郭 博
試論基于光纖光柵探測(cè)器的室內(nèi)溫度檢測(cè)系統(tǒng)設(shè)計(jì)
郭 博
為了精確、穩(wěn)定地獲得糧倉(cāng)內(nèi)大范圍的溫度分布,設(shè)計(jì)了光纖布拉格光柵測(cè)溫系統(tǒng)。系統(tǒng)通過光纖網(wǎng)絡(luò)對(duì)糧倉(cāng)內(nèi)進(jìn)行大范圍溫度檢測(cè),利用光纖布拉格光柵所測(cè)溫度與中心波長(zhǎng)之間存在線性的關(guān)系,根據(jù)光譜線性頻移函數(shù)獲得倉(cāng)內(nèi)各位置的精確溫度。其中每個(gè)光柵的工作波長(zhǎng)相互分開,經(jīng)3dB的耦合器反射后,再用波長(zhǎng)探測(cè)解調(diào)系統(tǒng)對(duì)多個(gè)光柵的線性頻移進(jìn)行測(cè)量,即可檢測(cè)出倉(cāng)內(nèi)各處的溫度。實(shí)驗(yàn)采用FBG封裝的光纖、LPT-101型光源、放大處理電路等設(shè)備獲得采集得到的溫度信息。通過Origin軟件畫出了被測(cè)溫度與波長(zhǎng)頻移的關(guān)系圖,同時(shí)與傳統(tǒng)的測(cè)量方法K型熱電偶的測(cè)量數(shù)據(jù)進(jìn)行比較。實(shí)驗(yàn)結(jié)果顯示,光纖布拉格光柵測(cè)得溫度與標(biāo)準(zhǔn)溫度更接近,且抗干擾能力更強(qiáng),滿足糧倉(cāng)內(nèi)大范圍溫度監(jiān)測(cè)的要求。
光纖布拉格光柵 溫度檢測(cè)光 譜線性頻移 糧倉(cāng)
溫度檢測(cè)在很多領(lǐng)域都有應(yīng)用,生產(chǎn)廠房的溫度檢測(cè)、住宅區(qū)的室溫控制、農(nóng)業(yè)生產(chǎn)中溫室大棚的恒溫監(jiān)控等。目前,國(guó)內(nèi)外對(duì)于溫度檢測(cè)的主要方法有:熱電偶型測(cè)溫系統(tǒng),具有結(jié)構(gòu)簡(jiǎn)單,探測(cè)區(qū)域大的特性,而其屬于接觸式測(cè)量,易污染、精度較低。數(shù)字集成溫度探測(cè)芯片,該溫度探測(cè)器功耗低、體積小,常應(yīng)用于單點(diǎn)探測(cè),在多點(diǎn)位大范圍測(cè)試中誤差較大。除此之外,光纖測(cè)溫器也是一個(gè)常見類型,其靈敏度高、適合遠(yuǎn)距離檢測(cè),但多路檢測(cè)測(cè)量難度大、工藝復(fù)雜、價(jià)格高;半導(dǎo)體吸收式光纖溫度傳感器溫度監(jiān)測(cè)系統(tǒng),其優(yōu)點(diǎn)是將光纖僅用于傳輸,測(cè)量采用其他光學(xué)或機(jī)械的元件完成,監(jiān)測(cè)被測(cè)溫度的變化;智能(數(shù)字)溫度傳感器溫度監(jiān)測(cè)系統(tǒng),其內(nèi)部包含處理芯片,適用于測(cè)溫位置在線處理的場(chǎng)合。我國(guó)傳統(tǒng)的內(nèi)部溫度測(cè)量方法是直接將溫度計(jì)插入糧食中檢測(cè),工作量大、效率低、精度差;除此之外,國(guó)內(nèi)還有采用基于PN結(jié)或熱敏電阻的溫度檢測(cè)系統(tǒng),但其傳統(tǒng)電路設(shè)計(jì)上存在干擾、濾波不穩(wěn)定,線路復(fù)雜等問題。而測(cè)溫電纜技術(shù)在實(shí)際應(yīng)用中不但工藝復(fù)雜,且部分結(jié)構(gòu)需要專用設(shè)備,十分不便。
相比之下,采用波長(zhǎng)調(diào)制的光纖布拉格光柵(Fiber Bragg Grating,F(xiàn)BG)傳感器避免了溫度測(cè)試信號(hào)受光源變動(dòng)、光纖損耗等的影響;采用波分復(fù)用技術(shù)在一根光纖中串入多個(gè)布拉格光柵實(shí)現(xiàn)分布式測(cè)量,大大降低了系統(tǒng)復(fù)雜度;采用光譜線性頻移的監(jiān)測(cè)手段,測(cè)量精度高、范圍廣、分布密度大。本文在采用分布式光纖布拉格光柵結(jié)構(gòu)的基礎(chǔ)上,利用光纖布拉格光柵所測(cè)溫度與中心波長(zhǎng)之間的線性函數(shù)關(guān)系,提出了一種通過光譜線性頻移反演分布式糧溫的新方法,提高了檢測(cè)精度、溫控范圍和溫度數(shù)據(jù)密度。
系統(tǒng)采用了一種新的分布式光纖布拉格光柵測(cè)溫方法,即通過光纖布拉格光柵溫度探測(cè)器對(duì)糧倉(cāng)各處的局部溫度進(jìn)行監(jiān)測(cè)。由于光譜線性頻移程度與被測(cè)溫度存在函數(shù)關(guān)系,即中心波長(zhǎng)與被測(cè)溫度之間呈線性關(guān)系。分布式光纖探測(cè)系統(tǒng)是可從整體上大范圍地對(duì)被測(cè)物理量的變化進(jìn)行監(jiān)測(cè)的探測(cè)網(wǎng)絡(luò)。本文采用的是分布式光纖布拉格光柵探測(cè)結(jié)構(gòu),根據(jù)系統(tǒng)性能,建立了糧倉(cāng)的數(shù)學(xué)模型。處理器控制寬帶光源發(fā)射探測(cè)光,通過耦合器進(jìn)入多組光纖通道,每組光纖通道中設(shè)置光纖光柵探測(cè)器,在糧倉(cāng)內(nèi)網(wǎng)絡(luò)式分布,從而獲得糧倉(cāng)內(nèi)各處的糧溫?cái)?shù)據(jù)?;夭ㄐ盘?hào)經(jīng)解調(diào)儀解調(diào),將帶有溫度信息的數(shù)據(jù)傳給處理器,經(jīng)過處理器將糧倉(cāng)各位置糧溫?cái)?shù)據(jù)顯示在控制臺(tái)上。
在光纖光柵之前,將在平面光波導(dǎo)中沿入射光傳播方向制作的多層介質(zhì)結(jié)構(gòu),即布拉格光柵。光纖中的光柵反射實(shí)際上是一種層狀介質(zhì)的反射,由光纖中沿軸向分布的多層介質(zhì)結(jié)構(gòu)構(gòu)成光纖布拉格光柵。
常用的電類溫度傳感器有熱敏電阻溫度傳感器、熱電偶溫度傳感器,其極易受外界的電磁干擾,會(huì)由于測(cè)量距離、輻射系數(shù)等因素導(dǎo)致測(cè)量精度降低。而光纖光柵溫度傳感器不僅具有普通光纖溫度傳感器的優(yōu)點(diǎn),還有光譜特性好、損耗率低及穩(wěn)定性高等特點(diǎn),且波長(zhǎng)編碼信息不受光源功率波動(dòng)或耦合損耗等的影響。同時(shí),在一根光纖中可設(shè)置多個(gè)光柵,使光柵陣列信息量大,結(jié)合波分復(fù)用等技術(shù)非常適合大范圍的分布式網(wǎng)絡(luò)化的糧溫監(jiān)測(cè)。
光纖布拉格光柵探測(cè)器中的寬譜光源可采用面發(fā)光二極管SLED或放大自發(fā)輻射光源ASE等,光傳輸及轉(zhuǎn)換部分由光耦合器或光環(huán)形器構(gòu)成。當(dāng)光源系統(tǒng)發(fā)出一定帶寬的光入射到光纖光柵后,由于光纖光柵對(duì)中心波長(zhǎng)具有選擇作用,只有符合波長(zhǎng)關(guān)系的光被才會(huì)被反射,并再次通過光傳輸結(jié)構(gòu)送入解調(diào)裝置解調(diào),最后解調(diào)光會(huì)體現(xiàn)出光纖光柵反射波長(zhǎng)的變化特性。當(dāng)利用光纖布拉格光柵原理檢測(cè)糧倉(cāng)內(nèi)局部糧溫時(shí),由于糧溫變化引發(fā)的光柵自身的折射率或柵距的改變會(huì)使反射波長(zhǎng)產(chǎn)生相應(yīng)的變化,最終對(duì)由解調(diào)器檢測(cè)得到的波長(zhǎng)變化推導(dǎo)計(jì)算即可求得相應(yīng)位置實(shí)時(shí)的糧溫?cái)?shù)據(jù)。探測(cè)器獲得的尖峰波長(zhǎng)隨著糧溫的變化持續(xù)變化,探測(cè)器帶寬是指光纖布拉格光柵反射峰對(duì)應(yīng)的帶寬,其檢測(cè)精度越高,則帶寬就越小,由于工藝水平的限制,一般在0.2~0.3 nm之間。
光纖布拉格光柵采用波長(zhǎng)調(diào)制,對(duì)布拉格波長(zhǎng)移動(dòng)的檢測(cè)獲取糧溫變化信息的重要步驟。目前國(guó)內(nèi)外實(shí)用化的解調(diào)技術(shù)主要有:采用可調(diào)諧F-P濾波器和寬帶光源掃描傳感光纖光柵的反射譜;采用大功率可調(diào)諧窄帶激光源對(duì)傳感光纖光柵進(jìn)行波長(zhǎng)掃描;采用建立在色散元件和陣列相結(jié)合基礎(chǔ)上的光譜成像技術(shù)進(jìn)行波長(zhǎng)分析。ASE光源發(fā)出的寬帶光經(jīng)過F-P(Fabry-Perot)濾波器,因?yàn)椴煌膾呙桦妷核鶎?duì)應(yīng)的中心波長(zhǎng)各有不同。在掃描電壓的控制下,窄帶光穿過F-P濾波器,其中透射光經(jīng)耦合器的分光后,產(chǎn)生多個(gè)可與測(cè)量通道相接的光路,3個(gè)測(cè)量通道的反射光回波信號(hào)被光電探測(cè)器采集從而獲得反射譜。這些反射譜都是電壓信號(hào),被放大濾波后傳輸給信號(hào)采集模塊,最終導(dǎo)入計(jì)算機(jī),從而解調(diào)出糧溫信息。
本文針對(duì)糧倉(cāng)內(nèi)大范圍的糧溫實(shí)時(shí)監(jiān)測(cè)困難大,設(shè)計(jì)了基于光纖布拉格光柵測(cè)溫原理的分布式糧溫網(wǎng)絡(luò)監(jiān)測(cè)系統(tǒng)。系統(tǒng)根據(jù)光纖布拉格光柵所測(cè)溫度與中心波長(zhǎng)之間存在線性的關(guān)系,利用光譜線性頻移函數(shù)獲得倉(cāng)內(nèi)各位置的精確溫度。實(shí)驗(yàn)采用LPT-101型光源、FBG封裝的光纖及處理電路等獲得模擬糧倉(cāng)中的分布溫度數(shù)據(jù)。通過計(jì)算光譜線性頻移量及溫度標(biāo)定的方法獲得對(duì)應(yīng)處溫度信息,再由Origin軟件畫出了被測(cè)溫度與波長(zhǎng)變化的關(guān)系圖,與傳統(tǒng)的K型熱電偶單點(diǎn)測(cè)溫方法進(jìn)行比較。實(shí)驗(yàn)結(jié)果顯示,光纖布拉格光柵測(cè)溫法的精度滿足設(shè)計(jì)要求,且具備抗干擾能力強(qiáng),可獲得大范圍多點(diǎn)的實(shí)時(shí)糧溫?cái)?shù)據(jù)。