常琴田新瑞
轉(zhuǎn)化生長因子β1與支氣管哮喘的研究進(jìn)展*
常琴①田新瑞①
支氣管哮喘是一種慢性氣道炎癥,其主要病理改變包括氣道炎癥、平滑肌功能紊亂和氣道重構(gòu)。轉(zhuǎn)化生長因子β1(TGF-β1)作為一種多效細(xì)胞因子,通過多種途徑參與哮喘氣道炎癥反應(yīng)和氣道重構(gòu)。本文就TGF-β1在哮喘氣道炎癥及氣道重構(gòu)中的作用及可能機制作一綜述。
轉(zhuǎn)化生長因子β1; 哮喘; 氣道炎癥; 氣道重構(gòu)
支氣管哮喘簡稱哮喘,屬于慢性氣道炎癥病變,涉及多種類細(xì)胞(如嗜酸性粒細(xì)胞、肥大細(xì)胞、T淋巴細(xì)胞、中性粒細(xì)胞、平滑肌細(xì)胞、氣道上皮細(xì)胞等)和細(xì)胞因子。主要特征改變包括氣道慢性炎癥、氣道高反應(yīng)性(AHR)、可逆性氣流受限及氣道結(jié)構(gòu)的改變,即氣道重構(gòu)。氣道重構(gòu)是氣道反復(fù)損傷和修復(fù)的結(jié)果[1],其病理改變主要為上皮細(xì)胞損傷脫落,氣道平滑肌增生、肥大,肌成纖維細(xì)胞增生及腺上皮化生等[2]。TGF-β1因其特有的促炎、抗炎及促纖維化作用,在哮喘發(fā)病中具有中心地位[3]。
TGF-β家族含有30余種蛋白成分,包括TGF-βs(TGF-β1、2、3)、骨形成蛋白、激活素、抑制素和其他結(jié)構(gòu)相關(guān)因子,廣泛存在于動物正常組織細(xì)胞及轉(zhuǎn)化細(xì)胞中,以骨組織和血小板中最為豐富[4]。
T GF-βs主要存在于哺乳動物中[5]。其受體分為Ⅰ、Ⅱ、Ⅲ三種:I型受體又稱為激活素受體樣激酶(ALKs),有7種亞型(ALK1-7),且不同亞型參與不同的信號轉(zhuǎn)導(dǎo):ALK1、2、4、5、7主要轉(zhuǎn)導(dǎo)TGF-β信號(ALK5為著);ALK3、6主要轉(zhuǎn)導(dǎo)BMP信號。Ⅱ型受體是一種結(jié)構(gòu)型絲/蘇氨酸激酶,有TβR-Ⅱ、ActR-Ⅱ、ActR-ⅡB、BMPR-Ⅱ和AMHRA五種亞型,通過結(jié)合不同的家族成員介導(dǎo)不同的信號通路[6],主要通過跨膜的TGF-βI型受體(TβRI)和Ⅱ型受體(TβRⅡ)發(fā)揮作用[7]。
TGF-β1在進(jìn)化中被高度保留,小鼠與人的TGF-β1中氨基酸序列相似度高達(dá)99%,而豬、牛、猴、雞的相應(yīng)序列與人類完全相同[4]。TGF-β1是一種由二硫鍵連接的堿性蛋白,基因位于人染色體19q3[8],該基因C端有5個明顯的基因調(diào)控區(qū):一個類增強子活性區(qū),兩個負(fù)調(diào)控區(qū)和兩個啟動子區(qū)。
TGF-β1具有多重生物效應(yīng),包括參與細(xì)胞增殖與分化、免疫功能抑制及細(xì)胞外基質(zhì)形成、分泌,特別是在誘導(dǎo)上皮間質(zhì)轉(zhuǎn)化(EMT)中起關(guān)鍵作用。
TGF-β1主要通過三條途徑發(fā)揮作用:Smad通路、非Smad通路和Wnt/β-catenin通路。
3.1 Smad通路 Sekelsky等[9]在果蠅中發(fā)現(xiàn)惡性疾病相關(guān)性DNA結(jié)合蛋白MAD參與TGF-β的信號轉(zhuǎn)導(dǎo)。目前在脊椎動物中共發(fā)現(xiàn)9種Smad蛋白,根據(jù)其功能可分為三類:一類是受體活化型,包括Smad1、2、3、5、8;第二類是通用調(diào)節(jié)型,Smad4;第三類為抑制型,包括Smad6、7。
TGF-β1與TβRI和TβRⅡ結(jié)合,形成異聚體復(fù)合物發(fā)揮作用。過程如下:TGF-β1首先與TβRⅡ結(jié)合,再激活募集TβRI形成受體復(fù)合物[10]。TβRⅡ
自身磷酸化,進(jìn)而磷酸化TβRI的甘氨酸-絲氨酸富集區(qū)域(GS序列),同時活化TβRI的絲氨酸/蘇氨酸活性[10]?;罨腡βRI又磷酸化相關(guān)Smad蛋白。Smads蛋白是參與TGF-β1信號轉(zhuǎn)導(dǎo)的主要因子,通過與細(xì)胞核內(nèi)DNA分子結(jié)合發(fā)揮轉(zhuǎn)錄因子功能,激活的TGF-β1將信號放大,隨之激活細(xì)胞內(nèi)信號轉(zhuǎn)導(dǎo)介質(zhì)Smad2、3,磷酸化的 Smad2、3與 Smad4結(jié)合形成復(fù)合體,轉(zhuǎn)移至細(xì)胞核內(nèi)[11],與EMT等相關(guān)基因啟動區(qū)的Smad4結(jié)合原件結(jié)合,調(diào)控EMT等相關(guān)基因的轉(zhuǎn)錄和表達(dá),進(jìn)而調(diào)節(jié)器官、組織纖維化過程。TGF-β1通過抑制型Smad發(fā)揮負(fù)性調(diào)節(jié)作用[12]。刺激后,Smad 7轉(zhuǎn)移至胞漿,與胞漿內(nèi)Smurf 2形成復(fù)合體,抑制R-Smads磷酸化,從而抑制TGF-β1通路的作用。
3.2 MAPK通路 MAPK通路可將細(xì)胞外信號轉(zhuǎn)導(dǎo)至細(xì)胞及細(xì)胞核內(nèi),導(dǎo)致細(xì)胞增殖、分化、轉(zhuǎn)化及凋亡等。TGF-β1激活促分裂原活化蛋白激酶(MAPK),主要包括細(xì)胞外信號調(diào)節(jié)激酶(ERK)、c-Jun氨基末端激酶(JNK)和P38分裂原活化的蛋白激酶通路[13]。ERKs通過磷酸化胞漿蛋白及核內(nèi)的轉(zhuǎn)錄因子如c-Jun、EIK-1、c-myc和ATF2等,調(diào)控細(xì)胞增殖、分化;磷酸化ERKs上游蛋白(NGF受體、Raf-1、MEK等),對該通路進(jìn)行負(fù)反饋調(diào)節(jié)。
研究發(fā)現(xiàn),P38激活后,由胞質(zhì)轉(zhuǎn)至細(xì)胞核內(nèi),通過級聯(lián)反應(yīng)活化其下游轉(zhuǎn)錄因子,從而介導(dǎo)靶細(xì)胞分化、增殖、合成、分泌細(xì)胞外基質(zhì),誘導(dǎo)細(xì)胞凋亡及炎性反應(yīng)等[14-15]。
3.3 Wnt通路 Wnt通路在胚胎發(fā)育、腫瘤發(fā)生和器官纖維化等重要生理及病理過程中發(fā)揮重要作用。Wnt信號通路未活化時,Gsk-3β在β-catenin的絲氨酸/蘇氨酸殘基添加磷酸基團(tuán),將β-catenin磷酸化,隨之與β-TRCP蛋白結(jié)合,受泛素化的共價修飾,被蛋白酶降解。該通路激活后,Wnt與卷曲蛋白(Frz)結(jié)合,作用于細(xì)胞質(zhì)中的蓬亂蛋白(Dsh),阻斷β-catenin的降解,β-catenin在胞質(zhì)及核中積聚,進(jìn)而調(diào)控靶基因表達(dá)[16]。
哮喘是一種慢性氣道炎癥[17],其病理過程主要包括氣道炎癥,AHR及氣道重構(gòu)[18],是多種細(xì)胞和細(xì)胞因子共同參與、相互作用的結(jié)果。氣道慢性炎癥作為哮喘的基本特征,存在于所有的哮喘患者中,表現(xiàn)為炎癥細(xì)胞浸潤及氣道分泌物增加等[18]。若哮喘長期反復(fù)發(fā)作,可見支氣管平滑肌肥大、增生、氣道上皮細(xì)胞黏液化生、上皮下膠原沉積和纖維化、基底膜增厚等氣道重構(gòu)的表現(xiàn)。
在哮喘炎癥反應(yīng)中,TGF-β1作為多種炎癥細(xì)胞的強趨化因子和激活因子發(fā)揮作用。對哮喘患者支氣管肺泡灌洗液(BALF)的研究發(fā)現(xiàn),TGF-β1可促進(jìn)炎癥細(xì)胞水平的增加[19-21]。應(yīng)原進(jìn)入體內(nèi)后,巨噬細(xì)胞濃度增加,誘發(fā)TGF-β1增加,誘導(dǎo)輔助性Th 17細(xì)胞擴(kuò)大炎癥反應(yīng)[22-24]?;罨木奘杉?xì)胞和氣道上皮細(xì)胞釋放IL-18,可促進(jìn)哮喘炎癥反應(yīng)的發(fā)生[25]。另一方面,TGF-β1可抑制多種炎性細(xì)胞的功能,通過負(fù)性調(diào)節(jié)作用降低AHR及氣道炎癥[26];同時抑制Th2細(xì)胞及IL-4、IL-5 等細(xì)胞因子的釋放[23],在哮喘氣道炎癥中發(fā)揮作用。此外,TGF-β1作為一種有效的抗炎因子,其化學(xué)吸附能力可引起巨噬細(xì)胞和粒細(xì)胞在局部炎癥反應(yīng)中聚集[23],還可以促進(jìn)Th17和FoxP3調(diào)節(jié)性T細(xì)胞的增殖、分化,從而誘導(dǎo)IL-9產(chǎn)生Th細(xì)胞[27-29],發(fā)揮免疫應(yīng)答反應(yīng)。
Simon等[18]利用OVA致敏Balb/c小鼠,建立小鼠慢性氣道炎癥模型,9周后收集BALF進(jìn)行細(xì)胞計數(shù),發(fā)現(xiàn)OVA致敏組小鼠BALF中嗜酸性粒細(xì)胞、中性粒細(xì)胞、淋巴細(xì)胞、巨噬細(xì)胞較正常對照組均明顯增加;對肺組織進(jìn)行免疫組化AB-PAS染色發(fā)現(xiàn),OVA致敏組小鼠肺組織TGF高表達(dá),與正常對照組比較差異有統(tǒng)計學(xué)意義(P<0.05)。表明TGF-β1在氣道慢性炎癥反應(yīng)中發(fā)揮作用。
哮喘患者氣道中TGF-β1水平顯著高于正常個體[30]。TGF-β1具有強烈的促纖維化作用,能刺激氣道平滑肌細(xì)胞增生,在氣道重構(gòu)中發(fā)揮作用[31]。實驗發(fā)現(xiàn),哮喘患者BALF中TGF-β1水平較正常組明顯升高,與其下游信號通路TGF-β1/Smad活化成正相關(guān)[32]。TGF-β1通過調(diào)節(jié)炎癥細(xì)胞表達(dá)、促進(jìn)基質(zhì)沉積、上皮下纖維化、平滑肌增生等參與哮喘氣道重構(gòu)[33]。
綜上所述,T GF-β1作為一種多效細(xì)胞因子,在哮喘發(fā)病中發(fā)揮促炎、抗炎及促纖維化的作用。
近年來實驗證明,TGF-β1主要通過Smad、非Smad和β-catenin三條通路在哮喘氣道炎癥及重構(gòu)中發(fā)揮作用。
Sagara等[10]以磷酸化Smad2作為活性TGF-β信號轉(zhuǎn)導(dǎo)的標(biāo)記,對40例哮喘患者支氣管活檢標(biāo)本研究發(fā)現(xiàn),健康組中磷酸化Smad2表達(dá)水平低下,而哮喘組呈高表達(dá)。Rosendahl等[34]利用卵白蛋白(OVA)致敏、激發(fā)Balb/c小鼠,建立小鼠哮喘炎癥階段(4周)模型,觀察肺組織中TGF-β1受體的表達(dá),發(fā)現(xiàn)在小鼠氣道上皮細(xì)胞、成纖維細(xì)胞和血管內(nèi)皮細(xì)胞中磷酸
化Smad 2水平在吸入OVA后升高,而未吸入激發(fā)劑的致敏小鼠磷酸化Smad2則呈低表達(dá);免疫組化法和RT-PCR均發(fā)現(xiàn)正常肺組織中幾乎不表達(dá)Smad3,而哮喘小鼠肺組織中Smad3表達(dá)水平明顯升高,證實Smad2和Smad3之間存在協(xié)同作用,且促進(jìn)氣道重構(gòu)。此外,Nakao等[35]應(yīng)用免疫組化法觀察40例哮喘患者及6例正常個體的支氣管活檢標(biāo)本,發(fā)現(xiàn)Smad蛋白主要表達(dá)于支氣管上皮細(xì)胞,且哮喘組中Smad7蛋白表達(dá)水平較正常組低,W estern blot方法檢測亦有相同結(jié)果。Ming Chen等[36]通過建立Balb/c小鼠OVA致敏哮喘模型(8周),觀察小鼠BALF中TGF-β1含量(ELISA法)及肺組織中Smad7表達(dá)水平(Western Blot),發(fā)現(xiàn)OVA致敏組小鼠BALF中TGF-β1含量明顯高于正常組,但其肺組織中Smad 7表達(dá)水平明顯低于正常對照組,證實Smad7在哮喘發(fā)病中起保護(hù)性作用。說明,TGF-β1通過Smad通路在哮喘發(fā)病中發(fā)揮作用。
MAPK(特別是ERK1/2)是哮喘病理生理過程中重要的細(xì)胞內(nèi)轉(zhuǎn)導(dǎo)途徑,但其機制尚不清楚[37]。但Ming等[37]通過實驗證實,TGF-β1通過抑制NF-κB,而不是ERK1/2通路誘導(dǎo)大鼠氣道上皮細(xì)胞增殖和遷移。Khalil等[38]通過建立大鼠肺纖維化模型,分別利用ELISA、Western Blot檢測肺組織中TGF-β1總量及P38 MAPK的表達(dá)量,證實TGF-β1受體介導(dǎo)的P38 MAPK通路與肺纖維化過程密切相關(guān),但在哮喘中的作用需進(jìn)一步證實。
Tian等[39]通過蛋白敲除β-catenin,證實TGF-β1通過與β-catenin/Smad結(jié)合而非LEF-1發(fā)揮作用,且抑制β-catenin/Smad3相互作用可以分離TGF-β1的促纖維化及抗炎作用。
TGF-β1具有抗炎和促纖維化的雙重作用,通過多種途徑參與哮喘氣道炎癥反應(yīng)和氣道重構(gòu)。TGF-β/ Smad信號通路在支氣管哮喘的發(fā)生、發(fā)展中起重要作用,深入研究該信號通路對于開發(fā)以TGF-β1信號通路中的環(huán)節(jié)為靶點的靶向治療具有積極意義。
[1] W arner S M,Knight D A.Airway modeling and remodeling in the pathogensis of asthma[J].Curr Opin Allergy Clin Immunol,2008,8(4):44-48.
[2] Bergeron C,Boulet L P.Structural changes in airway diseases:characteristics, mechanisms, consequences, and pharmacologic modulation[J].Chest,2006,129(4):1068-1087.
[3] A lcom J F,Rinaldi L M,Jaffe E F,et a1.T ransforming growth factor-betal suppresses airway hyperresponsiveness in allersic airway disease[J].A m J Respir Crit Care Med,2007,176(10):974-982.
[4] K rit Kitisin, Tapas Saha,et al.T GF-beta Signaling in Development[J]. Science Stke,2007,14(399):1126.
[5] M ark A,Travis,Dean Sheppard.TGF-β Activation and Function in Immunity[J].Annu Rev Immunol,2014,32(1):51-82.
[6] D erynck R,F(xiàn)eng X H. TGF-β receptor signaIing[J].Biochim Biophys Acta,1997,1333(2):105-150.
[7] Baardsnes J,Hinck C S,Hinck A P,et al.TbetaR-II discriminates the high-and low-affinity TGF-beta isoforms via two hydrogenbonded ion pairs[J].Biochemistry,2009,48(10):2146-2155.
[8] Sakaki-Yumoto M,Katsuno Y,Derynck R.TGF-β familu signaling in stem cells[J].Biochim Biophys Acta,2013,1830(2):2280-2296.
[9] Sekelsky J J,Newfeld S J,Raftery L A,et al.Genetic characterization and cloning of mothers against dpp, a gene required for decapentaplegic function in Drosophila melanogaster[J].Genetics,1995,139(3):1347-1358.
[10] Sagara H,Okada T,Okumura K,et al.Activation of TGF-beta/ Smad2 signaling is associated with airway remodeling in asthma[J].J Allergy Clin Immunol,2002,110(2):49-54.
[11] Le A V,Cho J Y,Miller M,et al.Inhibition of allergen-induced airway remodeling in Smad 3-deficient mice[J].J Immunol,2007,178(11):7310-7316.
[12] Yamada Y,Mashima H,Sakai T,et al.Functional roles of TGF-β1in intestinal epithelial cells through Smad-dependent and non-Smad pathway[J].Dig Dis Sci,2013,58(5):1207-1217.
[13] Chen H H,Zhou X L,Shi Y L,et al.Roles of p38 MAPK and JNK in TGF-β1-induced human alveolar epitheliak to mesenchymal transition[J].Arch Med Res,2013,44(2):93-98.
[14] M a F Y,Sachchithananthan M,F(xiàn)lanc R S,et al.M itogen activated protein kinases in renal fibrosis[J].Front Biosci,2009,18(1):171-187.
[15] C hopra P,Kanoje V,Semwal A,et al.Therapeutic potential of inhaled p38 mitogen-activated protein kinase inhibitors for inflammatory pulmonary diseases[J].Expert Opin Investig Drugs,2008,17(10):1411-1425.
[16] Anastas J N,Moon R T. Wnt signaling pathways as therapeutic targets in cancer[J].Nat Rev Cancer,2013,13(1):11-26.
[17] M azen Al-Alawi,Tidi Hassan,Sanjay H.Chotirmall.Transforming growth factor β and serve asthma:a perfect storm[J].Respiratory Medicine,2014,108(10):1409-1423.
[18] S imon G Royce,Krupesh P Patel,Chrishan S Sammuel. Characterization of a novel model incorporating airway epithelial and related fibrosis to the pathogenesis of asthma[J].Laboratory Investigation,2014,94(12):1326-1339.
[19] Duvernelle C,F(xiàn)reund V,F(xiàn)rossard N.Transforming growth factorbeta and its role in asthma[J].Pulm Pharmacol Ther,2003,16(4):181-196.
[20] Van Hove C L,Joos G F,Toumoy K G.Chronic inflammation in asthma:a constest of persistence vs resolution[J].Allergy,2008,63(9):1095-2109.
[21] H owell J E,McAnulty R J.T GF-beta:its role in asthma and therapeutic potential[J].Curr Drug Targets,2006,7(5):547-565.
[22] Vignola A M,Chanez P,Chiappara G,et al.Transforming growth factor-beta expression in mucosal biopsies in asthma and chronic bronchitis[J].Am J Respir Crit Care Med,1997,156(2 Pt 1):591-599.
[23] Y ang Y C,Zhang N,Van Crombruggen K,et al.T ransforming growth factor-betal in inflammatory airway disease:a key for understanding inflammation and remodeling[J].Allergy,2012,67(10):1193 -1202.
[24] C hakir J,Shannon J,Molet S,et al.Airway remodelingassociated mediators in moderate to severe asthma: effect of steroids on TGFbeta, IL-11, IL-17, and type I and type III collagen expression[J].J Allergy Clin Immunol,2003,111(6):1293-1298.
[25] Lee K S,Kim S R,Park S J,et al.A ntioxidant down-regulates interleukin-18 expression in asthma[J]. Mol Pharmacol,2006,70(4):1184-1193.
[26] Gras D,Bourdin A,Chanez P,et al.Airway remodeling in asthma:clinical and functional correlates[J].Med Sci,2011,27(11):959-965.
[27] Li M O,Wan Y Y,Sanjabi S,et al.T ransforming growth factorbeta regulation of immune responses[J].Annu Rev Immunol,2006,24(11):99-146.
[28] B ettelli E,Carrier Y,Gao W,et al.Reciprocal developmental pathways for the generation of pathogenic effector TH17 and regulatory T cells[J].Nature,2006,441(7090):235-238.
[29] Dardalhon V,Awasthi A,Kwon H,et al.IL-4 inhibits TGF-betainduced Foxp3t T cells and,together with TGF-beta,generates IL-9t IL-10t Foxp3(-) effector T cells[J].Nat Immunol,2008,9(12):1347-1355.
[30] Scherf W,Burdach S,Hansen G.Reduced expression of transforming growth factor beta 1 exacerbates pathology in an experimental asthma model[J].Eur J Immunol,2005,35(1):198-206.
[31] S tephen E,Bottoms,Jane E, et al.T GF-β1isoform specific regulation of airway inflammation and remodeling in a murine model of asthma[J].PLoS One,2010,5(3):e9674.
[32] X iong Y Y,Wang J S,Wu F H,et al.T he effects of –Praeruptorin A on airway inflammation, remodeling and transforming growth factor-beta/Smad signaling pathway in a murine model of allergic asthma[J].Int Immunopharmacol,2012,14(4):392-400.
[33] Postma D S,Timens W.Remodeling in asthma and chronic obstructive pulmonary disease[J].Proc Am Thorac Soc,2006,3(5):434-439.
[34] Rosendahl A,Checehin D,F(xiàn)ehniger T E,et a1.Activation of the TGF-beta/activin-Smad 2 pathway during allele airway inflarnmation[J].Am J Respir Cell Mol Biol,2001,25(1):60-68.
[35] Nakao A,Sagara H,Setoguchi Y,et a1.Expression of Smad 7 in bronchial epithelial cells is inversely correlated to basement mem brane thickness and airway hyperresponsiveness in patients with asthma[J].J Allergy Clin Immunol,2002,110(6):873-878.
[36] Mi ng Chen,Zhiqiang Lv,Shanping Jiang.The effect of triptolide on airway remodeling and transforming growth factor-β1/Smad signaling pathway in ovalbumin-sensitized mice[J].Immunology,2011,132(3):376-384.
[37] Mi ng Chen,Jian Ting Shi,Zhi Qiang Lu,et al.Tr iptolide inhibits TGF-β1induced proliferation and migration of rat airway smooth muscle cells by suppressing NF-κB but not ERK1/2[J].Immunology,2014,29(3):1111.
[38] Kh alil N,Xu Y D.Pr oliferation of pulmonary interstitial fibroblasts is mediated by transforming growth factor-betainduced release of extracellular fibroblast growth factor-2 and phosphorylation of p38 MAPK and JNK[J].Biol Chem,2005,280(5):43 000-43 009.
[39] Tian Xi nrui,Zhang Jianlin,Thian Kui Tan,et al.As sociation of b-catenin with P-Smad3 but not LEF-1 dissociates in vitro profibrotic from anti-inflammatory effects of TGF-β1[J].Jo urnal of Cell Science,2013,126(1):67-76.
The Research Progress of Transforming Growth Factor-β1and Bronchial Asthma/
CHANG Qin,TIAN Xin-rui.//Medical Innovation of China,2015,12(30):146-149
Asthma is a chronic airway inflammation,the main pathological changes includes airway inflammation,smooth muscle dysfunction and airway remodeling.As a pleiotropic cytokine,TGF-β1involves in airway inflammation response and airway reconstruction through various pathways.This paper reviews the effect and potential mechanism of TGF-β1in airway inflammation and remodeling.
TGF-β1; Asthma; Airway inflammation; Airway remodeling
10.3969/j.issn.1674-4985.2015.30.049
2015-03-17) (本文編輯:陳丹云)
山西省自然科學(xué)基金(2013011055-1)
①山西醫(yī)科大學(xué)第二醫(yī)院 山西 太原 030001
田新瑞
First-author’s address:The Second Hospital of Shanxi Medical University,Taiyuan 030001,China