,VEJBORG R M,KLEMM P.Functional genomics of probiotic Escherichia coli Nissle 1917 and 83972,and UPEC strain CFT073:comparison of transcriptomes,growth and biofilm formation[J].Molecular Genetics and Genomics,2010,284:437-454.
[9] PATZER S I,BAQUERO M R,BRAVO D,et al.The colicin G,H and X determinants encode microcins M and H47,which might utilize the catecholate siderophore receptors FepA,Cir,F(xiàn)iu and IroN[J].Microbiology,2003,149(9):2557-2570.
[10] BURNS SM,HULL SI.Comparison of loss of serum resistance by defined lipopolysaccharide mutants and an acapsular mutant of uropathogenic Escherichia coli O75∶K5[J].Infection and Immunity,1998,66:4244-4253.
[11] HUGHES C,PHILLIPS R,ROBERTS A P.Serum resistance among Escherichia coli strains causing urinary tract infection in relation to O type and the carriage of hemolysin,colicin,and antibiotic resistance determinants[J].Infection and Immunity,1982,35:270-275.
[12] HAFEZ M,HAYES K,GOLDRICK M,et al.The K5 capsule of Escherichia coli strain Nissle 1917 is important in mediating interactions with intestinal epithelial cells and chemokine induction[J].Infection and Immunity,2009,77:2995-3003.
[13] HAFEZ M,HAYES K,GOLDRICK M,et al.The K5 capsule of Escherichia coli strain Nissle 1917 is important in stimulating expression of Toll-like receptor 5,CD14,MyD88,and TRIF together with the induction of interleukin-8 expression via the mitogen-activated protein kinase pathway in epithelial cells[J].Infection and Immunity,2010,78:2153-2162.
[14] SPLICHAL I,F(xiàn)AGERHOL M K,TREBICHAVSKY I,et al.The effect of intestinal colonization of germfree pigs with Escherichia coli on calprotectin levels in plasma,intestinal and bronchoalveolar lavages[J].Immunobiology,2005,209:681-687.
[15] BAQUERO F,MORENO F.The microcins[J].FEMS Microbiology Letters,2006,23:117-124.
[16] VASSILIADIS G,DESTOUMIEUX-GARZON D,LOMBARD C,et al.Isolation and characterization of two members of the siderophore-microcin family,microcins M and H47[J].Antimicrobial Agents and Chemotherapy,2010,54:288-297.
[17] WEHKAMP J,HARDER J,WEHKAMP K,et al.NF-κB-and AP-1-mediated induction of human beta defensin-2 in intestinal epithelial cells by Escherichia coli Nissle 1917∶a novel effect of a probiotic bacterium[J].Infection and Immunity,2004,72:5750-5758.
[18] SCHLEE M,WEHKAMP J,ALTENHOEFER A,et al.Induction of human beta-defensing 2 by the probiotic Escherichia coli Nissle 1917 is mediated through flagellin[J].Infection and Immunity,2007,75:2399-2407.
[19] UKENA S N,SINGH A,DRINGENBERG U,et al.Probiotic Escherichia coli Nissle 1917 inhibits leaky gut by enhancing mucosal integrity[J].PLoS One,2007,2:e1308.
[20] ZYREK A A,CICHON C,HELMS S,et al.Molecular mechanisms underlying the probiotic effects of Escherichia coli Nissle 1917 involve ZO-2 and PKCζ redistribution resulting in tight junction and epithelial barrier repair[J].Cellular Microbiology,2007,9:804-816.
[21] CROSS M L,GANNER A,TEILAB D,et al.Patterns of cytokine induction by gram-positive and gram-negative probiotic bacteria[J].FEMS Immunology and Medical Microbiology,2004,42:173-180.
[22] UKENA S N,WESTENDORF A M,HANSEN W,et al.The host response to the probiotic Escherichia coli strain Nissle 1917:specific up-regulation of the proinflammatory chemokine MCP-1[J].BMC Medical Genetics,2005,6:43.
[23] SKAAR E P.The battle for iron between bacterial pathogens and their vertebrate hosts[J].PLoS Pathogens,2010,6:e1000949.
[24] STURM A,RILLING K,BAUMGART D C,et al.Escherichia coli Nissle 1917 distinctively modulates T-cell cycling and expansion via Toll-like receptor 2 signaling[J].Infection and Immunity,2005,73:1452-1465.
[25] GUZY C,PACLIK D,SCHIRBEL A,et al.The probiotic Escherichia coli strain Nissle 1917 inducesγδ T cell apoptosis via caspase-and FasL-dependent pathways[J].International Immunology,2008,20:829-840.
[26] BICKERT T,TRUJILLO-VARGAS C M,DUECHS M,et al.Probiotic Escherichia coli Nissle 1917 suppresses allergen-induced Th2 responses in the airways[J].International Archives of Allergy and Immunology,2009,149:219-230.
[27] HELWIG U,LAMMERS K M,RIZZLLO F,et al.Lactobacilli,Bifidobacteria and E.coli Nissle induce pro-and anti-inflammatory cytokines in peripheral blood mononuclear cells[J].World Journal of Gastroenterology,2006,12:5978-5986.
[28] ARRIBAS B, RODRIGUEZ-CABEZAS M E,CAMUESCO D,et al.A probiotic strain of Escherichia coli Nissle 1917,given orally exerts local and systemic anti-inflammatory effects in lipopolysaccharideinduced sepsis in mice[J].British Journal of Pharmacology,2009,157:1024-1033.
[29] AGRAWAL S,AGRAWAL A,DOUGHTY B,et al.Cutting edge:different Toll-like receptor agonists instruct dendritic cells to induce distinct Th responses via differential modulation of extracellular signal-regulated kinase-mitogen-activated protein kinase and c-Fos[J].The Journal of Immunology,2003,171:4984-4989.
[30] GRABIG A,PACLIK D,GUZY C,et al.Escherichia coli strain Nissle 1917 ameliorates experimental colitis via toll-like receptor 2-and toll-like receptor 4-dependent pathways[J].Infection and Immunity,2006,74:4075-4082.
[31] LAMMERS K M,HELWIG U,SWENNEN E,et al.Effect of probiotic strains on interleukin 8 production by HT29/19A cells[J].The American Journal of Gastroenterology,2002,97:1182-1186.
[32] OTTE JM,MAHJURIAN-NAMARI R,BRAND S,et al.Probiotics regulate the expression of COX-2 in intestinal epithelial cells[J].Nutrition and Cancer,2008,61:103-113.
[33] KLETA S,STEINRUCK H,BREVES G,et al.Detection and distribution of probiotic Escherichia coli Nissle 1917 clones in swine herds in Germany[J].Journal of Applied Microbiology,2006,101(6):1357-1366.
[34] GUNZER F,HENNIG-PAUKA I,WALDMANN K H,et al.Gnotobiotic piglets develop thrombotic microangiopathy after oral infection with enterohemorrhagic Escherichia coli[J].American Journal of Clinical Pathology,2002,118(3):364-375.
[35] 唐志如,鄧歡,孫衛(wèi)忠,等.口服益生菌 Escherichia coli Nissle 1917調(diào)控?cái)嗄套胸i空腸粘膜屏障功能的機(jī)理研究[J].畜牧獸醫(yī)學(xué)報(bào),2014,45(1):78-86.
[36] DUNCKER S C,LORENTZ A,SCHROEDER B,et al.Effect of orally administered probiotic E.coli strain Nissle 1917 on intestinal mucosal immune cells of healthy young pigs[J].Veterinary Immunology Immunopathology,2006,111:239-250.
[37] SPLICHALOVA A,TREBICHAVSKY I,RADA V,et al.Interference of Bifidobacterium choerinum or Escherichia coli Nissle 1917 with Salmonella Typhimurium in gnotobiotic piglets correlates with cytokine patterns in blood and intestine[J].Clinical and Experiment Immunology,2011,163:242-249.
[38] SCHROEDER B,DUNCKER S,BARTH S,et al.Preventive effects of the probiotic Escherichia coli strain Nissle 1917 on acute secretory diarrhea in a pig model of intestinal infection[J].Digestive Diseases and Sciences,2006,51:724-731.