国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

牧草分子遺傳連鎖圖譜及其應(yīng)用

2014-12-24 00:53:40謝文剛劉文獻(xiàn)張建全王彥榮
草業(yè)科學(xué) 2014年6期
關(guān)鍵詞:黑麥草作圖牧草

謝文剛,劉文獻(xiàn),張建全,王彥榮

(草地農(nóng)業(yè)生態(tài)系統(tǒng)國(guó)家重點(diǎn)實(shí)驗(yàn)室,蘭州大學(xué)草地農(nóng)業(yè)科技學(xué)院,甘肅 蘭州730020)

牧草,廣義上泛指可用于飼喂家畜的草類植物,包括草本、藤本、小灌木、半灌木和灌木等各類栽培或野生植物;狹義上僅指可供栽培的飼用草本植物,尤指豆科牧草和禾本科牧草[1]。牧草是農(nóng)業(yè)自然資源的重要組成部分,是農(nóng)業(yè)可持續(xù)發(fā)展的重要生產(chǎn)資料,也是發(fā)展草地畜牧業(yè)的重要物質(zhì)基礎(chǔ)。培育高產(chǎn)、優(yōu)質(zhì)、高抗的牧草新品種,充分發(fā)揮其在改良退化農(nóng)田、恢復(fù)草地功能、調(diào)整農(nóng)業(yè)結(jié)構(gòu)、固碳減排、建立草地農(nóng)業(yè)系統(tǒng)中不可替代的作用,是保障國(guó)家食物安全和生態(tài)安全的重要措施之一。

遺傳連鎖圖譜是指通過(guò)遺傳重組分析得到的基因或?qū)R坏亩鄳B(tài)性遺傳標(biāo)記在染色體上的線性排列順序 圖[2]。目前包括玉米(Zeamays)[3]、水稻(Oryzasativa)[4]、小麥(Triticumaestivum)[5]等主要農(nóng)作物均已構(gòu)建了遺傳連鎖圖譜,并被廣泛應(yīng)用于數(shù)量性狀位點(diǎn)(QTL)定位[6]、比較基因組[7-8]和分子標(biāo)記輔助育種[9-10]等領(lǐng)域以改良植物的重要農(nóng)藝性狀,大幅度提高植物的育種水平和育種效率。和大多數(shù)農(nóng)作物相似,牧草許多重要的農(nóng)藝性狀如產(chǎn)量、品質(zhì)、抗性等一般為數(shù)量性狀,受微效多基因控制。牧草常規(guī)育種周期長(zhǎng),效率低,而利用DNA分子標(biāo)記構(gòu)建牧草遺傳圖譜,開(kāi)展QTL定位研究及分子標(biāo)記輔助育種,加快培育高產(chǎn)、優(yōu)質(zhì)、高抗牧草新品種已成為目前牧草育種工作中的一個(gè)重要發(fā)展方向。本文就牧草遺傳連鎖圖譜構(gòu)建及應(yīng)用的研究現(xiàn)狀和最新成果進(jìn)行了概述,以期為牧草分子育種的進(jìn)一步發(fā)展提供參考。

1 牧草遺傳連鎖圖譜的構(gòu)建研究現(xiàn)狀

1.1 已構(gòu)建的遺傳連鎖圖譜

與多數(shù)一年生模式植物相比,牧草多為多年生、異交的多倍體植物,如紫花苜蓿、白三葉、鴨茅等同源四倍體,而羊草(Leymuschinensis)為異源四倍體,遺傳背景相對(duì)復(fù)雜,異交多倍體牧草存在分離基因型眾多、不同DNA片段共分離,雜交后代常表現(xiàn)為四體遺傳等特點(diǎn),造成其在遺傳分析上存在較多困難。但隨著“擬測(cè)交”策略的應(yīng)用[11]及各種分子標(biāo)記技術(shù)的不斷發(fā)展,據(jù)不完全統(tǒng)計(jì),目前已構(gòu)建了20余個(gè)草種近40張遺傳連鎖圖譜(表1)。所構(gòu)圖譜主要涉及豆科的苜蓿屬(特別是紫花苜蓿)[12-18]、三葉草屬[19-21]、百脈根[22-23],禾本科的羊茅屬[24-26]、黑麥草屬[27-34]和鴨茅屬[35-37]等常見(jiàn)草種。

1.2 作圖群體

構(gòu)圖群體親本的選擇是群體構(gòu)建成功及圖譜質(zhì)量高低的決定因素之一,最大限度地選擇親本間性狀差異與親和性的統(tǒng)一是親本選擇的基本原則[2]。常見(jiàn)的遺傳連鎖圖譜的群體有:臨時(shí)性群體如F2及其衍生的F3、F4家系和回交群體(BC)。永久性分離群體,如回交自交系群體(BIL)、重組自交系群體(RIL)、雙單倍體群體(DH)、近等基因系群體。對(duì)于親本基因型高度雜合的植物,也可采用“雙擬測(cè)交”(Double-pseudo-testcross)的方法建立F1分離群體[11]?!半p擬測(cè)交”是指兩個(gè)親本基因型均為雜合,互為測(cè)交群體,與測(cè)交試驗(yàn)一樣,后代基因型的分離比例為1∶1,但兩個(gè)親本都非純合隱性,所以稱為擬測(cè)交。由于大多數(shù)牧草具有多年生、異花授粉和自交不親和等特性,使培育純系較為困難,難以構(gòu)建BC1等群體,因此,目前大部分牧草分子連鎖圖譜大部分是利用“雙擬測(cè)交”F1作圖群體構(gòu)建的,如多年生黑麥草[28-30]、多花黑麥草[32-33]、草地羊茅[26]、鴨茅[35-37]和賴草[38]等。對(duì)于自交衰退不嚴(yán)重的異交草種,也可仿照一年生農(nóng)作物創(chuàng)建自交純系進(jìn)行雜交以獲得F2群體或BC1群體進(jìn)行遺傳作圖,如結(jié)縷草(Zopsiaspp.)[41]、紫花苜蓿[12,14,16]等。

另外,作圖群體的大小也是影響圖譜品質(zhì)的重要因素。一般而言,大的作圖群體包含更多的基因重組個(gè)體,在遺傳作圖時(shí)能獲得更多的分離標(biāo)記,使所構(gòu)圖譜更飽滿,基因組覆蓋更全面。如 Mott等[39]利用含387個(gè)后代的回交群體,構(gòu)建了含515個(gè)分子標(biāo)記,圖幅長(zhǎng)度為2 574cM的遺傳圖譜,標(biāo)記間的平均距離為4.9cM。

1.3 作圖標(biāo)記

DNA分子標(biāo)記直接反映植物分子水平上的遺傳多態(tài)性,因其簡(jiǎn)單、快捷、受環(huán)境影響小和可重復(fù)性強(qiáng)等優(yōu)點(diǎn),被廣泛應(yīng)用于牧草遺傳圖譜構(gòu)建研究中。目前,用于植物遺傳作圖的主要分子標(biāo)記有RFLP、RAPD、AFLP、SRAP和SSR等。

對(duì)于大多數(shù)牧草物種而言,親本是高度雜合的個(gè)體,從親本到子代需要傳遞多個(gè)等位基因,RAPD等顯性標(biāo)記往往難以區(qū)分純合基因型或雜合基因型,而SSR等共顯性標(biāo)記能夠檢測(cè)多個(gè)等位位點(diǎn),獲得異交親本中最大量的多態(tài)性。早期構(gòu)建的遺傳連鎖圖譜主要利用的分子標(biāo)記是RFLP和AFLP等。RFLP標(biāo)記具有重復(fù)性好和共顯性的特點(diǎn),在構(gòu)建牧草核心或框架圖譜,特別是比較作圖中有重要作用。如Xu等[24]利用RFLP標(biāo)記構(gòu)建了高羊茅的遺傳圖譜,構(gòu)圖群體中有105個(gè)子代,圖譜長(zhǎng)度達(dá)1 274cM,分布在19個(gè)連鎖群。該標(biāo)記也被用在紫花苜蓿[12-14,16]、多年生黑麥草[28,30,32]等草種的遺傳圖譜構(gòu)建上。AFLP技術(shù)耗時(shí)量小,信息量大,是構(gòu)建高精密度分子遺傳圖譜的重要標(biāo)記。如Sandal等[23]在日本百脈根的研究中利用AFLP所構(gòu)建的圖譜中圖幅的平均距離已小到0.6cM。SSR標(biāo)記由于具有共顯性、基因組中分布廣泛、重復(fù)性好、多態(tài)性高、信息量大等優(yōu)點(diǎn),避免了RFLP方法中使用放射性同位素的缺點(diǎn),又比RAPD重復(fù)率和可信度高,在遺傳圖譜構(gòu)建方面具有廣闊的研究前景,是理想的標(biāo)記之一,已應(yīng)用于紫花苜蓿[17]、紅三葉[20]、高羊茅[25]、黑麥草[27,29]、鴨茅[35-37]、賴草[38]、結(jié)縷草[42,44]等草種的遺傳圖譜構(gòu)建。隨著高通量測(cè)序等技術(shù)的發(fā)展,單核苷酸多態(tài)性標(biāo)記(Single Nucleotide Polymorphism,SNP)、序列標(biāo)簽位點(diǎn)(Sequence tag Site,STS)標(biāo)記[39]及多樣性微陣列技術(shù)(Diversity Arrays Techenology,DArT)[31]等新型標(biāo)記也將在遺傳作圖中顯示出廣泛的應(yīng)用前景。

表1 牧草遺傳圖譜構(gòu)建研究進(jìn)展Table 1 Genetic linkage maps in forage grasses

續(xù)表1

2 牧草遺傳連鎖圖譜的應(yīng)用

對(duì)于牧草育種者而言,牧草大多數(shù)的性狀如干物質(zhì)產(chǎn)量、牧草品質(zhì)和非生物抗性等常表現(xiàn)出連續(xù)的表型變異,并受多個(gè)數(shù)量性狀位點(diǎn)控制。以往育種者主要是通過(guò)多年輪回選擇對(duì)目標(biāo)性狀進(jìn)行改良,育種周期長(zhǎng),效率低。分子遺傳連鎖圖譜則有助于在分子層面分析與主要農(nóng)藝性狀相關(guān)聯(lián)的基因區(qū)域或分子標(biāo)記,從而定位和克隆重要的農(nóng)藝性狀基因、檢測(cè)和標(biāo)記數(shù)量性狀位點(diǎn),并應(yīng)用于分子標(biāo)記輔助育種,可大幅度提高牧草育種的水平和效率。

2.1 牧草重要農(nóng)藝性狀QTL定位

隨著分子標(biāo)記技術(shù)和分子連鎖圖譜構(gòu)建的迅猛發(fā)展,使得數(shù)量性狀位點(diǎn)(QTL)定位成為可能。目前國(guó)外已有大量的牧草QTL研究的報(bào)道(表2),主要集中在黑麥草屬[27,50-70]、賴草屬[73-77]和苜蓿屬[78-84]等。我國(guó)牧草QTL研究的報(bào)道相對(duì)較少,僅見(jiàn)于鴨茅[37]、高丹草[40]、結(jié)縷草[90]等少數(shù)草種。在牧草QTL研究領(lǐng)域,黑麥草屬Q(mào)TL研究最為廣泛和深入,研究?jī)?nèi)容涉及多個(gè)主要的農(nóng)藝性狀,如抗病性[50-56]、開(kāi)花期[60-63]、種子產(chǎn)量相關(guān)性狀[58]、牧草品質(zhì)相關(guān)性狀[64-65]、牧草產(chǎn)量相關(guān)性狀[67]等。

2.1.1 抗病QTL定位 牧草抗病QTL研究主要集中在黑麥草屬上,包括抗銹病、細(xì)菌性萎蔫病、霉粉病和葉斑病等。Studer等[27]用含307單株的“雙擬測(cè)交”群體為材料對(duì)多花黑麥草冠銹病QTL進(jìn)行了研究,在第1和2連鎖群上檢測(cè)到抗冠銹病相關(guān)QTL,它們能解釋高達(dá)56%的表型變異。在多年生黑麥草第1和2連鎖群上也發(fā)現(xiàn)了4個(gè)冠銹病QTLs,其中LpPc4和LpPc2位于第1連鎖群,Lp-Pc3和LpPc1位于第2個(gè)連鎖群上,它們分別能解釋12.5%、24.9%、5.5%和2.6%的表型變異,比較作圖分析發(fā)現(xiàn),這些QTL所在連鎖群與燕麥A和B染色體具有同源性,在燕麥A和B染色體上已經(jīng)鑒定了抗冠銹病相關(guān)基因[52]。Pfender等[54]也在第1、6和7連鎖群上共檢測(cè)到3個(gè)抗桿銹病QTL(qLpPg1、qLpPg2、qLpPg3),其中主效 QTL(qLpPg1)定位在第7連鎖群上,可解釋30%~38%的表型變異。

2.1.2 產(chǎn)量相關(guān)QTL定位 提高牧草單位面積草產(chǎn)量或種子產(chǎn)量是牧草的主要育種目標(biāo),其中種子產(chǎn)量對(duì)牧草品種的生產(chǎn)、推廣和應(yīng)用有重要影響。Espinoza等[84]利用蒺藜苜蓿(Medicagotruncatula)4個(gè)作圖群體研究了主枝長(zhǎng)度(LPB)、分枝延伸率(BER)、干物質(zhì)(ADM)、主莖干長(zhǎng)(LMS)等產(chǎn)量相關(guān)性狀,通過(guò)對(duì)單個(gè)和多個(gè)群體的分析表明,主要的QTL區(qū)域位于第1、2、7和8染色體上,多群體分析揭示了3個(gè)與LPB、LMS、BER等性狀密切相關(guān)的主效的QTL區(qū)域。Studer等[58]利用F2作圖群體,構(gòu)建了黑麥草遺傳連鎖圖譜,在連鎖群1和2上檢測(cè)到兩個(gè)與種子產(chǎn)量相關(guān)的QTL,它們分別解釋了41%和18%的表型變異。Faville等[67]在多年生黑麥草連鎖群1、2、4和6上檢測(cè)到與草產(chǎn)量有關(guān)的QTL。Herrmann等[86]檢測(cè)到38個(gè)與紅三葉種子產(chǎn)量性狀相關(guān)(每株植物的種子數(shù)、每個(gè)花序上的種子產(chǎn)量、每株植物上的花序數(shù)等)的QTL,這為紅三葉種子產(chǎn)量性狀的改良和分子標(biāo)記輔助育種奠定基礎(chǔ)。Robins和Brammer[80]利用紫花苜蓿F1群體對(duì)影響牧草產(chǎn)量、株高、再生性等產(chǎn)量相關(guān)性狀進(jìn)行了QTL分析,分別在連鎖群3、4、5和7上檢測(cè)到影響這些性狀的QTL位點(diǎn),它們解釋的表型變異在11%~44%。

表2 牧草主要農(nóng)藝性狀QTLTable 2 QTL for important agronomic trait in forage grasses

2.1.3 牧草品質(zhì)相關(guān)QTL定位 Espinoza和Julier[83]利用蒺藜苜蓿作圖群體研究了粗蛋白、消化率等品質(zhì)相關(guān)的QTL,主效QTL主要分布于染色體1、3、7和8的4個(gè)基因區(qū)域,其中牧草品質(zhì)相關(guān)的QTL和形態(tài)QTL定位在相同的區(qū)域,由此推測(cè)品質(zhì)性狀和表型特征具有緊密的關(guān)系,該研究為進(jìn)一步鑒定和挖掘豆科牧草品質(zhì)相關(guān)的基因奠定了基礎(chǔ)。Cogan等[64]對(duì)黑麥草牧草品質(zhì)(如粗蛋白、體外消化率、中性洗滌纖維等)的QTL進(jìn)行了分析,在連鎖群3、5、7上共檢測(cè)到42個(gè)影響這些性狀的QTL位點(diǎn),其中LG3包含了影響所觀測(cè)性狀的所有QTL位點(diǎn),LG7上包含了除粗蛋白外的所有QTL位點(diǎn)。研究指出,與這些位點(diǎn)緊密連鎖的分子標(biāo)記,對(duì)于分子標(biāo)記輔助育種有重要利用價(jià)值。碳水化合物含量(WSC)是決定牧草品質(zhì)的一個(gè)重要因素,對(duì)該性狀進(jìn)行分子標(biāo)記輔助選擇對(duì)于黑麥草分子育種及目標(biāo)性狀的改良意義重大。Turner等[65]檢測(cè)到影響黑麥草 WSC含量的QTL,同時(shí)利用與WSC含量QTL緊密連鎖的標(biāo)記去測(cè)試這些QTL的效應(yīng),雖然WSC含量和其他因素有復(fù)雜的相互影響,但進(jìn)一步證明了這些QTL區(qū)域?qū)邴湶軼SC含量有調(diào)控作用。另外,黑麥草脂肪酸成分QTL也被定位于相應(yīng)的連鎖群上,其中棕櫚酸含量(C16:0)QTL位于連鎖群2和7、硬脂酸(C18:3n-3)位于連鎖群3、4和7、亞油酸(C18:2n-6)和亞麻酸(C18:3n-3)分別位于連鎖群2和1[69]。Larson和 Mayland[73]對(duì)賴草粗蛋白(CP)、中性洗滌纖維(NDF)、酸性洗滌纖維(ADF)和 Al、B、Ca、Cu等14種礦物質(zhì)含量及 K/(Ca+Mg)比例(KRAT)等進(jìn)行了分析,發(fā)現(xiàn)在作圖群體中這些性狀存在顯著的變異,并檢測(cè)到所有性狀的QTL位點(diǎn),如 ADF位于 LG1a、LG5Xm、LG7a、NDF位于LG7a,Mn位于 LG2b、LG3b、LG4Xm,S位于 LG3等。研究結(jié)果對(duì)于篩選和培育新的賴草新品種,鑒定和挖掘影響礦物質(zhì)含量及纖維互作的功能基因也有重要意義。

2.1.4 抗非生物脅迫QTL定位 水澇通過(guò)影響植物根部對(duì)水分的吸收從而影響植物正常生長(zhǎng)。Pearson等[68]利用NAx和AU6為親本構(gòu)建了F1作圖群體,在對(duì)作圖群體進(jìn)行8d水澇脅迫后,測(cè)定了9個(gè)相關(guān)的數(shù)量性狀,最終檢測(cè)到37個(gè)QTL位點(diǎn)。其中19個(gè)QTL位點(diǎn)位于NAx圖譜上,18個(gè)位于AU6圖譜上。在連鎖群3和4上發(fā)現(xiàn)了黑麥草耐澇相關(guān)的特殊區(qū)域。在抗凍性和抗旱性研究方面,Alm等[71]在草地羊茅染色體5F上檢測(cè)到兩個(gè)抗凍性QTL,在染色體3F上檢測(cè)到1個(gè)抗旱性QTL。Brouwer等[79]利用紫花苜蓿為材料定位了冬季抗寒、抗凍和秋季生長(zhǎng)性QTL,在第5和8連鎖群上發(fā)現(xiàn)了影響秋季生長(zhǎng),冬季抗寒、抗凍的QTL,但僅對(duì)秋季生長(zhǎng)和抗凍性有影響的QTL定位在連鎖群1和3,這些QTL區(qū)域可用于分子標(biāo)記輔助育種選擇。Sledge等[81]對(duì)二倍體紫花苜蓿抗鋁性進(jìn)行了QTL研究,發(fā)現(xiàn)兩個(gè)RFLP標(biāo)記UGAc471和UGAc502與作圖F2群體的抗鋁性緊密連鎖,可用于將檢測(cè)到的QTL位點(diǎn)滲入到栽培的紫花苜蓿品種以提高其抗鋁性。丁成龍等[90]在人工低溫脅迫條件下研究結(jié)縷草葉片的半致死溫度(LT50)、可溶性糖、可溶性蛋白含量及過(guò)氧化物歧化酶(SOD)活性的變化,并以447個(gè)SSR標(biāo)記構(gòu)建的日本結(jié)縷草遺傳連鎖圖譜為基礎(chǔ),對(duì)抗寒相關(guān)的性狀可溶性糖、可溶性蛋白含量及SOD活性進(jìn)行了QTL定位分析,分別定位到與葉片可溶性糖、可溶性蛋白含量和SOD活性相關(guān)的QTL各1個(gè),分布于連鎖群10、13和17。

2.1.5 繁殖性狀相關(guān)QTL 了解植物的繁殖特性與種子生產(chǎn)性能是種質(zhì)資源的保存與更新、野生種的馴化選育和新品種推廣利用的重要前提。深入研究草類植物繁殖性狀的生物學(xué)基礎(chǔ),培育種子產(chǎn)量高、生產(chǎn)性能好的草類新品種,是以往國(guó)內(nèi)外關(guān)注不多、但目前亟待研究的重要領(lǐng)域。草類植物的繁殖性狀,主要包括開(kāi)花時(shí)間、花部形態(tài)、種子育性、種子落粒性、種子形態(tài)等。Xie等[37]在鴨茅連鎖群2、5和6檢測(cè)到與開(kāi)花時(shí)間相關(guān)的7個(gè)QTL。其中LG2上的QTL定位在兩親本同源連鎖群相同區(qū)域,且都與標(biāo)記Contig3046緊密連鎖,QTL分別解釋了8%和22%的表型變異。該研究所定位的QTL位置與近緣物種如黑麥草等所定位的開(kāi)花QTL位置基本一致,為近一步挖掘鴨茅開(kāi)花基因奠定了良好基礎(chǔ)。Larson和Kellogg[74]在賴草屬雜交種第6條染色體檢測(cè)到控制落粒性的QTL,該位點(diǎn)與水稻第2條染色體具有同源性。Ergon等[72]在草地羊茅染色體7F上檢測(cè)到一個(gè)影響小穗數(shù)量變異的基因區(qū)域。一個(gè)穗長(zhǎng)QTL、3個(gè)小穗數(shù)QTL被鑒定,分別解釋了32%~33%的表型變異。并且這些QTL與抽穗期QTL基本一致,表明他們受潛在的相關(guān)基因協(xié)作調(diào)節(jié)。在連鎖群4的頂端發(fā)現(xiàn)一個(gè)區(qū)域同時(shí)包含了抽穗時(shí)間、穗長(zhǎng)和小穗數(shù)QTL,同時(shí)這也是穗長(zhǎng)主效QTL所在位置。

2.2 重要農(nóng)藝性狀基因定位

從目前牧草研究情況看,在黑麥草、羊茅等少數(shù)牧草上有開(kāi)花基因和抗逆基因的相關(guān)報(bào)道。開(kāi)花期是牧草的重要農(nóng)藝性狀,對(duì)牧草產(chǎn)量、飼用品質(zhì)及利用價(jià)值有重要影響。抽穗開(kāi)花后飼草品質(zhì)往往快速下降,生產(chǎn)上應(yīng)根據(jù)不同需要培育不同生育期的早晚熟品種,尤其在混播草地中培育晚熟的牧草品種能大大提高草地生產(chǎn)能力和利用效率。Jensen等[63]利用多年生黑麥草品種“Veyo”和來(lái)自于“Falster”的一個(gè)基因型雜交,構(gòu)建了含184個(gè)單株的F2的作圖群體,檢測(cè)到5個(gè)影響黑麥草春化的QTL,并在第4連鎖群上主效QTL的附近成功定位了一個(gè)春花基因VRN1。Xie等[92]利用水稻、小麥、擬南芥(Arabidopsisthaliana)、黑麥草等物種的開(kāi)花期基因的保守序列,設(shè)計(jì)基因探針,與鴨茅基因組雜交進(jìn)行目標(biāo)基因的捕獲,通過(guò)測(cè)序并設(shè)計(jì)基因引物最終將Vrn3基因成功定位在鴨茅的第3個(gè)連鎖群上。Armstead等[60]在多年生黑麥草上鑒定了與水稻Hd1基因和大麥(Hordeumvulgare)HvCOl基因同源的抽穗基因LpHd1,該基因位于黑麥草第7染色體的定位區(qū)域。Tamura和Yamada[93]定位了多年生黑麥草的CBF基因簇,4個(gè)CBF基因(LpCBFIb,LpCBFII,LpCBFIIIb和LpCBIIIc)定位在連鎖群5上,另一個(gè)基因LpCBFVb定位于連鎖群1上。

2.3 比較基因組分析

比較作圖就是利用共同的遺傳標(biāo)記(主要是分子標(biāo)記、基因的cDNA克隆以及基因組克?。?duì)相關(guān)物種進(jìn)行物理或遺傳作圖,比較這些標(biāo)記在不同物種基因組的分布情況,揭示染色體片段上的同線性(Synteny)或共線性(Collinearity),從而對(duì)不同物種的基因組結(jié)構(gòu)及基因組進(jìn)化歷程進(jìn)行準(zhǔn)確分析[94]。比較作圖的分子基礎(chǔ)是物種間DNA序列尤其是編碼序列的保守性。植物的比較作圖最早是在番茄(Lycopersiconesculentum)和馬鈴薯(Solanum tuberosum)[95]、番茄和胡椒(Pipernigrum)[96]之間進(jìn)行的。近年來(lái),比較作圖在禾本科作物分子作圖上迅速發(fā)展。通過(guò)黑麥(Secalecereale)、玉米、小麥和水稻[97]、玉米和高粱(Sorghumbicolor)等[98]的比較基因組研究表明,雖然這些物種在遺傳背景、染色體組成、基因組大小存在差異,但比較作圖結(jié)果表明:許多標(biāo)記在不同作物的遺傳圖譜上的位置和順序都具有高度的保守性,說(shuō)明染色體間共線性片段和基因組的同源性在不同物種間廣泛存在。開(kāi)展牧草與作物間的比較基因作圖研究,對(duì)于在基因組研究較少的牧草物種中發(fā)現(xiàn)重要的農(nóng)藝性狀基因,開(kāi)展功能分析具有重要意義。

比較基因作圖和微線性分析表明,黑麥草抽穗基因LpHd1和草地羊茅抽穗基因FpHd1是水稻Hd1基因的同源基因。表明LpHd1和FpHd1基因預(yù)測(cè)的蛋白質(zhì)序列是類似CONSTANS基因鋅指蛋白,它們與水稻Hd1的序列同源性分別為61%~62%,而與大麥HvCOl的序列同源性為72%。同時(shí)LpHd1基因在黑麥草第7染色體的定位區(qū)域,與水稻Hd1基因所在的第6染色體和大麥HvCOl基因所在的第7H染色體的基因組間具有一定的共線性[60]。此外,多花黑麥草抽穗期的主效QTL與水稻抽穗期基因Hd3位點(diǎn)具有共線性關(guān)系[62]。而黑麥草上已發(fā)現(xiàn)3個(gè)與春化反應(yīng)相關(guān)的候選基因,DNA序列比對(duì)表明它們與二倍體小麥的TmVRN2基因及水稻的Hd1基因具有高度的同源性[99]。Alm等[71]對(duì)草地羊茅抗凍性和抗旱性 QTL進(jìn)行了定位,通過(guò)將草地羊茅兩個(gè)抗凍QTL小麥相關(guān)QTL進(jìn)行比較分析發(fā)現(xiàn),羊茅染色體5F上的兩個(gè)抗凍QTL與小麥同源連鎖群5A上的Fr-A1和Fr-A2具有較高同源性,草地羊茅3F上的抗旱性QTL與水稻染色體上相應(yīng)的抗旱位點(diǎn)具有線性關(guān)系。對(duì)鴨茅EST序列和黑麥草EST序列的同源比對(duì)發(fā)現(xiàn):鴨茅連鎖圖譜上的8個(gè)SSR標(biāo)記與黑麥草連鎖圖譜上的標(biāo)記具有同源性。其中,鴨茅連鎖群1、2、3、4的部分SSR標(biāo)記與黑麥草相同連鎖群上的標(biāo)記序列具有同源性。而鴨茅連鎖群5的SSR標(biāo)記與黑麥草第7連鎖群的EST序列具有同源性[37]。

3 牧草遺傳連鎖圖譜構(gòu)建存在問(wèn)題及展望

遺傳圖譜的構(gòu)建開(kāi)創(chuàng)了牧草分子遺傳育種的新局面,但現(xiàn)階段直接用于牧草的育種實(shí)踐還有很大的距離。主要表現(xiàn)在以下方面:

(1)作圖標(biāo)記以隨機(jī)標(biāo)記為主,共顯性標(biāo)記利用有限。目前,一半以上牧草連鎖圖譜是用RAPD和AFLP等顯性標(biāo)記構(gòu)建而成的。雖然利用這些隨機(jī)標(biāo)記可獲得大量分離位點(diǎn),快速構(gòu)建連鎖圖譜,但它們無(wú)法準(zhǔn)確區(qū)分純合子和雜合子,且這些標(biāo)記擴(kuò)增的片段通常是非編碼區(qū)域,難以直接用于分離控制重要農(nóng)藝性狀的基因,造成在牧草分子育種及目標(biāo)性狀改良上有很大的局限性,極大地降低了遺傳圖譜的應(yīng)用價(jià)值。因此,在遺傳標(biāo)記選擇上,應(yīng)多選用SSR、EST-SSR等共顯性標(biāo)記,同時(shí)利用近緣物種上成功構(gòu)圖且與重要農(nóng)藝性狀基因或QTL連鎖的標(biāo)記聯(lián)合作圖,以大大提高圖譜的飽和度,同時(shí)利于更準(zhǔn)確地進(jìn)行QTL分析及開(kāi)展不同物種間比較作圖分析。

(2)牧草遺傳圖譜構(gòu)圖群體選擇和群體大小。為保證連鎖圖譜的準(zhǔn)確性,每個(gè)群體應(yīng)保證有足夠的個(gè)體,而構(gòu)建骨架連鎖圖可基于大群體中的一個(gè)隨機(jī)小群體(如150個(gè)單株或家系)[100]。在已構(gòu)建的牧草連鎖圖譜中構(gòu)圖群體大小從幾十到幾百不等,僅有紅三葉[19]、日本百脈根[23]、多年生黑麥草[30]、鴨茅[37]、賴草[38]和冰草[39]等草種的部分作圖群體大于150個(gè)單株。但幾乎所有的構(gòu)圖群體是F1、F2暫時(shí)性分離群體,雖然這些群體構(gòu)建時(shí)間短、成本低、信息量大,但難以較長(zhǎng)期保存,研究結(jié)果的可比性不強(qiáng),不利于信息的共享。在今后的工作中應(yīng)加強(qiáng)多子代永久群體的構(gòu)建和保存研究,發(fā)展基于更大的作圖群體下建立起來(lái)的植物遺傳連鎖圖譜。

(3)構(gòu)建的牧草連鎖圖譜大多密度偏低,且均勻性較差,難以滿足基因定位、克隆和分子輔助選擇育種的要求。已構(gòu)建的牧草連鎖圖譜大多是框架圖譜,連鎖群數(shù)與研究對(duì)象實(shí)際染色體數(shù)或多或少存在差異,不同構(gòu)圖群體和不同親本間的連鎖群有時(shí)也不同;大多數(shù)已構(gòu)建的牧草圖譜的圖幅較小,標(biāo)記間的間隙較大,還不能滿足QTL分析、基因克隆和分子標(biāo)記輔助選擇對(duì)遺傳圖譜的要求。加強(qiáng)準(zhǔn)確、完整、實(shí)用和高密度遺傳圖譜的構(gòu)建研究十分必要。

總之,植物遺傳連鎖圖譜的發(fā)展趨勢(shì)是高飽和化、實(shí)用化和通用化。隨著人們對(duì)牧草重要性認(rèn)識(shí)的不斷提高及分子生物學(xué)技術(shù)的持續(xù)發(fā)展,牧草遺傳連鎖圖譜構(gòu)建的研究必將邁上一個(gè)新的臺(tái)階。在此基礎(chǔ)上結(jié)合牧草育種的主要目標(biāo)開(kāi)展高產(chǎn)、優(yōu)質(zhì)、抗逆等重要農(nóng)藝性狀QTL定位研究,挖掘和克隆一批重要的功能基因,以改良牧草重要的農(nóng)藝性狀,加快牧草育種進(jìn)程,是牧草育種的必由之路。

[1]董寬虎,沈益新.飼草生產(chǎn)學(xué)[M].北京:中國(guó)農(nóng)業(yè)出版社,2003.

[2]方程,韓建國(guó).牧草遺傳連鎖圖譜構(gòu)建研究概述[J].草地學(xué)報(bào),2006,14(3):287-291.

[3]Castiglioni P,Ajmone-Marsan P,Van Wijk R,Motto M.AFLP markers in a molecular linkage map of maize:Codominant scoring and linkage group distribution[J].Theoretical and Applied Genetics,1999,99(3-4):425-431.

[4]Price A H,Steele K A,Moore B S,Barraclough P P,Clark L J.A combined RFLP and AFLP linkage map of upland rice(OryzasativaL.)used to identify QTLs for root-penetration ability[J].Theoretical and Applied Genetics,2000,100(1):49-56.

[5]Paillard S,Schnurbusch T,Winzeler M,Messmer M,Sourdille P,Abderhalden O,Keller B,Schachermayr G.An integrative genetic linkage map of winter wheat(TriticumaestivumL.)[J].Theoretical and Applied Genetics,2003,107:1235-1242.

[6]Song X J,Huang W,Shi M,Zhu M Z,Lin H X.A QTL for rice grain width and weight encodes a previously unknown RING-type E3ubiquitin ligase[J].Nature Genetics,2007,39(5):623-630.

[7]Kato K,Nakamura W,Tabiki T,Miura H,Sawada S.Detection of loci controlling seed dormancy on group chromosomes of wheat and comparative mapping with rice and barley genomes[J].Theoretical and Applied Genetics,2001,102:980-985.

[8]Varshney RV,Sigmund R,B?rner A,Korzun V,Stein N,Sorrells M E,Langridge P,Graner A.Interspecific transferability and comparative mapping of barley EST-SSR markers in wheat,rye and rice[J].Plant Science,2005,168,195-202.

[9]Zhou W C,Kolb F L,Bai G H,Domier L L,Boze L K,Smith N J.Validation of a major QTL for scab resistance with SSR markers and used of marker-assisted selection in wheat[J].Plant Breeding,2008,122:40-46.

[10]Jena K K,Mackill D J.Molecular markers and their use in marker-assisted selection in rice[J].Crop Science,2008,48(4):1266-1276.

[11]Grattapaglia D,Sederoff R.Genetic linkage maps ofEucalyptusgrandisandEucalyptusurophyllausing apseudo-testcross:mapping strategy and RAPD markers[J].Genetics,1994,137(4):1121-1137.

[12]Brummer E C,Bouton J H,Kochert G.Development of an RFLP map in diploid alfalfa[J].Theoretical and Applied Genetics,1993,86:329-332.

[13]Tavoletti S,Veronesi F,Osborn T C.RFLP linkage map of an alfalfa meiotic mutant based on an F1population[J].Journal of Heredity,1996,87:167-170.

[14]Echt C S,Kidwell K K,Knapp S J,Osborn T C,McCoy T J.Linkage mapping in diploid alfalfa(Medicagosativa)[J].Genome,1994,37:61-71.

[15]Barcaccia G,Albertini E,Tavoletti S,F(xiàn)alcinelli M,Veronesi F.AFLP fingerprinting inMedicagospp:Its development and application in linkage mapping[J].Plant Breeding,1999,118:335-340.

[16]KalóP,Endre G,Zimányi,Csanádi G,Kiss G B.Construction of an improved linkage map of diploid alfalfa(Medicago sativa)[J].Theoretical and Applied Genetics,2000,100:641-657.

[17]Julier B,F(xiàn)lajoulot S,Barre P,Cardinet G,Santoni S,Huguet T,Huyghe C.Construction of two genetic linkage maps in cultivated tetraploid alfalfa(Medicagosativa)using microsatellite and AFLP markers[J].BMC Plant Biology,2003,3:9.

[18]Choi H K,Kim D,Uhm T,Limpens E,Lim H,Mun J H,Kalo P,Penmetsa R V,Seres A,Kulikova O,Roe B A,Bisseling T,Kiss G B,Cook D R.A sequence-based genetic map ofMedicagotruncatulaand comparison of marker colinearity withM.sativa[J].Genetics,2004,166:1463-1502.

[19]Isobe S,Klimenko I,Ivashuta S,Gau M,Kozlov N N.First RFLP linkage map of red clover(TrifoliumpratenseL.)based on cDNA probes and its transferability to other red clover germplasm[J].Theoretical and Applied Genetics,2003,108:105-112.

[20]Isobe S,K?lliker R,Hisano H,Sasamoto S,Wada T,Klimenko I,Okumura K,Tabata S.Construction of a consensuslinkage map for red clover(TrifoliumpratenseL.)[J].BMC Plant Biology,2009,9:57.

[21]Jones E S,Hughes L J,Drayton M C,Abberton M T,Michaelson-Yeates,T P T,Bowen C,F(xiàn)orster J W.An SSR and AFLP molecular marker-based genetic map of white clover(TrifoliumrepensL.)[J].Plant Science,2003,165:531-539.

[22]Fjellstrom R G,Steiner J J,Beuselink P R.Tetrasomic linkage mapping of RFLP,PCR,and isozyme loci inLotuscorniculatusL[J].Crop Science,2003,43:1006-1020.

[23]Sandal N,Krusell L,Radutoiu S,Olbryt M,Pedrosa A,Stracke S,Sato S,Kato T,Tebata S,Parniske M,Bachmair A,Ketelsen T,Stougaard J.A genetic linkage map of the model legumeLotusjaponicusand strategies for fast mapping of new loci[J].Genetics,2002,161(4),1673-1683.

[24]Xu W W,Sleper D A,Chao S.Genome mapping of polyploidy tall fescue(FestucaarundinaceaSchreb.)with RFLP markers[J].Theoretical and Applied Genetics,1995,91:947-955.

[25]Saha M C,Mian R,Zwonitzer J C,Chekhovskiy K,Hopkins A A.An SSR-and AFLP-based genetic linkage map of tall fescue(FestucaarundinaceaSchreb.)[J].Theoretical and Applied Genetics,2005,110:323-336.

[26]Alm V,Busso C S,Ergon A,Rudi H,Larsen A,Humphreys M W,Rognli O A.QTL analyses and comparative genetic mapping of frost tolerance,winter survival and drought tolerance in meadow fescue(FestucapratensisHuds.)[J].Theoretical and Applied Genetics,2011,123:369-382.

[27]Studer B,Boller B,Bauer E,Posselt U K,Widmer F,Kolliker R.Consistent detection of QTLs for crown rust resistance in Italian ryegrass(LoliummultiflorumLam.)across environments and phenotyping methods[J].Theoretical and Applied Genetics,2007,115:9-17.

[28]Hayward M D,F(xiàn)orster J W,Jones J G,Dolstra O,Evans C,McAdam N J,Hossain K G,Stammers M,Will J,Humphreys M O,Evans G M.Genetic analysis ofLolium.I Identification of linkage groups and the establishment of a genetic map[J].Plant Breeding,1998,117:451-455.

[29]Bert P F,Charmet G,Sourdille P,Hayward M D,Balfourier F.A high-density molecular map for ryegrass(Loliumperenne)using AFLP markers[J].Theoretical and Applied Genetics,1999,99:445-452.

[30]Jones E S,Mahoney N L,Hayward M D,Armstead I P,Jones J G,Humphreys M O,King I P,Kishida T,Yamada T,Balfourier F,Charmet G,F(xiàn)orster J W.An enhanced molecular marker based genetic map of perennial ryegrass(Lolium perenne)reveals comparative relationships with other Poaceae genomes[J].Genome,2002,45:282-295.

[31]Tomaszewski C,Byrne S L,F(xiàn)oito A,Kildea S,Kopecky D,Dolezel J,Heslop-Harrison J S,Stewart D,Barth S.Genetic linkage mapping in an F2perennial ryegrass population using DArT markers[J].Plant Breeding,2012,131(2):345-349.

[32]Inoue M,Gao Z,Hirata M,F(xiàn)ujimori M,Cai H W.Construction of a high-density linkage map of Italian ryegrass(Lolium multiflorumLam.)using restriction fragment length polymorphism,amplified fragment length polymorphism,and telomeric repeat associated sequence markers[J].Genome,2004,47:57-65.

[33]Hirata M,Cai H W,Inoue M,Yuyama N,Miura Y,Komatsu T,Takamizo T and Fujimori M.Development of simple sequence repeat(SSR)markers and construction of an SSR-based linkage map in Italian ryegrass(LoliummultiflorumLam.)[J].Theoretical and Applied Genetics,2006,113:270-279.

[34]Warnke S E,Barker R E,Jung G,Sim S C,RoufMian M A,Saha M C,Brilman L A,Dupal M P,F(xiàn)orster J W.Genetic linkage mapping of an annual×perennial ryegrass population[J].Theoretical and Applied Genetics,2004,109:294-304.

[35]Song Y,Liu F,Zhu Z,Tan L,F(xiàn)u Y,Sun C,Cai H.Construction of a simple sequence repeat marker-based genetic linkage map in the autotetraploid forage grassDactylisglomerataL[J].Grassland Science,2011,57:158-167.

[36]Xie W,Zhang X,Cai H,Huang L,Peng Y,Ma X.Genetic maps of SSR and SRAP markers in diploid orchardgrass(DactylisglomerataL.)using the pseudo-testcross strategy[J].Genome,2011,54:212-221

[37]Xie W G,Robins J G,Bushman B S.A genetic linkage map of tetraploid orchardgrass(DactylisglomerataL.)and QTL for heading date[J].Genome,2012,55:360-369

[38]Wu X L,Larson S R,Hu Z,Palazzo A J,Jones T A,Wang R R C,Jensen K B,Chatterton N J.Molecular genetic linkage maps for alloteraploidLeymuswildryes(Gramineae:Triticeae)[J].Genome,2003,46:627-646.

[39]Mott I W,Larson S R,Jones T A,Robins J G,Jensen K B,Peel M D.A molecular genetic linkage map identifying the St and H subgenomes ofElymus(Poaceae:Triticeae)wheatgrass[J].Genome,2011,54:819-828.

[40]Lu X P,Yu J P,Gao C P,Surya A.Quantitative trait loci analysis of economically important traits inSorghumbicolor×Sorghumsudaneneshybrid[J].Canadian Journal of Plant Science,2011,91(1):81-90.

[41]Yaneshita M S,Kaneko S,Sasakuma T.Allotetraploidy ofZoysiaspecies with 2n=40based on a RFLP genetic map[J].Theoretical and Applied Genetics,1999,98:751-756.

[42]Cai H W,Inoue M,Yuyama N,Takahasha W,Hirata H,Sasaki T.Isolation,characterization and mapping of simple sequence repeat markers in Zoysiagrass(Zoysiaspp.)[J].Theoretical and Applied Genetics,2005,112:158-166.

[43]Cai W H,Inoue M,Yuyama N,Nakayama S.An AFLP-based linkage map of Zoysiagrass(Zoysiajaponica)[J].Plant Breeding,2004,123:543-548.

[44]Li M L,Yuyama N,Hirata M,Han J G,Wang Y W,Cai H W.Construction of a high-density SSR marker-based linkage map of zoysiagrass(ZoysiajaponicaSteud.)[J].Euphytica,2009,170:327-338.

[45]Harris-Shultz K R,Schwartz B M,Hanna W W.Development,linkage mapping,and use of microsatellites in bermudagrass[J].Journal of the American Society for Horticultural Science,2010,135(6):511-520.

[46]Bethel C M,Sciara E B,Estill J C,Bowers J E,Hanna W,Paterso A H.A framework linkage map of bermudagrass(Cynodondactylon×transvaalensis)based on single-dose restriction fragments[J].Theoretical and Applied Genetics,2006,112:727-737.

[47]Rotter D,Amundsen K,Bonos S A,Meyer W A,Warnke S E,Belanger F C.Molecular genetic linkage map for allotetraploid colonial bentgrass[J].Crop Science,2009,49:1609-1618.

[48]Porceddu A,Albertini E,Barcaccia G,F(xiàn)alistocco E,F(xiàn)alcinelli M.Linkage mapping in apomictic and sexual Kentucky bluegrass(PoapratensisL.)genotypes using a two way pseudo-testcross strategy based on AFLP and SAMPL markers[J].Theoretical and Applied Genetics,2002,104:273-280.

[49]Ortiz J A ,Pessino S C,Bhat V,Hayward M D,Quarín C L.A genetic linkage map of diploidPaspalumnotatum[J].Crop Science,2001,41:823-830.

[50]Studer B,Boller B,Herrmann D,Bauer E,Posselt U K,Widmer F,K?lliker R.Genetic mapping reveals a single major QTL for bacterial wilt resistance in Italian ryegrass(LoliummultiflorumLam.)[J].Theoretical and Applied Genetics,2006,113:661-671.

[51]Inoue M,Gao Z S,Cai H W.QTL analysis of lodging resistance and related traits in Italian ryegrass(LoliummultiflorumLam.)[J].Theoretical and Applied Genetics,2004,109:1576-1585.

[52]Muylle H,Baert J,Bockstaele E V,Pertijs J,Roldán-Ruiz I.Four QTLs determine crown rust(Pucciniacoronataf.sp.lolii)resistance in a perennial ryegrass(Loliumperenne)population[J].Heredity,2005,95,348-357.

[53]Schejbel B,Jensen L B,Asp T,Xing Y,Lübberstedt T.QTL analysis of crown rust resistance in perennial ryegrass under conditions of natural and artificial infection[J].Plant breeding,2007,126,347-352

[54]Pfender W F,Saha M C,Johnson E A,Slabaugh M B.Mapping with RAD (restriction-site associated DNA)markers to rapidly identify QTL for stem rust resistance inLoliumperenne[J].Theoretical and Applied Genetics,2011,122:1467-1480.

[55]Schejbel B,Jensen L B,Asp T,Xing Y,Lübberstedt T.Mapping of QTL for resistance to powdery mildew and resistance gene analogues in perennial ryegrass[J].Plant breeding,2008,127,368-375

[56]Curley J,Sim S C,Warnke S,Leong S,Barker R,Jung G.QTL mapping of resistance to gray leaf spot in ryegrass[J].Theoretical and Applied Genetics,2005,111:1107-1117.

[57]Dracatos P M,Cogan N O I,Sawbridge T I,Gendall A R,Smith K F,Spangenberg G C,F(xiàn)orster J W.Molecular characterisation and genetic mapping of candidate genes for qualitative disease resistance in perennial ryegrass(LoliumperenneL.)[J].BMC Plant Biology,2009,9:62.

[58]Studer B,Jensen L B,Hentrup S,Brazauskas G,K?lliker R,Lübberstedt T.Genetic characterisation of seed yield and fertility traits in perennial ryegrass(LoliumperenneL.)[J].Theoretical and Applied Genetics,2008,117:781-791.

[59]Armstead I P,Turner L B,Marshall A H,Humphreys M O,King I P,Thorogood D.Identifying genetic components controlling fertility in the outcrossing grass species perennial ryegrass(Loliumperenne)by quantitative trait loci analysis and comparative genetics[J].New Phytologist,2008,178:559-571.

[60]Armstead I P,Sk?t L,Turner L B,Sk?t K,Donnison I S,Humphreys M O,King I P.Identification of perennial ryegrass(Loliumperenne(L.))and meadow fescue(Festucapratensis(Huds.))candidate orthologous sequences to the rice Hd1(Se1)and barley HvCO1CONSTANS-like genes through comparative mapping and microsynteny[J].New Phytologist,2005,167:239-247.

[61]Byrne S,Guiney E,Barth S,Donnison I,Mur L A J,Milbourne D.Identification of coincident QTL for days to heading,spike length and spikelets per spike inLoliumperenneL[J].Euphytica,2009,166:61-70.

[62]Armstead I P,Turner L B,F(xiàn)arrell M,Sk?t L,Gomes P,Montoya T,Donnison I S,King I P,Humphreys M O.Synteny between a major heading-date QTL in perennial ryegrass(LoliumperenneL.)and the Hd3heading-date locus in rice[J].Theoretical and Applied Genetics,2004,108:822-828.

[63]Jensen L B,Andersen J R,F(xiàn)rei U,Xing Y Z,Taylor C,Holm P B,Lübberstedt T.QTL mapping of vernalization response in perennial ryegrass(LoliumperenneL.)reveals co-location with an orthologue of wheat VRN1[J].Theoretical and Applied Genetics,2005,110:527-536.

[64]Cogan N O I,Smith K F,Yamada T,F(xiàn)rancki M G,Vecchies A C,Jones E S,Spangenberg G C,F(xiàn)orster J W.QTL analysis and comparative genomics of herbage quality traits in perennial ryegrass(LoliumperenneL.)[J].Theoretical and Applied Genetics,2005,110:363-380.

[65]Turner L B,F(xiàn)arrell M,Humphreys M O,Dolstra O.Testing water-soluble carbohydrate QTL effects in perennial ryegrass(LoliumperenneL.)by marker selection[J].Theoretical and Applied Genetics,2010,121:1405-1417.

[66]Barre P,Moreau L,Mi F,Turner L,Gastal F,Julier B,Ghesquière M.Quantitative trait loci for leaf length in perennial ryegrass(LoliumperenneL.)[J].Grass and Forage Science,2009,64,310-321.

[67]Faville M J,Jahufer M Z Z,Hume D E,Cooper B M,Pennell C G L,Ryan D L,Easton H S.Quantitative trait locus mapping of genomic regions controlling herbage yield in perennial ryegrass[J].New Zealand Journal of Agricultural Reaearch,2012,55(3):263-281.

[68]Pearson A,Cogan N O I,Baillie R C,Hand M L,Bandaranayake C K,Erb S,Wang J P,Kearney G A,Gendall A R,Smith K F,F(xiàn)orster J W.Identification of QTLs for morphological traits influencing waterlogging tolerance in perennial ryegrass(LoliumperenneL.)[J].Theoretical and Applied Genetics,2011,122:609-622.

[69]Hegarty M,Yadav R,Lee M,Armstead I,Sanderson R,Scollan N,Powell W,Sk?t L.Genotyping by RAD sequencing enables mapping of fatty acid composition traits in perennial ryegrass(Loliumperenne(L.))[J].Plant Biotechnology Journal,2013.11(5)572-581.

[70]Brown R N,Barker R E,Warnke S E,Cooper L D,Brilman L A,Mian M A R,Jung G,Sim S C.Identification of quantitative trait loci for seed traits and floral morphology in a field-grownLoliumperenne×Loliummultiflorummapping population[J].Plant Breeding,2010,129,29-34.

[71]Alm V,Busso C S,Ergon A,Rudi H,Larsen A,Humphreys M W,Rognli O A.QTL analyses and comparative genetic mapping of frost tolerance,winter survival and drought tolerance in meadow fescue(FestucapratensisHuds.)[J].Theoretical and Applied Genetics,2011,123:369-382.

[72]Ergon A,F(xiàn)ang C,J?rgensen?,Aamlid T S,Rognli O A.Quantitative trait loci controlling vernalization requirement,heading time and number of panicles in meadow fescue(FestucapratensisHuds.)[J].Theoretical and Applied Genetics,2006,112:232-242.

[73]Larson S R,Mayland H F.Comparative mapping of fiber,protein,and mineral content QTLs in two interspecific Leymus wildrye full-sib families[J].Molecular Breeding,2007,20:331-347.

[74]Larson S R,Kellogg E A.Genetic dissection of seed production traits and identification of a major-effect seed retention QTL in hybridLeymus(Triticeae)wildryes[J].Crop Science,2009,49:29-40.

[75]Hu Z M,Wu X L,Larson S R,Wang R R C,Jones T A,Chatterton N J,Palazzo A J.Detection of linkage disequilibrium QTLs controlling low-temperature growth and metabolite accumulations in an admixed breeding population ofLeymuswildryes[J].Euphytica,2005,141:263-280.

[76]Kaur P,Larson S R,Bushman B S,Wang R R C,Mott I W,Hole D,Thimmapuram J,Gong G,Liu L.Genes controlling plant growth habit inLeymus(Triticeae):Maize barren stalk1(ba1),rice lax panicle,and wheat tiller inhibition(tin3)genes as possible candidates[J].Functional &Integrative Genomics,2008,8:375-386.

[77]Larson S R,Wu X L,Jones T A,Jensen K B,Chatterton N J,Waldron B L,Robins J G,Bushman B S,Palazzo A J.Comparative mapping of growth habit,plant height,and flowering QTLs in two interspecific families of Leymus[J].Crop Science,2006,46:2526-2539.

[78]Robins J G,Luth D,Campbell T A,Bauchan G R,He C,Viands D R,Hansen J L,Brummer E C.Genetic mapping of biomass production in tetraploid alfalfa[J].Crop Science,2007,47:1-10.

[79]Brouwer D J,Duke S H,Osborn T C.Mapping genetic factors associated with winter hardiness,fall growth,and freezing injury in autotetraploid alfalfa[J].Crop Science,2000,40:1387-1396.

[80]Robins J G,Brummer E C.QTL underlying self-fertility in tetraploid alfalfa[J].Crop Science,2010,50:143-149.

[81]Sledge M K,Bouton J H,Dall’Agnoll M,Parrott W A,Kochert G.Identification and confirmation of Aluminum tolerance QTL in diploidMedicagosativasubsp.coerulea[J].Crop Science,2002,42:1121-1128.

[82]Narasimhamoorthy B,Bouton J H,Olsen K M,Sledge M K.Quantitative trait loci and candidate gene mapping of aluminum tolerance in diploid alfalfa[J].Theoretical and Applied Genetics,2007,114:901-913.

[83]Espinoza L C L,Julier B.QTL detection for forage quality and stem histology in four connected mapping populations of the model legumeMedicagotruncatula[J].Theoretical and Applied Genetics,2013,126(2):497-509.

[84]Espinoza L C L,Huguet T,Julier B.Multi-population QTL detection for aerial morphologenetic traits in the model legumeMedicagotruncatula[J].Theoretical and Applied Genetics,2012,124(4):739-754.

[85]Barrett B A,Baird I J,Woodfield D R.A QTL analysis of white clover seed production[J].Crop Science,2005,45:1844-1850.

[86]Herrmann D,Boller B,Studer B,Widmer F,K?lliker R.QTL analysis of seed yield components in red clover(Trifolium pratenseL.)[J].Theoretical and Applied Genetics,2006,112:536-545.

[87]Herrmann D,Boller B,Studer B,Widmer F,K?lliker R.Improving persistence in red clover insights from QTL analysis and comparative phenotypic evaluation[J].Crop Science,2008,48:269-277.

[88]Gondo T,Sato S,Okumura K,Tabata S,Akashi R,Isobe S.Quantitative trait locus analysis of multiple agronomic traits in the model legumeLotusjaponicas[J].Genome,2007,50:627-637.

[89]Jessup R W,Renganayaki K,Reinert J A,Genovesi A D,Engelke M C,Paterson A H,Kamps T L,Schulze S,Howard A N,Giliberto B,Burson B L.Genetic mapping of fall armyworm resistance in Zoysiagrass[J].Crop Science,2011,51:1774-1783.

[90]丁成龍,劉穎,許能祥,顧洪如.日本結(jié)縷草抗寒相關(guān)性狀的 QTL分析[J].草地學(xué)報(bào),2010,18(5):703-707.

[91]Chakraborty N,Curley J,Warnke S,Casler M D,Jung G.Mapping QTL for dollar spot resistance in creeping bentgrass(AgrostisstoloniferaL.)[J].Theoretical and Applied Genetics,2006,113:1421-1435.

[92]Xie W G,Robins J,Bushman B S.A search for candidate genes affecting late heading in orchardgrass/cocksfoot(DactylisglomerataL.)[A].Bushman S,Spangenberg G C.Proceedings of the 7th International Symposium on the Molecular Breeding of Forage and Turf[C].Salt Lake City:USDA-FRRL,2013:14-16.

[93]Tamura K,Yamada T.A perennial ryegrass CBF gene cluster is located in a region predicted by conserved synteny between Poaceae species[J].Theoretical and Applied Genetics,2007,114 :273-283.

[94]沈立爽,朱立煌.植物的比較基因組研究和大遺傳系統(tǒng)[J].生物工程進(jìn)展,1995,15:23-28.

[95]Bonierable M W,Plaisted P L,Tanksley S D.RFLP maps based on a common set of clones reveal modes of chromosomal evolution in potato and tomato[J].Genetics,1998,120:1095-1103.

[96]Tanksley S D,Bernatzky R,Lapitan N L,Prince J P.Conservation of gene repertoire but not gene order in pepper and tomato[J].Proceedings of the National Academy of Sciences of the United States of America,1988,85(17):6419.

[97]Devos K M,Gale M D.Genome relationship:the grass model in current research[J].The Plant Cell,2000,12:637-646.

[98]Grivet L,D’Hont A,Dufour P,Hamon P,Roques D,Glaszmann J C.Comparative genome mapping of sugar cane with other species within the Andropogoneae tribe[J].Heredity,1994,73(5):500-508.

[99]Andersen J R,Jensen L B,Asp T,Lübberstedt T.Vernalization response in perennial ryegrass(LoliumperenneL.)involves orthologues of diploid wheat(Triticummonococcum)VRN1and rice(Oryzasativa)Hd1[J].Plant Molecular Biology,2006,60:481-494

[100]徐云碧,朱立煌.分子數(shù)量遺傳學(xué)[M].北京:中國(guó)農(nóng)業(yè)出版社,1994:81-83.

猜你喜歡
黑麥草作圖牧草
認(rèn)識(shí)草,也是一門學(xué)問(wèn)
不同行內(nèi)生草影響葡萄果實(shí)品質(zhì)
巧用三條線 作圖不再難
養(yǎng)兔牧草品種咋選擇
反射作圖有技巧
黑麥草的種植、青貯及應(yīng)用
種苗根熒光反應(yīng)在多年生黑麥草與一年生黑麥草兩個(gè)種測(cè)定中可靠性驗(yàn)證
國(guó)審牧草品種
——黔南扁穗雀麥
三招搞定光的反射作圖題
作圖促思考
讀寫算(中)(2016年11期)2016-02-27 08:48:14
招远市| 利辛县| 楚雄市| 张掖市| 沈丘县| 曲阳县| 花莲县| 濮阳市| 泽库县| 青岛市| 关岭| 十堰市| 彝良县| 阿拉善盟| 合山市| 天津市| 福鼎市| 宜州市| 德钦县| 南华县| 淳化县| 北流市| 东源县| 台安县| 聂拉木县| 上思县| 武义县| 平山县| 英吉沙县| 马尔康县| 高要市| 夏邑县| 沧源| 柳河县| 富宁县| 沈阳市| 石门县| 乌什县| 子长县| 陕西省| 北流市|