楊渺渺,鐘守銘
(電子科技大學(xué)數(shù)學(xué)科學(xué)學(xué)院,四川成都611731)
具有干擾和離散時(shí)滯的神經(jīng)網(wǎng)絡(luò)穩(wěn)定性分析
楊渺渺,鐘守銘
(電子科技大學(xué)數(shù)學(xué)科學(xué)學(xué)院,四川成都611731)
研究了具有干擾時(shí)滯的神經(jīng)網(wǎng)絡(luò)漸進(jìn)穩(wěn)定性,通過(guò)構(gòu)造合適的Lyapunov函數(shù),運(yùn)用線性矩陣不等式、零等式、凸函數(shù)等方法,控制Lyapunov導(dǎo)函數(shù)的上界,從而得到系統(tǒng)漸近穩(wěn)定性的條件.最后的數(shù)值分析驗(yàn)證了結(jié)論的有效性.
神經(jīng)網(wǎng)絡(luò);干擾時(shí)變時(shí)滯;LMI(Linear Matrix Inequalities)(線性矩陣不等式);漸近穩(wěn)定性
近年來(lái),盡管神經(jīng)網(wǎng)絡(luò)在現(xiàn)實(shí)生活有了廣泛應(yīng)用[1-4],但神經(jīng)網(wǎng)絡(luò)的信號(hào)在傳輸過(guò)程中時(shí)滯是不可避免的,它能使系統(tǒng)產(chǎn)生震蕩,進(jìn)而影響系統(tǒng)的穩(wěn)定性.因此有眾多學(xué)者研究具有時(shí)滯的神經(jīng)網(wǎng)絡(luò)[3-4],而且系統(tǒng)常受到離散因素的干擾及系統(tǒng)本身存在延時(shí),神經(jīng)網(wǎng)絡(luò)的穩(wěn)定性有變化.現(xiàn)實(shí)應(yīng)用又須建立在神經(jīng)網(wǎng)絡(luò)系統(tǒng)的穩(wěn)定性基礎(chǔ)上,所以對(duì)具有干擾和離散時(shí)滯的神經(jīng)網(wǎng)絡(luò)穩(wěn)定性的研究尤為重要.之前有很多學(xué)者對(duì)時(shí)滯神經(jīng)網(wǎng)絡(luò)的討論,但這些文章都得到較弱的保守性準(zhǔn)則[5-8].也就是說(shuō)這些結(jié)果的保守性在某種程度上還有改善的空間.
考慮如下神經(jīng)網(wǎng)絡(luò)模型
x(·)=[x1(·),x2(·),…,xn(·)]T是神經(jīng)元狀態(tài)向量,C=diag{c1,c2,…,cn}>0其中,ci>0,i=1,2,…,n,A∈Rn×n,B∈Rn×n,g(x(·))=[g(x1(·)),g(x2(·)),…,g(xn(·))]T是神經(jīng)元激活函數(shù),τ(t)為連續(xù)的時(shí)變時(shí)滯,滿足
這里τ,d為常數(shù).
假設(shè)A[9]系統(tǒng)(1)中每個(gè)gi(·),i=1,2,…,n有界且滿足如下不等式
其中,γi,i=1,2,…,n是已知的實(shí)常數(shù).假設(shè)A保證了系統(tǒng)(1)至少存在一個(gè)平衡點(diǎn).
引理1(Jensen[10]不等式)對(duì)任意對(duì)稱正定矩陣M∈Rm×m,標(biāo)量h2>h1>0,向量函數(shù)ω:[h1,h2]→Rm是可積的,則有如下不等式成立
引理2[11]由假設(shè)可得下列不等式成立:
定理1已知Γ=diag(γ1,γ2,…,γn),d≥0,若存在正定矩陣P,Qi(i=1,2,…,6),Ri(i=1,…,4),,正定對(duì)角矩陣M1,M2滿足E=e8×8<0,F(xiàn)=f8×8< 0,G=g8×8<0其中
系統(tǒng)(1)漸進(jìn)穩(wěn)定的.
證明:選擇下面的Lyapunov-Krasovkii泛函來(lái)得出系統(tǒng)穩(wěn)定性結(jié)論.
(1)0≤τ(t)≤τ/3,由[11]可得,
(2)τ/3≤τ(t)≤2τ/3時(shí),由[11]可得
(3)2τ/3≤τ(t)≤τ時(shí),由[11]可得
為了得到較弱的穩(wěn)定性結(jié)果,我們添加下列恒等零不等式,其中M1,M2為正定對(duì)角矩陣
(1)當(dāng)0≤τ(t)≤τ/3,我們可以得到V(xt)≤ζT(t)Eζ(t)≤0,
(2)當(dāng)τ/3≤τ(t)≤2τ/3,我們可以得到V(xt)≤ζT(t)Fζ(t)≤0,
(3)當(dāng)2τ/3≤τ(t)≤τ,我們可以得到V(xt)≤ζT(t)Gζ(t)≤0,
其中,ζT(t)=[x(t),f(x(t)),f(x(t-τ(t))),x(t-τ/3),x(t-2τ/3),x(t-τ),,因此,可以得到.由文獻(xiàn)[10]中方程漸近穩(wěn)定的定理知模型(1)是漸近穩(wěn)定的.
注1.本文把τ分成三個(gè)部分[0,τ/3],[τ/3,2τ/3],[2/3τ,τ]而不是[12]中的[0,τ/2],[τ/2,τ]使計(jì)算更精確,得到較弱的穩(wěn)定性.
數(shù)值仿真:考慮系統(tǒng)模型(1)的參數(shù)如下.
Γ=diag(0.2,0.2,0.2),d=τ.
對(duì)(6)式運(yùn)用Matlab中的LMI工具箱,解得表1.
表1
根據(jù)以上參數(shù)我們可以看到,在本篇文章中時(shí)滯的最大值比其他同類文章較大些,這就說(shuō)明本文的研究方法比參考文獻(xiàn)[8-13]的結(jié)果要好.因此,數(shù)值驗(yàn)證了結(jié)論的有效性和先進(jìn)性.
本文考慮了一類具有干擾和離散時(shí)滯的遞歸神經(jīng)網(wǎng)絡(luò),通過(guò)構(gòu)造含有二階積分Lyapunov泛函,運(yùn)用Jensen不等式,將時(shí)變時(shí)滯進(jìn)行若干份劃分精確計(jì)算,得到模型穩(wěn)定性準(zhǔn)則.在以往的研究中,其他學(xué)者把τ二等分,而本文進(jìn)行三等分,精確了劃分區(qū)間,從而得出的結(jié)果更精確,本文還運(yùn)用零矩陣,凸函數(shù)等方法,給出漸近穩(wěn)定的充分條件,并通過(guò)線性矩陣不等式來(lái)表示,便于求解.最后通過(guò)一個(gè)數(shù)值舉例可以看出本文的方法比參考文獻(xiàn)[8-13]得到更好的結(jié)果,驗(yàn)證了結(jié)論的可行性.
[1]ChoHJ,ParkJH.Noveldelay-dependent robust stability criteria of delayed cellular neural networks[J].Chaos,Solitons&Fractals,2007,32(3):1194-1200.
[2]王林山.時(shí)滯遞歸神經(jīng)網(wǎng)絡(luò)[M].北京:科學(xué)出版社,2007:57-58.
[3]Sun J,Liu G P,Chen J,et al.Improved stability criteria for neural networks with time-varying delay[J].Physics Letters A,2009,373(3):342-348.
[4]Sun J,Chen J.Stability analysis of static recurrent neural networks with interval time-varying delay [J].Applied Mathematics and Computation,2013,221:111-120.
[5]廖曉昕.穩(wěn)定性的理論、方法和應(yīng)用[M].第2版.武漢:華中科技大學(xué)出版社,2010:115-117.
[6]Huang H,Huang T W,Chen X P,et al.Exponential stabilization of delayed recurrent neural networks:a state estimation based approach[J].Neural Networks,2013,48:153-157.
[7]ShaoH Y,Han Q L.On stabilization for systems with two additive time-varying input delays arising from networked control systems[J].Journal of the Franklin Institute,2012,349(6):2033-2046.
[8]Song Q K,Wang Z D.Neural networks with discrete and distributed time-varying delays:a general stability analysis[J].Chaos,Solitons&Fractals,2008,37(5):1538-1542.
[9]Lien C H,Chung L Y.Global asymptotic stability for cellular neural networks with discrete and distributed time-varying delays[J].Chaos,Solitons&Fractals,2007,34(4):1213-1219.
[10]Li T,Luo Q,Sun C Y,et al.Exponential stability of recurrent neural networks with time-varying discrete and distributed delays[J].Nonlinear Analysis:Real World Applications,2009,10(4):2581-2589.
[11]Zhu X L,Wang Y Y.Delay-dependent exponential stability for neural networks with discrete and distributed time-varying delays[J].Physics Letters A,2009,373(44):4066-4072.
[12]Tian J K,Zhong S M,Wang Y.Improved exponential stability criteria for neural networks with time-varying delays[J].Neurocomputing,2012,97:164-173.
[13]Yang M M,Zhong S M.Exponential stability analysis for uncertain neural networks with discrete and distributed time-varying delays[J].World Academy of Science,Engineering and Technology:International Journal of Mathematical,Computational,Physical and Quantum Engineering,2014,8(1):193-200.
Stability Analysis of Neural Networks w ith Discrete and Distributed Time-Varying Delay
YANG Miaomiao,ZHONG Shouming
(School of Mathematics Science,University of Electronic Science and Technology of China,Chengdu 611731,Sichuan,China)
In this paper,the problem of stability analysis of neural networks with discrete and distributed time-varying delay is investigated.By constructing a suitable Lyapunov functional and applying the LMI formula,zero equalities,reciprocally convex approach tighter upper bound of the derivative of the Lyapunov functional,a new stability criterion is derived.Finally,numerical examples are provided to demonstrate its effectiveness.
neural networks;distributed time-varying delay;linear matrix inequalities(LMI);asymptotically stable
O 175.1
A
1001-4217(2015)01-0034-06
2014-06-25
楊渺渺(1989-),女,碩士研究生,主要研究方向:神經(jīng)網(wǎng)絡(luò)的穩(wěn)定性. E-mail:miaomiaoyang1989@163.com