·綜述·
腸源性尿毒癥毒素硫酸對甲酚和硫酸吲哚酚的研究進(jìn)展
成云曹學(xué)森鄒建洲
(復(fù)旦大學(xué)附屬中山醫(yī)院腎內(nèi)科,上海市腎病與透析研究所, 上海200032)
關(guān)鍵詞
Research Development of Enterogenous Uremic Toxins: P-cresyl Sulfate and Indoxyl SulfateCHENGYunCAOXuesenZOUJianzhou
DepartmentofNephrology,ZhongshanHospital,FudanUniversity,Shanghai200032,China
尿毒癥毒素是指終末期腎病(end-stage renal disease,ESRD)時不能經(jīng)尿液清除、潴留在體內(nèi)且有毒性作用的物質(zhì)。據(jù)歐洲尿毒癥毒素協(xié)作組(EUTox)統(tǒng)計(jì),至2011年4月已發(fā)現(xiàn)160種尿毒癥毒素[1]。尿毒癥毒素根據(jù)其理化性質(zhì)可分為3類。(1)不能與蛋白質(zhì)結(jié)合的水溶性小分子物質(zhì):相對分子質(zhì)量通常小于500,較易經(jīng)血液透析清除,如尿素、肌酐;(2)蛋白質(zhì)結(jié)合物質(zhì):大多數(shù)相對分子質(zhì)量較小,很難通過血液透析清除,如硫酸對甲酚(p-cresyl sulfate,PCS)、硫酸吲哚酚(indoxyl sulfate,IS);(3)中分子物質(zhì):相對分子質(zhì)量通常大于500,常規(guī)血液透析效果不理想,如甲狀旁腺素、β2微球蛋白。尿毒癥毒素根據(jù)其來源分類也可分為3類,(1)內(nèi)源性代謝產(chǎn)物:自身代謝產(chǎn)生,如非對稱性二甲基精氨酸(asymmetric dimethylarginine,ADMA)[2];(2)微生物代謝產(chǎn)物:主要是腸道菌群代謝物質(zhì),如吲哚類、酚類;(3)外源性攝入物質(zhì):如草酸鹽[3]。研究[4- 5]表明,慢性腎臟病(chronic kidney disease,CKD)患者腸道菌群的種類和數(shù)量與健康人群顯著不同,其毒性產(chǎn)物與CKD及其并發(fā)癥的進(jìn)展密切相關(guān)。其中,PCS和IS是當(dāng)前研究最多的腸源性尿毒癥毒素,本文對其研究進(jìn)展作一綜述。
1PCS、IS的產(chǎn)生和代謝
PCS主要在腸道產(chǎn)生,相對分子質(zhì)量188,與血漿白蛋白結(jié)合率為94%[6]。腸道厭氧菌將食物中的苯丙氨酸和酪氨酸轉(zhuǎn)變?yōu)?-羥基苯乙酸。4-羥基苯乙酸脫羧為對甲酚,大部分對甲酚經(jīng)腸道黏膜吸收,在腸道上皮細(xì)胞磺基轉(zhuǎn)移酶的作用下轉(zhuǎn)化為PCS[7]。PCS主要通過腎小管基底膜側(cè)的有機(jī)陰離子轉(zhuǎn)運(yùn)體(organic anion transporter,OAT)分泌到腎小管管腔,經(jīng)尿液排出[8]。
IS主要在腸道產(chǎn)生,相對分子質(zhì)量251[9],蛋白結(jié)合率達(dá)90%以上。食物中的色氨酸經(jīng)大腸埃希菌分解產(chǎn)生吲哚,吲哚經(jīng)門靜脈進(jìn)入肝臟經(jīng)羥化、硫酸化,最終生成IS。IS主要通過腎小管OAT分泌、排泄[10]。
2PCS、IS的腎臟毒性
PCS可通過促進(jìn)腎臟纖維化加快腎臟病進(jìn)展、腎功能下降[11]。PCS主要通過以下機(jī)制促進(jìn)腎臟纖維化:(1)PCS可顯著增加腎組織腎素、血管緊張素Ⅱ1型受體(AT1R)表達(dá),激活腎素-血管緊張素-醛固酮系統(tǒng)(renin-angiotensin-aldosterone system,RAAS),進(jìn)而促進(jìn)腎間質(zhì)成纖維細(xì)胞的增殖與分化,加重腎組織纖維化[12];(2)PCS具有促炎作用,可促進(jìn)腎間質(zhì)單核細(xì)胞/巨噬細(xì)胞浸潤[11],上調(diào)促炎因子表達(dá)[13],引起腎間質(zhì)纖維化;(3)體外實(shí)驗(yàn)證實(shí),PCS可促進(jìn)小鼠近端腎小管上皮細(xì)胞炎性相關(guān)基因的表達(dá),如轉(zhuǎn)化生長因子-β(transforming growth factor-β,TGF-β)、白介素-6(interleukin-6,IL-6)等[14],而TGF-β可促進(jìn)腎小管間質(zhì)纖維化[15],IL-6可通過誘導(dǎo)腎臟纖維化相關(guān)基因及內(nèi)皮素-1基因的表達(dá)加速CKD的進(jìn)展[16];(4)Klotho基因可編碼一種參與成纖維細(xì)胞生長因子受體構(gòu)成的跨膜蛋白,這種跨膜蛋白可延緩腎臟纖維化進(jìn)程,發(fā)揮腎臟保護(hù)作用[17-18],而PCS通過促進(jìn)DNA甲基轉(zhuǎn)移酶表達(dá),使Klotho基因超甲基化,進(jìn)而抑制Klotho基因表達(dá)[19],使Klotho基因產(chǎn)物的腎臟保護(hù)作用下降或消失,促進(jìn)腎臟纖維化,加速腎臟病進(jìn)展。
IS促進(jìn)腎臟纖維化的機(jī)制主要有:(1)IS促進(jìn)腎小管上皮細(xì)胞活性氧簇(reactive oxygen species,ROS)的產(chǎn)生,激活核轉(zhuǎn)錄因子κB(nuclear factor-κB,NF-κB)、p53、 細(xì)胞外信號調(diào)節(jié)激酶(extracellular signal-regulated kinase,ERK)等調(diào)節(jié)因子,使單核細(xì)胞趨化蛋白-1(monocyte chemotactic protein-1,MCP-1)、細(xì)胞間黏附分子-1(intercellular adhesion molecule-1,ICAM-1)的表達(dá)上調(diào),引起單核細(xì)胞/巨噬細(xì)胞在小管間質(zhì)聚集,進(jìn)而促進(jìn)腎臟纖維化[20-21];(2)IS使腎組織腎素、血管緊張素原、AT1R表達(dá)增加,AT2R表達(dá)減少,進(jìn)而通過激活RAAS及促進(jìn)TGF-β表達(dá),使腎間質(zhì)細(xì)胞向成纖維細(xì)胞轉(zhuǎn)化,引起腎臟纖維化[22];(3)IS也可通過促進(jìn)Klotho基因超甲基化而促進(jìn)腎臟纖維化[19]。
3PCS、IS的心血管毒性
大量研究[7,23-24]證實(shí),PCS水平與CKD患者心血管疾病的發(fā)生及全因死亡獨(dú)立相關(guān)。Schepers等[13]研究發(fā)現(xiàn),PCS可誘導(dǎo)白細(xì)胞產(chǎn)生自由基,進(jìn)而引起ESRD患者的血管損傷。Watanabe等[25]研究發(fā)現(xiàn),PCS可使人臍靜脈內(nèi)皮細(xì)胞及人主動脈平滑肌細(xì)胞內(nèi)NADPH氧化酶(NAPDH oxidase,NOX)的表達(dá)顯著增加,促進(jìn)細(xì)胞內(nèi)產(chǎn)生ROS,進(jìn)而損害血管內(nèi)皮細(xì)胞及平滑肌細(xì)胞。Han等[26]研究發(fā)現(xiàn),PCS可通過增強(qiáng)NOX活性、增加ROS,促進(jìn)心肌細(xì)胞凋亡。
研究[27]顯示,IS可提高ESRD患者全因死亡率及心血管事件發(fā)病率,其機(jī)制主要有以下兩方面。(1)IS可促進(jìn)血管損傷,研究[28]發(fā)現(xiàn),IS可致循環(huán)中內(nèi)皮損傷標(biāo)志物內(nèi)皮微粒(endothelial microparticles,EMPs)產(chǎn)生增加,提示其有致血管內(nèi)皮損傷作用。IS引起內(nèi)皮損傷主要是通過促氧化應(yīng)激作用實(shí)現(xiàn)的。IS可促進(jìn)NOX活化、使內(nèi)皮細(xì)胞產(chǎn)生的ROS增多[29],升高的ROS可通過激活NF-κB,增加MCP-1及ICAM-1的表達(dá)[30],導(dǎo)致血管內(nèi)皮損傷。此外,IS可以通過激活絲裂原活化蛋白激酶(mitogen-activated protein kinase ,MAPK)途徑促進(jìn)血管平滑肌細(xì)胞(vascular smooth muscle cell ,VSMC)增殖[31];并可通過促進(jìn)骨母細(xì)胞特異性蛋白表達(dá)增加而加重動脈鈣化、使動脈壁增厚[32]。近年來研究[33]證實(shí),IS可促進(jìn)大鼠主動脈細(xì)胞衰老相關(guān)蛋白,如p16INK4a、p21WAF1/CIP1的表達(dá),提示IS有加速動脈衰老作用。(2)IS可加速心肌損傷,研究[34]發(fā)現(xiàn),IS可通過促氧化應(yīng)激、削弱抗氧化屏障作用促進(jìn)心肌纖維化及心肌細(xì)胞肥大。此外,IS可通過抑制單磷酸腺苷活化蛋白激酶/解偶聯(lián)蛋白2(AMP-activated protein kinase/uncoupling protein 2,AMPK/UCP2)途徑促進(jìn)心肌肥大[35]。
4PCS、IS的其他作用
近年研究提示,PCS可能與CKD相關(guān)的胰島素抵抗有關(guān)。PCS通過激活胰島素信號轉(zhuǎn)導(dǎo)通路中的ERK1/2誘導(dǎo)小鼠出現(xiàn)胰島素抵抗,使其脂肪含量減少,脂肪在肝臟及肌肉重新分布[36]。骨代謝方面,Tanaka等[37]研究發(fā)現(xiàn),PCS通過激活c-Jun 氨基末端激酶( c-Jun N-terminal kinase,JNK) 和p38分裂原激活蛋白激酶(p38 mitogen activated protein kinases,p38MAPK)信號轉(zhuǎn)導(dǎo)途徑導(dǎo)致成骨細(xì)胞功能障礙,引起腎性骨病。
Kim等[38]研究發(fā)現(xiàn),IS可通過抑制成骨細(xì)胞的分化、誘導(dǎo)成骨細(xì)胞凋亡,從而引起骨骼病變。此外,研究[39]發(fā)現(xiàn),IS可導(dǎo)致體外培養(yǎng)的成骨細(xì)胞抵抗甲狀旁腺激素,從而導(dǎo)致腎性骨病的發(fā)生。
5PCS和IS的清除
PCS和IS均為蛋白質(zhì)高親和力毒素,常規(guī)透析方法難以清除。Meert等[40]研究發(fā)現(xiàn),透析中增加對流量也利于PCS及IS的清除。不同材質(zhì)的透析膜對這兩種毒素的清除率無差異[41]。Meijers等[42]發(fā)現(xiàn),血漿分離吸附技術(shù)對PCS的清除效果顯著優(yōu)于高通量透析,但血漿分離吸附技術(shù)成本高昂,目前無法在臨床推廣。
此外,由于PCS和IS主要由腸道產(chǎn)生,理論上可以通過改變腸道菌群降低PCS和IS的濃度,但目前尚無相關(guān)研究。目前研究較多的腸道吸附劑,如AST-120,Owada 等[43]的研究顯示,AST-120可清除部分腸源性毒素,并可延緩尿毒癥大鼠的腎功能惡化。
6展望
目前對PCS及IS 作用機(jī)制的了解已較深入,但是仍無有效的、適合臨床應(yīng)用的清除PCS及IS的透析方式或藥物,需要進(jìn)一步探索。
參考文獻(xiàn)
[ 1 ]Duranton F, Cohen G, De Smet R, et al. Normal and pathologic concentrations of uremic toxins[J]. J Am Soc Nephrol, 2012,23(7):1258-1270.
[ 2 ]Kielstein JT, Zoccali C. Asymmetric dimethylarginine: a cardiovascular risk factor and a uremic toxin coming of age?[J]. Am J Kidney Dis, 2005,46(2):186-202.
[ 3 ]Goldfarb DS, Modersitzki F, Asplin JR. A randomized, controlled trial of lactic acid bacteria for idiopathic hyperoxaluria[J]. Clin J Am Soc Nephrol, 2007,2(4):745-749.
[ 4 ]Vaziri ND, Wong J, Pahl M, et al. Chronic kidney disease alters intestinal microbial flora[J]. Kidney Int, 2013,83(2):308-315.
[ 5 ]Wu IW, Hsu KH, Lee CC, et al. p-Cresyl sulphate and indoxyl sulphate predict progression of chronic kidney disease[J]. Nephrol Dial Transplant, 2011,26(3):938-947.
[ 6 ]Niwa T. Update of uremic toxin research by mass spectrometry[J]. Mass Spectrom Rev, 2011,30(3):510-521.
[ 7 ]Bammens B, Evenepoel P, Keuleers H, et al. Free serum concentrations of the protein-bound retention solute p-cresol predict mortality in hemodialysis patients[J]. Kidney Int, 2006,69(6):1081-1087.
[ 8 ]Miyamoto Y, Watanabe H, Noguchi T, et al. Organic anion transporters play an important role in the uptake of p-cresyl sulfate, a uremic toxin, in the kidney[J]. Nephrol Dial Transplant, 2011,26(8):2498-2502.
[ 9 ]Dou L, Bertrand E, Cerini C, et al. The uremic solutes p-cresol and indoxyl sulfate inhibit endothelial proliferation and wound repair[J]. Kidney Int, 2004,65(2):442-451.
[10]Deguchi T, Ohtsuki S, Otagiri M, et al. Major role of organic anion transporter 3 in the transport of indoxyl sulfate in the kidney[J]. Kidney Int, 2002,61(5):1760-1768.
[11]Lee SB, Kalluri R. Mechanistic connection between inflammation and fibrosis[J]. Kidney Int Suppl, 2010(119):S22-S26.
[12]Huang Y, Wongamorntham S, Kasting J, et al. Renin increases mesangial cell transforming growth factor-beta1 and matrix proteins through receptor-mediated, angiotensin Ⅱ-independent mechanisms[J]. Kidney Int, 2006,69(1):105-113.
[13]Schepers E, Meert N, Glorieux G, et al. P-cresylsulphate, the main in vivo metabolite of p-cresol, activates leucocyte free radical production[J]. Nephrol Dial Transplant, 2007,22(2):592-596.
[14]Sun CY, Hsu HH, Wu MS. p-Cresol sulfate and indoxyl sulfate induce similar cellular inflammatory gene expressions in cultured proximal renal tubular cells[J]. Nephrol Dial Transplant, 2013,28(1):70-78.
[15]Wang L, Cao AL, Chi YF, et al. You-gui Pill ameliorates renal tubulointerstitial fibrosis via inhibition of TGF-beta/Smad signaling pathway[J]. J Ethnopharmacol, 2015,169:229-238.
[16]Zhang W, Wang W, Yu H, et al. Interleukin 6 underlies angiotensin Ⅱ-induced hypertension and chronic renal damage[J]. Hyp ertension, 2012,59(1):136-144.
[17]Barker SL, Pastor J, Carranza D, et al. The demonstration of alpha Klotho deficiency in human chronic kidney disease with a novel synthetic antibody[J]. Nephrol Dial Transplant, 2015,30(2):223-233.
[18]Haruna Y, Kashihara N, Satoh M, et al. Amelioration of progressive renal injury by genetic manipulation of Klotho gene[J]. Proc Natl Acad Sci USA, 2007,104(7):2331-2336.
[19]Sun CY, Chang SC, Wu MS. Suppression of Klotho expression by protein-bound uremic toxins is associated with increased DNA methyltransferase expression and DNA hypermethylation[J]. Kidney Int, 2012,81(7):640-650.
[20]Shimizu H, Bolati D, Higashiyama Y, et al. Indoxyl sulfate upregulates renal expression of MCP-1 via production of ROS and activation of NF-kappaB, p53, ERK, and JNK in proximal tubular cells[J]. Life Sci, 2012,90(13-14):525-530.
[21]Shimizu H, Yisireyili M, Higashiyama Y, et al. Indoxyl sulfate upregulates renal expression of ICAM-1 via production of ROS and activation of NF-kappaB and p53 in proximal tubular cells[J]. Life Sci, 2013,92(2):143-148.
[22]Sun CY, Chang SC, Wu MS. Uremic toxins induce kidney fibrosis by activating intrarenal renin-angiotensin-aldosterone system associated epithelial-to-mesenchymal transition[J]. PLoS One, 2012,7(3):e34026.
[23]Liabeuf S, Barreto DV, Barreto FC, et al. Free p-cresylsulphate is a predictor of mortality in patients at different stages of chronic kidney disease[J]. Nephrol Dial Transplant, 2010,25(4):1183-1191.
[24]Wu IW, Hsu KH, Hsu HJ, et al. Serum free p-cresyl sulfate levels predict cardiovascular and all-cause mortality in elderly hemodialysis patients--a prospective cohort study[J]. Nephrol Dial Transplant, 2012,27(3):1169-1175.
[25]Watanabe H, Miyamoto Y, Enoki Y, et al. p-Cresyl sulfate, a uremic toxin, causes vascular endothelial and smooth muscle cell damages by inducing oxidative stress[J]. Pharmacol Res Perspect, 2015,3(1):e92.
[26]Han H, Zhu J, Zhu Z, et al. p-Cresyl sulfate aggravates cardiac dysfunction associated with chronic kidney disease by enhancing apoptosis of cardiomyocytes[J]. J Am Heart Assoc, 2015,4(6):e001852.
[27]Melamed ML, Plantinga L, Shafi T, et al. Retained organic solutes, patient characteristics and all-cause and cardiovascular mortality in hemodialysis: results from the retained organic solutes and clinical outcomes (ROSCO) investigators[J]. BMC Nephrol, 2013,14:134.
[28]Faure V, Dou L, Sabatier F, et al. Elevation of circulating endothelial microparticles in patients with chronic renal failure[J]. J Thromb Haemost, 2006,4(3):566-573.
[29]Dou L, Jourde-Chiche N, Faure V, et al. The uremic solute indoxyl sulfate induces oxidative stress in endothelial cells[J]. J Thromb Haemost, 2007,5(6):1302-1308.
[30]Tumur Z, Shimizu H, Enomoto A, et al. Indoxyl sulfate upregulates expression of ICAM-1 and MCP-1 by oxidative stress-induced NF-kappaB activation[J]. Am J Nephrol, 2010,31(5):435-441.
[31]Yamamoto H, Tsuruoka S, Ioka T, et al. Indoxyl sulfate stimulates proliferation of rat vascular smooth muscle cells[J]. Kidney Int, 2006,69(10):1780-1785.
[32]Adijiang A, Goto S, Uramoto S, et al. Indoxyl sulphate promotes aortic calcification with expression of osteoblast-specific proteins in hypertensive rats[J]. Nephrol Dial Transplant, 2008,23(6):1892-1901.
[33]Adijiang A, Higuchi Y, Nishijima F, et al. Indoxyl sulfate, a uremic toxin, promotes cell senescence in aorta of hypertensive rats[J]. Biochem Biophys Res Commun, 2010,399(4):637-641.
[34]Yisireyili M, Shimizu H, Saito S, et al. Indoxyl sulfate promotes cardiac fibrosis with enhanced oxidative stress in hypertensive rats[J]. Life Sci, 2013,92(24-26):1180-1185.
[35]Yang K, Xu X, Nie L, et al. Indoxyl sulfate induces oxidative stress and hypertrophy in cardiomyocytes by inhibiting the AMPK/UCP2 signaling pathway[J]. Toxicol Lett, 2015,234(2):110-119.
[36]Koppe L, Pillon NJ, Vella RE, et al. p-Cresyl sulfate promotes insulin resistance associated with CKD[J]. J Am Soc Nephrol, 2013,24(1):88-99.
[37]Tanaka H, Iwasaki Y, Yamato H, et al. p-Cresyl sulfate induces osteoblast dysfunction through activating JNK and p38 MAPK pathways[J]. Bone, 2013,56(2):347-354.
[38]Kim YH, Kwak KA, Gil HW, et al. Indoxyl sulfate promotes apoptosis in cultured osteoblast cells[J]. BMC Pharmacol Toxicol, 2013,14:60.
[39]Nii-Kono T, Iwasaki Y, Uchida M, et al. Indoxyl sulfate induces skeletal resistance to parathyroid hormone in cultured osteoblastic cells[J]. Kidney Int, 2007,71(8):738-743.
[40]Meert N, Eloot S, Schepers E, et al. Comparison of removal capacity of two consecutive generations of high-flux dialysers during different treatment modalities[J]. Nephrol Dial Transplant, 2011,26(8):2624-2630.
[41]Ficheux A, Gayrard N, Szwarc I, et al. The use of SDS-PAGE scanning of spent dialysate to assess uraemic toxin removal by dialysis[J]. Nephrol Dial Transplant, 2011,26(7):2281-2289.
[42]Meijers BK, Weber V, Bammens B, et al. Removal of the uremic retention solute p-cresol using fractionated plasma separation and adsorption[J]. Artif Organs, 2008,32(3):214-219.
[43]Owada S, Maeba T, Sugano Y, et al. Spherical carbon adsorbent (AST-120) protects deterioration of renal function in chronic kidney disease rats through inhibition of reactive oxygen species production from mitochondria and reduction of serum lipid peroxidation[J]. Nephron Exp Nephrol, 2010,115(4):e101-e111.
中圖分類號R692.5
文獻(xiàn)標(biāo)識碼A
通訊作者鄒建洲,E-mail:jianzzou@163.com
基金項(xiàng)目:上海市科學(xué)技術(shù)委員會基金項(xiàng)目(編號:15DZ0503402)