張 米,尹天泉,馮華松
抗腫瘤樹突狀細胞疫苗研究進展
張 米,尹天泉,馮華松
免疫系統(tǒng)對腫瘤的殺傷作用主要通過細胞毒性T淋巴細胞實現(xiàn),而樹突狀細胞(dendritic cells,DCs)是體內(nèi)唯一能夠激活初始細胞毒性T淋巴細胞的專職抗原提呈細胞,在機體抗腫瘤免疫反應(yīng)中起到重要的橋梁作用??鼓[瘤DCs疫苗旨在通過激活DCs功能進而激活機體的抗腫瘤免疫反應(yīng),是近年來腫瘤免疫治療中的研究熱點。作者就抗腫瘤DCs疫苗的研究進展作一綜述。
樹突狀細胞;腫瘤;疫苗;免疫治療
近年來,腫瘤免疫治療受到了廣泛關(guān)注并取得良好進展,抗腫瘤樹突狀細胞(dendritic cells,DCs)疫苗是其中的研究熱點之一[1-3]。作者從DCs的發(fā)現(xiàn)與生物學(xué)特征、擴增方法以及誘導(dǎo)DCs疫苗成熟的方法、DCs疫苗的負載方法、給藥途徑、研發(fā)存在的問題及應(yīng)用前景6個方面進行綜述。
1973年,Steinman和Cohn[4]在體外培養(yǎng)小鼠脾細胞時發(fā)現(xiàn)了一群形態(tài)呈樹枝狀的細胞,因此命名為DCs。此后,Steinman在對其功能的研究中發(fā)現(xiàn)DCs是混合淋巴細胞反應(yīng)(mixed lymphocyte reaction,MLR)最有力的刺激因素,并推斷DCs是激活T、B淋巴細胞活化的“輔助”細胞[5]。這一推斷在后來的研究中得到了充分的證實。目前認為,DCs是體內(nèi)抗原提呈能力最強的專職抗原提呈細胞,也是唯一能夠激活初始T淋巴細胞(cytotoxic T lymphocyte,CTL)反應(yīng)的細胞[6-7]。DCs無特異性表面標(biāo)志物,F(xiàn)ms樣酪氨酸激酶3受體是其共同表面標(biāo)志物,小鼠DCs的相對特異性標(biāo)志物為NLDC145、33D1,人DCs的相對特異性標(biāo)志物為CD1a、CD11c、CD83和血液樹突狀細胞抗原2。目前已發(fā)現(xiàn)的DCs膜表面分子主要有:①吞噬相關(guān)受體包括FcγR、FcεR、Toll樣受體(toll-like receptor,TLR)、補體受體、甘露糖受體;②抗原提呈分子包括組織相容性復(fù)合體(major histocompatibility complex,MHC)Ⅰ/Ⅱ類分子、CD1分子;③共刺激分子為CD80、CD86;④黏附分子為CD40、CD54、β1/β2整合素家族等;⑤細胞因子受體為粒細胞-巨噬細胞集落刺激因子受體(granulocyte-macrophage colony stimulating factor receptor,GM-CSFR)、白介素-1受體(interleukin-1 receptor,IL-1R)、IL-10R、IL-4R[8]。
DCs起源于骨髓髓樣干細胞和淋巴樣干細胞,以未成熟DCs(immature dendritic cells,imDCs)狀態(tài)廣泛分布于除腦組織外的全身各組織器官。imDCs高表達吞噬相關(guān)受體,具有強大的抗原攝取能力,攝取抗原后,向淋巴結(jié)歸巢并逐漸成熟。成熟 DCs (mature dendritic cells,mDCs)喪失抗原攝取能力,高表達MHCⅠ/Ⅱ類分子,以及CD40、CD80、CD86等共刺激分子和黏附分子,具有強大的抗原提呈能力,在淋巴結(jié)的T細胞區(qū)將抗原提呈給T細胞,并分泌細胞因子,激活初始T細胞產(chǎn)生免疫應(yīng)答。研究表明,imDCs體外激發(fā)MLR的能力弱,而mDCs激發(fā)MLR的能力強;imDCs誘導(dǎo)免疫耐受,而mDCs激活免疫反應(yīng)[9-10]?;趇mDCs與mDCs在功能上的差異,誘導(dǎo)DCs成熟是DCs疫苗制備中的重要環(huán)節(jié)[11]。吞噬腫瘤抗原卻未能分化成熟的DCs疫苗具有誘發(fā)機體免疫耐受,進而促進腫瘤進展的潛在風(fēng)險。
DCs數(shù)量很少,在人的外周血中其數(shù)量不足單個核細胞的1%,在小鼠的脾臟中僅占細胞數(shù)的0.2%~0.5%。DCs的穩(wěn)定擴增是DCs疫苗制備的前提條件。因而,很多研究致力于DCs培養(yǎng)方法的探索及不同方法間的比較。目前,已經(jīng)形成了較為成熟的DCs擴增方法,可供實驗和臨床應(yīng)用。
2.1 人DCs的擴增方法 人DCs的擴增多采用外周血來源的單核細胞(peripheral blood mononuclear cells,PBMCs)[12-14]。PBMCs易于分離,在 GM-CSF和IL-4的作用下,培養(yǎng)5~7 d轉(zhuǎn)化為DCs。每10 mL血可培養(yǎng)出(0.5~2)×106個DCs,其中95%~99%細胞呈CD1a+CD14-CD83lo/-表現(xiàn)。當(dāng)培養(yǎng)時間超過8 d時,DCs會自發(fā)成熟,伴隨CD83上調(diào)。目前,人DCs的培養(yǎng)技術(shù)已比較成熟,其數(shù)量和質(zhì)量均可滿足臨床應(yīng)用。
2.2 小鼠DCs的擴增方法 自1992年Inaba等[15]報道大量擴增DCs的方法以來,DCs的培養(yǎng)方法已歷經(jīng)多次改良。由于用小鼠PBMCs培養(yǎng)DCs所獲得的細胞數(shù)量較少(約1×105個/只),小鼠DCs的體外擴增多采用骨髓來源的前體細胞,在GM-CSF和IL-4的作用下轉(zhuǎn)化為DCs,但各實驗室所采取的濃度及培養(yǎng)時間有所差異[15-18]。一般采用8~12周齡的小鼠,可培養(yǎng)出足夠數(shù)量的DCs(約5×106個/只)。此外,還有學(xué)者嘗試應(yīng)用Fms樣酪氨酸激酶3配體在體內(nèi)擴增DCs,實驗證明該方法可有效擴增DCs數(shù)目至20倍左右[19]。但DCs的體內(nèi)擴增可控性較差,目前技術(shù)手段仍欠成熟,實驗中多數(shù)采用體外擴增培養(yǎng)的方法。
DCs是免疫系統(tǒng)對抗腫瘤的始動環(huán)節(jié),因而許多學(xué)者試圖通過激活DCs對腫瘤抗原的吞噬、提呈功能來激發(fā)機體的抗腫瘤免疫反應(yīng)。而如何使DCs吞噬目的抗原,即負載DCs,是制備DCs疫苗的首要步驟。目前,已研發(fā)出多種DCs疫苗負載方法,不同方法負載的DCs疫苗所誘導(dǎo)的抗腫瘤效應(yīng)強弱不等,并有各自的優(yōu)缺點。
3.1 腫瘤抗原肽負載的DCs疫苗 腫瘤抗原肽沖擊負載的DCs疫苗有較大的選擇性,不易產(chǎn)生自身免疫反應(yīng)。但大多數(shù)MHC限制性腫瘤抗原肽的半衰期僅2~10 h;若要誘導(dǎo)出高水平持久的抗腫瘤免疫效應(yīng),則要反復(fù)多次回輸負載腫瘤抗原多肽的DCs。有研究發(fā)現(xiàn),卵清蛋白可作為輔助蛋白用于腫瘤抗原肽負載DCs疫苗的制備,其治療效果明顯優(yōu)于對照組[20]。
3.2 全細胞抗原負載的DCs疫苗 全細胞抗原負載DCs是目前廣泛采用的方法,用反復(fù)凍融、超聲破碎、放射線照射等方法獲得腫瘤細胞裂解物,直接負載DCs。它包括了所有已知、未知的腫瘤相關(guān)抗原(tumor associated antigens,TAAs)和腫瘤特異性抗原(tumor specific antigens,TSAs),不需要鑒定分離腫瘤TAAs或TSAs,制備方法簡便。已有實驗證實,凍融的腫瘤細胞可在體外致敏DCs[21-22]。還有學(xué)者嘗試氬氦冷凍消融術(shù)后瘤體內(nèi)注射DCs,從而在體內(nèi)負載DCs疫苗,實驗表明該方法可降低腫瘤的復(fù)發(fā)率、延長生存時間[18,23]。目前,已報道的用于DCs疫苗研究的腫瘤模型多樣,包括Lewis肺癌、黑色素瘤、前列腺癌、神經(jīng)膠質(zhì)瘤、膀胱癌,均獲得了良好的治療效果[24-29]。說明DCs疫苗應(yīng)用范圍較廣,無明顯的腫瘤組織類型特異性。
3.3 基因修飾的DCs疫苗 腫瘤抗原基因轉(zhuǎn)染的DCs疫苗可使DCs持續(xù)以合適的方式將腫瘤抗原的表位與MHC結(jié)合,表達于DCs的表面,從而更有效地激活T細胞產(chǎn)生抗腫瘤免疫應(yīng)答反應(yīng)[30]。但目前僅有少數(shù)幾種腫瘤如黑色素瘤、卵巢癌、乳腺癌鑒定了能被T細胞表位識別的腫瘤抗原決定簇,多數(shù)腫瘤缺乏明確的TSAs、TAAs。因此,用已知少數(shù)的幾種特異抗原轉(zhuǎn)染DCs治療腫瘤,其應(yīng)用范圍較??;當(dāng)腫瘤細胞發(fā)生突變而喪失其特異抗原時,這種單一腫瘤抗原負載的免疫細胞將無法有效識別,而且可能產(chǎn)生與宿主細胞基因組整合的危險。用利于向輔助性T細胞1方向極化的細胞因子基因轉(zhuǎn)染DCs細胞,可有效地激活 CTL反應(yīng)。已有研究表明,將IL-7、IL-12、IL-18、腫瘤壞死因子-α細胞因子基因轉(zhuǎn)染DCs可提高激活抗腫瘤特異性T細胞的能力[31-32]。
3.4 腫瘤細胞與DCs融合 與腫瘤細胞融合后的DCs可表達全部TAAs和TSAs,有關(guān)實驗表明細胞融合疫苗可有效刺激CD4+T、CD8+T細胞及自然殺傷細胞的抗腫瘤免疫反應(yīng),對原發(fā)瘤及轉(zhuǎn)移瘤均可產(chǎn)生有效的抑制作用[33-34]。
3.5 熱休克蛋白負載的DCs疫苗 從腫瘤組織中純化的熱休克蛋白結(jié)合了多種腫瘤細胞特有的抗原肽,可通過DCs表面的受體直接使伴侶分子抗原肽經(jīng)MHCⅠ類分子提呈,激發(fā)機體產(chǎn)生抗腫瘤特異的多個和多種CTL克隆(αβCTL和γδCTL),殺傷腫瘤細胞,但其提取、純化過程復(fù)雜,限制了它們的臨床應(yīng)用[35-36]。
DCs的成熟是DCs疫苗制備中的關(guān)鍵環(huán)節(jié)。表達于DCs表面的TLR,主要識別脂多糖等病原體保守結(jié)構(gòu)。TLR結(jié)合配體后,通過髓樣化因子88、核因子-κB多條信號途徑,啟動細胞活化進程,上調(diào)主要MHC、CD80、CD86等共刺激分子表達,分泌腫瘤壞死因子、IL-6迅速激活天然免疫系統(tǒng)。TLR的主要配體包括G-菌的脂多糖、類脂A、革蘭陽性菌的肽聚糖、脂磷壁酸、脂阿拉伯甘露聚糖、疏密螺旋體的脂蛋白、酵母多糖和細菌DNA、非甲基化的胞嘧啶鳥嘌呤二核苷酸的寡脫氧核苷酸,是促進DCs成熟的高效刺激物。研究中應(yīng)用較多的免疫佐劑為卡介苗細胞壁骨骼、脂多糖和非甲基化的胞嘧啶鳥嘌呤二核苷酸的寡脫氧核苷酸,實驗表明這些免疫佐劑可有效刺激DCs疫苗的成熟,增強疫苗的抗腫瘤作用[37-38]。此外,還有學(xué)者嘗試用γ-干擾素誘導(dǎo)出半成熟狀態(tài)的DCs,這樣DCs既保留了吞噬抗原的能力,也可在吞噬抗原后分化成熟[39]。成熟的DCs高表達MHCⅠ/Ⅱ類分子、CD80、CD86、CD40及黏附分子。目前,疫苗制備中多采用流式細胞術(shù)檢測CD80、CD86的表達來鑒別DCs的成熟度。
DCs疫苗的給藥途徑主要包括靜脈注射、皮下注射、皮內(nèi)注射、瘤體內(nèi)注射方法。其中,皮下注射治療組治療效果優(yōu)于靜脈注射組,肝、脾的破壞是導(dǎo)致靜脈注射治療效果欠佳的主要原因;而歸巢率較低是制約皮下和皮內(nèi)注射組治療效果重要因素;瘤體內(nèi)注射法難度相對較大,具體操作方法、作用機制還有待更加深入地研究[40]。
理想的抗腫瘤DCs疫苗制備方法應(yīng)具備:①能夠擴增數(shù)量足夠并具有良好活性的DCs;②在攝取抗原前應(yīng)維持DCs的未成熟狀態(tài);③在吞噬抗原后應(yīng)確保DCs分化成熟;④回輸體內(nèi)的DCs能夠順利歸巢,激活初始CTL反應(yīng),誘導(dǎo)抗腫瘤特異性免疫反應(yīng);⑤具有較長效的抗腫瘤作用;⑥避免誘導(dǎo)自身免疫反應(yīng)。目前,DCs疫苗的研發(fā)依然存在一些問題:DCs的擴增在數(shù)量上基本能夠滿足實驗及臨床需要,但不同方法擴增的DCs在疫苗制備中是否存在差異,還需進一步比較;由于imDC與mDC在功能上存在很大差異,為充分發(fā)揮其抗原攝取與提呈的雙重功能,刺激DCs成熟的合適時機尚需進一步探討;DCs在體內(nèi)的歸巢率低,是制約DCs疫苗治療效果重要因素,如何提高DCs疫苗的歸巢率,是DCs疫苗研發(fā)過程中必須攻克的一大難題。
目前,DCs疫苗的抗腫瘤作用已在多種腫瘤動物模型上得以證實。研究表明,DCs疫苗可誘導(dǎo)輔助性T細胞1型免疫反應(yīng),有效刺激腫瘤特異性CD8+T細胞增殖,可使腫瘤體積縮小或消失,降低腫瘤復(fù)發(fā)率,延長動物生存時間[41]。臨床試驗證實,DCs疫苗具有良好的相容性,是安全、可行的治療方法[42]。這些結(jié)果彰顯了其良好的臨床應(yīng)用前景。雖然目前抗腫瘤DCs疫苗尚未取得令人滿意的臨床治療效果,但其研發(fā)為腫瘤的治療帶來了新的方法,為腫瘤患者帶來了新的希望。未來研究中,對上述DCs疫苗存在問題的解決,必將為其廣泛的臨床應(yīng)用打下堅實的基礎(chǔ),推動腫瘤治療的發(fā)展。
[1]Pizzurro GA,Barrio MM.Dendritic cell-based vaccine efficacy:aiming for hot spots[J].Front Immunol,2015,6:91.
[2]Kastenmüller W,Kastenmüller K,Kurts C,et al.Dendritic cell-targeted vaccines--hope or hype?[J].Nat Rev Immunol,2014,14(10):705-711.
[3]Katz T,Avivi I,Benyamini N,et al.Dendritic cell cancer vaccines:from the bench to the bedside[J].Rambam Maimonides Med J,2014,5(4):e0024.
[4]Steinman RM,Cohn ZA.Identification of a novel cell type in peripheral lymphoid organs of mice.Ⅰ.Morphology,quantitation,tissue distribution[J].J Exp Med,1973,137(5):1142-1162.
[5]Steinman RM,Blumencranz SJ,Machtinger BG,et al. Mouse spleen lymphoblasts generated in vitro.Their replication and differentiation in vitro[J].J Exp Med,1978,147(2):297-315.
[6]何維.醫(yī)學(xué)免疫學(xué)[M].2版.北京:人民衛(wèi)生出版社,2010:208-223.
[7]Collin M,McGovern N,Haniffa M.Human dendritic cell subsets[J].Immunology,2013,140(1):22-30.
[8]龔非力.醫(yī)學(xué)免疫學(xué)[M].4版.北京:科學(xué)出版社,2014:108-116.
[9]Steinman RM.The dendritic cell system and its role in immunogenicity[J].Annu Rev Immunol,1991,9:271-296.
[10]曹雪濤.免疫學(xué)前沿進展[M].3版.北京:人民衛(wèi)生出版社,2014:121-145.
[11]Rozera C,Cappellini GA,D’Agostino G,et al.Intratumoral injection of IFN-alpha dendritic cells after dacarbazine activatesanti-tumor immunity:results from a phaseⅠtrial in advanced melanoma[J].J Transl Med,2015,13:139.
[12]Berger TG,F(xiàn)euerstein B,Strasser E,et al.Large-scale generation of mature monocyte-derived dendritic cells for clinical application in cell factories[J].J Immunol Methods,2002,268(2):131-140.
[13]Boltjes A,van Wijk F.Human dendritic cell functional specialization in steady-state and inflammation[J].Front Immunol,2014,5:131.
[14]El-Sahrigy SA,Mohamed NA,Talkhan HA,et al.Comparison between magnetic activated cell sorted monocytes and monocyte adherence techniques for in vitro generation of immature dendritic cells:an Egyptian trial[J].Cent Eur J Immunol,2015,40(1):18-24.
[15]Inaba K,Inaba M,Romani N,et al.Generation of large numbers of dendritic cells from mouse bone marrow cultures supplemented with granulocyte/macrophage colonystimulating factor[J].J Exp Med,1992,176(6):1693-1702.
[16]Lutz MB,Kukutsch N,Ogilvie AL,et al.An advanced culture method for generating large quantities of highly pure dendritic cells from mouse bone marrow[J].J Immunol Methods,1999,223(1):77-92.
[17]Son YI,Egawa S,Tatsumi T,et al.A novel bulk-culture method for gene rating mature dendritic cells from mouse bone marrow cells[J].J Immunol Methods,2002,262(1/ 2):145-157.
[18]Alteber Z,Azulay M,Cafri G,et al.Cryoimmunotherapy with local co-administration of ex vivo gene rated dendritic cells and CpG-ODN immune adjuvant,elicits a specific antitumor immunity[J].Cancer Immunol Immunother,2014,63(4):369-380.
[19]Marroquin CE,Westwood JA,Lapointe R,et al.Mobilization of dendritic cell precursors in patients with cancer by flt3 ligand allows the generation of higher yields of cultured dendritic cells[J].J Immunother,2002,25(3):278-288.
[20]Zarnani AH,Torabi-Rahvar M,Bozorgmehr M,et al.Improved efficacy of a dendritic cell-based vaccine against a murine modelof colon cancer:the helper protein effect[J]. Cancer Res Treat,2015,47(3):518-526.
[21]王輝,封芳,朱民高,等.自體腫瘤抗原致敏的樹突狀細胞聯(lián)合細胞因子誘導(dǎo)的殺傷細胞治療晚期腎癌的療效觀察[J].細胞與分子免疫學(xué)雜志,2015,31(1):67-71.
[22]Ismail M,Morgan R,Harrington K,et al.Immunoregulatory effects of freeze injured whole tumour cells on human dendritic cells using an in vitro cryotherapy model[J].Cryobiology,2010,61(3):268-274.
[23]Machlenkin A,Goldberger O,Tirosh B,et al.Combined dendritic cell cryotherapy of tumor induces systemic antimetastatic immunity[J].Clin Cancer Res,2005,11(13):4955-4961.
[24]Dillman RO,McClay EF,Barth NM,et al.Dendritic versus tumor cell presentation of autologous tumor antigens for active specific immunotherapy in metastatic melanoma:impact on long-term survival by extent of disease at the time of treatment[J].Cancer Biother Radiopharm,2015,30(5):187-194.
[25]Yang HG,Hu BL,Xiao L,et al.Dendritic cell-directed lentivector vaccine induces antigen-specific immune responses against murine melanoma[J].Cancer Gene Ther,2011,18(5):370-380.
[26]Xiao L,Joo KI,Lim M,et al.Dendritic cell-directed vaccination with a lentivector encoding PSCA for prostate cancer in mice[J].PLoS One,2012,7(11):e48866.
[27]Teramoto K,Ohshio Y,F(xiàn)ujita T,et al.Simultaneous activation of T helper function can augment the potency of dendritic cell-based cancer immunotherapy[J].J Cancer Res Clin Oncol,2013,139(5):861-870.
[28]肖宗宇,陳曉娟,楊藝,等.腫瘤干細胞樣細胞RNA致敏樹突狀細胞治療大鼠9L腦腫瘤[J].北京大學(xué)學(xué)報:醫(yī)學(xué)版,2015,47(4):661-666.
[29]Xie XF,Ding Q,Hou JG,et al.Inhibitory effects of a dendritic cell vaccine loaded with radiation-induced apoptotic tumor cells on tumor cell antigens in mouse bladder cancer [J].Genet Mol Res,2015,14(3):7548-7555.
[30]Benteyn D,Heirman C,Bonehill A,et al.mRNA-based dendritic cell vaccines[J].Expert Rev Vaccines,2015,14 (2):161-176.
[31]Cao DY,Yang JY,Dou KF,et al.Alpha-fetoprotein and interleukin-18 gene-modified dendritic cells effectively stimulate specific type-1 CD4-and CD8-mediated T-Cell response from hepatocellular carcinoma patients in vitro [J].Hum Immunol,2007,68(5):334-341.
[32]Sharma S,Batra RK,Yang SC,et al.Interleukin-7 genemodified dendritic cells reduce pulmonary tumor burdenin spontaneous murine bronchoalveolar cell carcinoma[J]. Hum Gene Ther,2003,14(16):1511-1524.
[33]Takakura K,Kajihara M,Ito Z,et al.Dendritic-tumor fusion cells in cancer immunotherapy[J].Discov Med,2015,19(104):169-174.
[34]Koido S,Gong J.Cell fusion between dendritic cells and whole tumor cells[J].Methods Mol Biol,2015,1313:185-191.
[35]Fang L,Sun L,Yang J,et al.Heat shock protein 70 from trichinella spiralis induces protective immunityin BALB/c mice by activating dendritic cells[J].Vaccine,2014,32 (35):4412-4419.
[36]Jung ID,Shin SJ,Lee MG,et al.Enhancement of tumorspecific T cell-mediated immunity in dendritic cell-based vaccines by Mycobacterium tuberculosis heat shock protein X[J].J Immunol,2014,193(3):1233-1245.
[37]Majumder S,Bhattacharjee S,Paul Chowdhury B,et al. CXCL10 is critical for the generation of protective CD8 T cell response induced by antigen pulsed CpG-ODN activated dendritic cells[J].PLoS One,2012,7(11):e48727.
[38]Nierkens S,den Brok MH,Garcia Z,et al.Immune adjuvant efficacy of CpG oligonucleotide in cancer treatment is founded specifically upon TLR9 function in plasmacytoid dendritic cells[J].Cancer Res,2011,71(20):6428-6437.
[39]Leplina OY,Tyrinova TV,Tikhonova MA,et al.Interferon alpha induces generation of semi-mature dendritic cells with high pro-inflammatory and cytotoxic potential[J].Cytokine,2015,71(1):1-7.
[40]Mullins DW,Sheasley SL,Ream RM,et al.Route of immunization with peptide-pulsed dendritic cells controls the distribution of memory and effector T cells in lymphoid tissues and determines the pattern of regional tumor control [J].J Exp Med,2003,198(7):1023-1034.
[41]Mac Keon S,Ruiz MS,Gazzaniga S,et al.Dendritic cellbased vaccination in cancer:therapeutic implications emerging from murine models[J].Front Immunol,2015,6:243.
[42]Prue RL,Vari F,Radford KJ,et al.A phaseⅠclinical trial of CD1c(BDCA-1)+dendritic cells pulsed with HLA-A?0201 peptides for immunotherapy of metastatic hormone refractory prostate cancer[J].J Immunother,2015,38(2):71-76.
Advance in anti-tumor dendritic cell vaccines
ZHANG Mi1,YIN Tianquan2,F(xiàn)ENG Huasong3
(1.Medical School of Chinese PLA,Beijing 100853,China;2.Department of Emergency,Beijing Chaoyang Hospital Affiliated to Capital Medical University,Beijing 100020,China;3.Department of Respiratory Medicine,Navy General Hospital,Beijing 100048,China)
Cytotoxic T lymphocytes(CTL)are the main effector cells in the anti-tumor immune response.Dendritic cells(DCs),which are considered to be the most potent antigen presenting cells(APC)in the body,are the only cells that can activate cytotoxic T lymphocytes and thus play an important role in the anti-tumor immunity.Research in DCs-based vaccines has evoked great interest and made much progress in recent years.Advance in anti-tumor DCs vaccines is to be reviewed here.
Dendritic cells(DCs);Tumor;Vaccines;Immunotherapy
R730.51
A
2095-3097(2015)06-0365-05
10.3969/j.issn.2095-3097.2015.06.013
2015-06-14 本文編輯:張在文)
100853北京,解放軍醫(yī)學(xué)院(張 米);100020北京,首都醫(yī)科大學(xué)附屬北京朝陽醫(yī)院急診科(尹天泉);100048北京,海軍總醫(yī)院呼吸內(nèi)科(馮華松)
馮華松,E-mail:fenghs99@163.com