李正鈞梁高峰
三維腫瘤球聚體的構(gòu)建及其研究進(jìn)展*
李正鈞①梁高峰①
三維體外細(xì)胞培養(yǎng)既能模擬體內(nèi)細(xì)胞之間以及細(xì)胞外基質(zhì)間信號(hào)轉(zhuǎn)導(dǎo)的微環(huán)境,又可再現(xiàn)細(xì)胞培養(yǎng)的直觀性及條件可控性。近年來(lái)三維體外細(xì)胞培養(yǎng)技術(shù)在生物醫(yī)學(xué)研究中有著越來(lái)越廣泛的應(yīng)用,是藥物毒性、腫瘤多耐藥性、抗腫瘤藥物高通量篩選及藥物代謝等研究的有力工具。本文就三維腫瘤球聚體的構(gòu)建及其最新的研究進(jìn)展作簡(jiǎn)要綜述。
三維細(xì)胞培養(yǎng); 腫瘤球聚體; 生物材料; 藥物篩選
細(xì)胞的生長(zhǎng)環(huán)境和培養(yǎng)條件對(duì)細(xì)胞特定基因的表達(dá)及細(xì)胞的生物學(xué)行為能產(chǎn)生極大的影響,如細(xì)胞極性、結(jié)構(gòu)、遷移、侵襲等[1-2]。目前,腫瘤的體外研究依然主要依靠腫瘤細(xì)胞的單層平面培養(yǎng),然而傳統(tǒng)單層培養(yǎng)的細(xì)胞無(wú)論是在形態(tài)、結(jié)構(gòu)和功能等方面都與在體內(nèi)自然生長(zhǎng)的細(xì)胞有很大的差別,其無(wú)法真正反映體內(nèi)呈三維狀態(tài)生長(zhǎng)的腫瘤。因此,在體外建立適合細(xì)胞和組織生長(zhǎng)的生理微環(huán)境的三維細(xì)胞培養(yǎng)體系可方便地用于腫瘤侵襲和轉(zhuǎn)移研究以及藥物篩選的體外研究[3-5]。這種特定的類似組織樣的三維微空間結(jié)構(gòu)可以為體外生長(zhǎng)的細(xì)胞提供類似體內(nèi)生長(zhǎng)環(huán)境的生物支撐或基質(zhì),建立細(xì)胞間及細(xì)胞與胞外基質(zhì)間的相互聯(lián)系。
由于在模擬細(xì)胞與細(xì)胞間、細(xì)胞與細(xì)胞外微環(huán)境相互作用方面的獨(dú)特優(yōu)勢(shì),近年來(lái),三維細(xì)胞培養(yǎng)在腫瘤體外研究中獲得廣泛應(yīng)用,成為腫瘤耐藥、藥物載體、藥物毒理、腫瘤治療、血管形成、信號(hào)轉(zhuǎn)導(dǎo)、干細(xì)胞等方面研究不可或缺的有力工具[6-13]。特別是在抗腫瘤藥物篩選方面,體外構(gòu)建三維腫瘤球聚體與動(dòng)物移植實(shí)體瘤模型相比,具有可重復(fù)性強(qiáng)、縮短研究時(shí)間、降低成本方面的優(yōu)點(diǎn),更不致引起動(dòng)物倫理方面的爭(zhēng)議。因而,在腫瘤體外研究中,體外構(gòu)建三維腫瘤球聚體越來(lái)越受到研究者的青睞。
1.1 多孔支架培養(yǎng)法 體外二維培養(yǎng)腫瘤細(xì)胞很難聚集形成球狀體,最初一些研究小組開(kāi)發(fā)了支架培養(yǎng)腫瘤細(xì)胞成球,這種培養(yǎng)方法是利用體外腫瘤球狀體可由生長(zhǎng)在預(yù)制支架上的腫瘤細(xì)胞產(chǎn)生,細(xì)胞吸附和移居在纏繞的纖維上,隨著細(xì)胞的分裂,它們填充支架內(nèi)的間隙,這樣會(huì)形成三維球狀體[14-15]。不過(guò)支架的組成成分會(huì)對(duì)培養(yǎng)細(xì)胞的性能有很大的影響,目前,最常用的支架是膠原,此外,細(xì)胞外基質(zhì)蛋白(ECM)也經(jīng)常一起使用,同時(shí),輔以必要的生長(zhǎng)因子,這能增加細(xì)胞生長(zhǎng)和含有其他調(diào)節(jié)因子的可能性。支架也可以用原代細(xì)胞和小片組織灌輸。這種方法是較早、最常用、也是研究得最多的一類。
1.2 旋轉(zhuǎn)培養(yǎng)法 在旋轉(zhuǎn)培養(yǎng)出現(xiàn)以前,三維細(xì)胞培養(yǎng)都是靜態(tài)培養(yǎng),靜態(tài)培養(yǎng)不利于營(yíng)養(yǎng)物質(zhì)和代謝廢物的運(yùn)輸,妨礙腫瘤實(shí)體瘤的生長(zhǎng),為了解決這方面的不足,后來(lái)許多研究小組開(kāi)發(fā)了動(dòng)態(tài)培養(yǎng)方法如旋轉(zhuǎn)燒瓶、滾筒試管、回轉(zhuǎn)振蕩器等[16-18]。其中美國(guó)NASA開(kāi)發(fā)的旋轉(zhuǎn)細(xì)胞培養(yǎng)體系是最有效的旋轉(zhuǎn)培養(yǎng)裝置,其工作原理是:憑借模仿微重力,保持細(xì)胞在動(dòng)態(tài)流體中。培養(yǎng)器皿整體沿著它的水平軸旋轉(zhuǎn),以便上下顛覆混合細(xì)胞。借助于容器內(nèi)被介質(zhì)完全填滿,能使流體沖擊力和剪切力降到最小,通過(guò)半透膜能對(duì)培養(yǎng)瓶通氣,而且半透膜能通過(guò)水動(dòng)力排除氣泡。這種培養(yǎng)系統(tǒng)的優(yōu)點(diǎn)是:成功地實(shí)現(xiàn)了三維基質(zhì)相互作用,但剪切力卻較低。它提供了具備物質(zhì)運(yùn)輸靜態(tài)的三維球狀體培養(yǎng)的環(huán)境。這種方法應(yīng)用較為廣泛,但構(gòu)造較為復(fù)雜,實(shí)現(xiàn)起來(lái)比較繁瑣,這一定程度上影響了其應(yīng)用。
1.3 磁懸浮培養(yǎng)法 在磁懸浮培養(yǎng)提出以前,雖然蛋白質(zhì)凝膠培養(yǎng)、轉(zhuǎn)動(dòng)生物反應(yīng)器培養(yǎng)的多種三維培養(yǎng)方法。但這些方法操作起來(lái)有一定難度,而且生物可降解多空支架能使細(xì)胞增殖和細(xì)胞相互作用延遲的缺點(diǎn),在實(shí)際中未能廣泛應(yīng)用。因此開(kāi)發(fā)一個(gè)可操作性強(qiáng)的三維培養(yǎng)技術(shù),仍是非常需要的。后來(lái),有學(xué)者提出三維磁懸浮培養(yǎng)方法,這種方法的原理是:依靠磁鐵的磁力和細(xì)胞的懸浮[19]。噬菌體、磁性四氧化三鐵以及金納米顆粒形成水凝膠,細(xì)胞攝取水凝膠,在培養(yǎng)器皿蓋上面放一塊磁鐵,這樣培養(yǎng)液處在磁鐵的磁場(chǎng)當(dāng)中,四氧化三鐵被磁化,細(xì)胞將自動(dòng)吸附聚集在一起形成球體。這種技術(shù)的優(yōu)點(diǎn)是金噬菌體水凝膠生物兼容性好。所以,這種技術(shù)可替代生物可降解多空支架和蛋白質(zhì)基質(zhì)培養(yǎng)等技術(shù)。細(xì)胞培養(yǎng)的實(shí)驗(yàn)結(jié)果證實(shí)這種方法更能維持培養(yǎng)細(xì)胞的體內(nèi)生理、形態(tài)等特性。這種方法具有較大的應(yīng)用潛力。
1.4 納米印跡培養(yǎng)板培養(yǎng)法 隨著研究工作的深入,各種三維培養(yǎng)基質(zhì)不斷出現(xiàn),如被瓊脂、膠原包被的塑料基質(zhì),不過(guò)這些介質(zhì)不能保持細(xì)胞在體內(nèi)的增值、生存活性、均一等特性。而且這些介質(zhì)對(duì)顯微成像和光譜光度檢測(cè)產(chǎn)生影響。有學(xué)者開(kāi)發(fā)了一種用納米壓印技術(shù)形成的無(wú)機(jī)納米級(jí)支架培養(yǎng)方法[14]。這種培養(yǎng)方法是利用納米印跡技術(shù)把納米級(jí)直角坐標(biāo)網(wǎng)格式壓印在合成樹(shù)脂底部,其優(yōu)點(diǎn)是:減少了細(xì)胞與基質(zhì)的直接接觸,避免了對(duì)細(xì)胞生化和生理特性的影響,也能維持細(xì)胞的增殖和存活率,便利了三維球體的形成,而且形成的腫瘤細(xì)胞球與體內(nèi)形成的比較類似。也便于顯微觀察和光譜光度測(cè)量。這種方法簡(jiǎn)便易行、可操作性強(qiáng),受到不少研究者的青睞,但所形成細(xì)胞球的體積有限。
1.5 實(shí)體瘤芯片 在實(shí)體瘤芯片開(kāi)發(fā)以前,常規(guī)懸掛滴注培養(yǎng)被廣泛地用于癌癥生物醫(yī)學(xué)研究中的三維腫瘤實(shí)體瘤構(gòu)建。但這種用這種方法形成的腫瘤球體需要抽取,之后需轉(zhuǎn)接入其他培養(yǎng)裝置中進(jìn)行灌注培養(yǎng),為了解決這個(gè)問(wèn)題,后來(lái)開(kāi)發(fā)了許多微流體球芯片,但這些芯片有的是靜態(tài)培養(yǎng),有的雖然是灌注培養(yǎng),但需要笨重的流體泵[20-22]。最近,Taeyoon小組開(kāi)發(fā)了一種實(shí)體瘤芯片,這種芯片能進(jìn)行自動(dòng)介質(zhì)滴注[23]。其工作原理是:培養(yǎng)液由滴注分配層滴入,待達(dá)到一定的平衡液面,培養(yǎng)廢液從排水口排出。該方法設(shè)計(jì)巧妙、結(jié)構(gòu)簡(jiǎn)單、經(jīng)濟(jì)實(shí)用,是目前研究的熱點(diǎn)。
三維細(xì)胞培養(yǎng)技術(shù)以其具有模擬體內(nèi)微環(huán)境、較真實(shí)再現(xiàn)其功能的優(yōu)勢(shì),現(xiàn)已在生物醫(yī)學(xué)領(lǐng)域中廣泛應(yīng)用,近年來(lái),分子生物學(xué)、生物力學(xué)、生物材料學(xué)、生物化學(xué)等諸多學(xué)科與組織工程學(xué)的不斷融合促使體外細(xì)胞三維培養(yǎng)技術(shù)不斷發(fā)展完善,培養(yǎng)條件逐漸接近體內(nèi)環(huán)境,使目的細(xì)胞的結(jié)構(gòu)和功能更接近體內(nèi)狀況。針對(duì)當(dāng)前抗腫瘤藥物篩選中,開(kāi)大周期長(zhǎng)、效率低、投入大等問(wèn)題,根據(jù)具體情況,結(jié)合文中提到的這些方法可初步用于藥物篩選的三維腫瘤模型及其芯片化裝置。如以生物大分子(如蛋白質(zhì)、多糖等)為主要原料的設(shè)計(jì)制備細(xì)胞培養(yǎng)三維支架方法;研究支架材料負(fù)載生物活性物質(zhì)和支架材料的物理化學(xué)修飾對(duì)腫瘤細(xì)胞生長(zhǎng)微環(huán)境和實(shí)體瘤形成的作用,并初步構(gòu)建芯片器官綜合體(或稱芯片人體)中的芯片腫瘤組織單元,揭示腫瘤發(fā)生、轉(zhuǎn)移的規(guī)律。發(fā)展體外自組織形成腫瘤細(xì)胞三維球聚體的新方法與新技術(shù),研究腫瘤干細(xì)胞小生境的形成規(guī)律;發(fā)展體內(nèi)實(shí)體腫瘤組織直接在體外培養(yǎng)的新方法與新技術(shù),用于芯片惡性腫瘤模型的構(gòu)建,研究其生物學(xué)特征,并可逐步用于抗腫瘤藥物的大規(guī)模篩選與評(píng)價(jià)。
體外腫瘤細(xì)胞三維培養(yǎng)模型已經(jīng)從早期的支架培養(yǎng)、旋轉(zhuǎn)培養(yǎng)、磁懸浮培養(yǎng),發(fā)展到實(shí)體瘤芯片[24-26],已廣泛應(yīng)于抗腫瘤藥物篩選研究中,其應(yīng)用價(jià)值逐漸被研究者認(rèn)同??梢灶A(yù)見(jiàn)通過(guò)這些方法構(gòu)建的各種腫瘤模型將會(huì)與其他人體器官芯片(如:肝臟芯片、肺臟芯片、腎臟芯片等)整合在一起,為藥物篩選及個(gè)體化診療提供依據(jù)[27-30]。同時(shí),將會(huì)更有力的推動(dòng)藥物的研發(fā)。目前的迫切任務(wù)是規(guī)范這些研究所用的實(shí)驗(yàn)方法并探索實(shí)踐新的技術(shù)方法,使其能被大多數(shù)研究機(jī)構(gòu)接受。此外,還需進(jìn)一步證實(shí)其可信性,以此獲得管理部門(mén)的認(rèn)可。此外,未來(lái)腫瘤細(xì)胞三維培養(yǎng)技術(shù)要求生物材料除了具有化學(xué)和工程學(xué)的功能以外,還需具有系統(tǒng)性的可控性,為生物醫(yī)學(xué)研究提供具有良好功能的細(xì)胞、功能性三維組織、乃至功能性三維器官,滿足大規(guī)模藥物篩選的需求。
[1] Jacquemet G,Humphries M J,Caswell P T.Role of adhesion receptor trafficking in 3D cell migration[J]. Current opinion in cell biology,2013, 25(5):627-632.
[2] Kimlin L C,Casagrande G,Virador V M.In vitro threedimensional (3D) models in cancer research: an update[J].Molecular Carcinogenesis,2013,52(3):167-182.
[3] Perche F,Torchilin V P. Cancer cell spheroids as a model to evaluate chemotherapy protocols[J]. Cancer Biology & Therapy, 2012, 13(12):1205-1213.
[4] LaBarbera D V,Reid B G,Yoo B H. The multicellular tumor spheroid model for high-throughput cancer drug discovery[J]. Expert Opinion on Drug Discovery, 2012, 7(9):819-830.
[5] Karlsson H. Loss of cancer drug activity in colon cancer HCT-116 cells during spheroid formation in a new 3-D spheroid cell culture system[J]. Experimental Cell Research, 2012, 318(13):1577-1585.
[6] Jang K.Development of an osteoblast-based 3D continuous-perfusion microfluidic system for drug screening[J]. Analytical and Bioanalytical Chemistry, 2008, 390(3):825-832.
[7] Hartman O. Microfabricated electrospun collagen membranes for 3-D cancer models and drug screening applications[J].Biomacromolecules,2009,10(8):2019-2032.
[8] Goodman T T,Ng C P, Pun S H. 3-D Tissue culture systems for the evaluation and optimization of nanoparticle-based drug carriers[J]. Bioconjugate Chemistry, 2008, 19(10):1951-1959.
[9] Prestwich G D. 3-D culture in synthetic extracellular matrices:new tissue models for drug toxicology and cancer drug discovery[J]. Advances in Enzyme Regulation, 2007, 47(2):196-207.
[10] Biskup B. Diel Growth cycle of isolated leaf discs analyzed with a novel, high-throughput three-dimensional imaging method is identical to that of intact leaves[J]. Plant Physiology, 2009, 149(3):1452-1461.
[11] Seano G. Modeling human tumor angiogenesis in a three-dimensional culture system[J]. Blood, 2013, 121(21):E129-E137.
[12] Luca A C. Impact of the 3D microenvironment on phenotype, gene expression, and egfr inhibition of colorectal cancer cell lines[J].Plos One,2013, 8(3):201-203.
[13] Wang W. 3D spheroid culture system on micropatterned substrates for improved differentiation efficiency of multipotent mesenchymal stem cells[J]. Biomaterials, 2009, 30(14):2705-2715.
[14] Yoshii Y. The use of nanoimprinted scaffolds as 3D culture models to facilitate spontaneous tumor cell migration and well-regulated spheroid formation[J]. Biomaterials, 2011, 32(26):6052-6058.
[15] Breslin S, O'Driscoll L. Three-dimensional cell culture: the missing link in drug discovery[J]. Drug Discovery Today, 2013, 18(5-6):240-249.
[16] Achilli T M, Meyer J, Morgan J R. Advances in the formation, use and understanding of multi-cellular spheroids[J]. Expert Opinion on Biological Therapy, 2012, 12(10):1347-1360.
[17] Xu X. Recreating the tumor microenvironment in a bilayer, hyaluronic acid hydrogel construct for the growth of prostate cancer spheroids[J]. Biomaterials, 2012, 33(35):9049-9060.
[18] Goodwin T J.Reduced shear stress: a major component in the ability of mammalian tissues to form three-dimensional assemblies in simulated microgravity[J]. Journal of Cellular Biochemistry, 1993, 51(3):301-311.
[19] Souza G R. Three-dimensional tissue culture based on magnetic cell levitation[J]. Nature Nanotechnology, 2010, 5(4):291-296.
[20] Pampaloni F, Reynaud E G, Stelzer E H K. The third dimension bridges the gap between cell culture and live tissue[J]. Nature Reviews Molecular Cell Biology, 2007, 8(10):839-845.
[21] Lee P J,Hung P J,Lee L P. An artificial liver sinusoid with a microfluidic endothelial-like barrier for primary hepatocyte culture[J]. Biotechnology and Bioengineering, 2007, 97(5):1340-1346.
[22] Zervantonakis I K. Microfluidic devices for studying heterotypic cell-cell interactions and tissue specimen cultures under controlled microenvironments[J]. Biomicrofluidics, 2011, 5(1):25-26.
[23] Kim T, Doh I, Cho Y H. On-chip three-dimensional tumor spheroid formation and pump-less perfusion culture using gravity-driven cell aggregation and balanced droplet dispensing[J]. Biomicrofluidics,2012, 6(3):21-22.
[24] Huh D, Hamilton G A, Ingber D E. From 3D cell culture to organson-chips[J]. Trends in Cell Biology, 2011, 21(12):745-754.
[25] Kim H, Phung Y,Ho M. Changes in global gene expression associated with 3D structure of tumors: an ex vivo matrix-free mesothelioma spheroid model[J].Plos One, 2012, 7(6):78-79.
[26] Huang K Y. Size-dependent localization and penetration of ultrasmall gold nanoparticles in cancer cells, multicellular spheroids, and tumors in vivo[J]. Acs Nano, 2012, 6(5):4483-4493.
[27] Imura Y, Sato K, Yoshimura E. Micro total bioassay system for ingested substances: assessment of intestinal absorption, hepatic metabolism, and bioactivity[J]. Analytical Chemistry, 2010, 82(24):9983-9988.
[28] Ma L. Towards personalized medicine with a three-dimensional micro-scale perfusion-based two-chamber tissue model system[J]. Biomaterials, 2012, 33(17):4353-4361.
[29] Das T. Empirical chemosensitivity testing in a spheroid model of ovarian cancer using a microfluidics-based multiplex platform[J]. Biomicrofluidics, 2013, 7(1):23-24.
[30] Vinci M. Advances in establishment and analysis of three-dimensional tumor spheroid-based functional assays for target validation and drug evaluation[J]. Bmc Biology, 2012, 10(2):54-55.
Progress on Construction of Three-dimensional Tumor Spheroid
LI Zheng-jun,LIANG Gao-feng.// Medical Innovation of China,2015,12(09):147-149
Three-dimensional cell culture in vitro can not only simulate the microenvironment of intercellular signal transduction between cells and extracellular matrix, but also can reproduce the conditions in cell culture. In recent years, three-dimensional cell culture technology has increasingly widely used in biomedical research, which becomes a powerful tool for drug toxicity assay, tumor multi-drug resistance, high-throughput screening of anticancer drugs and drug metabolism. In this paper, we give a brief review of their latest research progress on construction of three-dimensional tumor spheroid in vitro.
Three-dimensional cell culture; Tumor spheroid; Biomaterial; Drug screening
10.3969/j.issn.1674-4985.2015.09.050
2014-08-24) (本文編輯:蔡元元)
國(guó)家自然基金資助項(xiàng)目(U1404824)
①河南曙光匯知康生物科技股份有限公司 河南 漯河 462332
李正鈞
First-author’s address:He’nan Shuguang HZK Biological Technology Stock Co.,Ltd,Luohe 462332,China