?
鈣離子調節(jié)異常對心房顫動影響的研究進展
作者單位:646000 四川 瀘州,瀘州醫(yī)學院附屬醫(yī)院心內(nèi)科
吳鵬,劉星,范忠才
[關鍵詞]鈣離子;異常調節(jié);心房顫動;異位激動;折返;綜述
房顫(atrial fibrillation,AF)是臨床上最常見的心律失常之一。據(jù)初步估計,全世界AF患者已超過3300萬人[1]。隨著人口老齡化的到來,它將成為一個更加普遍性的醫(yī)學和社會問題[2]。AF是中風和心力衰竭的重要危險因素,其發(fā)病率與致死率密切相關[3]。目前,用于恢復AF患者竇性心律的藥物主要包括Ⅰ類和Ⅲ類抗心律失常藥物,但是其療效差強人意。在>1年的隨訪中,竇性心律的維持率僅為30%~70%[4]。而且,這些藥物同時也存在致心律失常和心外毒副作用等不良反應[5-6],其安全性也限制了其使用。因此,更好地認識AF的病理生理機制,尋找新的治療靶向,對提高抗心律失常治療效果非常重要[7]。越來越多的證據(jù)顯示:異常的鈣離子(Ca2+)調節(jié)是AF發(fā)病機制的中心環(huán)節(jié)[8-10]。本文主要總結近年來有關Ca2+異常調節(jié)在AF發(fā)病機制中的研究進展,為進一步深入探討AF的發(fā)病機制和尋找更為有效的治療提供新的思路。
1正常心房肌細胞的結構特性
包括人在內(nèi)的哺乳動物的心室肌細胞擁有為數(shù)眾多的發(fā)達的T管系統(tǒng)。但是,與心室肌細胞相比,心房肌細胞的T管系統(tǒng)明顯減少。這種心房和心室心肌細胞間結構的差異,可能是心房肌細胞Ca2+調節(jié)獨特的原因[11-13]。雖然人類心房心肌細胞的T管結構較少,但是也存在分布差異,而且在心臟疾病(包括房顫)中存在重構的現(xiàn)象[12,14]。
2正常心房肌細胞的電生理特點
心房肌細胞的動作電位(AP)是由去極化和復極化離子電流決定。其中,超快激活延遲整流K+電流(IKur)和乙酰膽堿敏感K+電流(IK,ACh)在心房肌細胞表達顯著[15]。心肌細胞膜去極化引起電壓依賴性L型Ca2+通道開放,少量Ca2+內(nèi)流進入胞漿,激發(fā)肌漿網(wǎng)(sarcoplasmic reticulum,SR)2型Ryanodine受體通道(RyR2)開放,引起Ca2+的大量釋放,該過程稱為鈣誘導的鈣釋放(CICR),從而促進心房肌細胞的收縮[16-17]。近年來的研究發(fā)現(xiàn),三磷酸肌醇(IP3)受體不但可直接激活鈉-鈣交換體1(NCX1),而且可以激活鄰近RyR2,誘導Ca2+的釋放[8,18]。
3心房顫動與RyR2的異常Ca2+釋放
AF的發(fā)生是電沖動形成或者傳導異常的結果[19-20]。在竇房結以外的電沖動的產(chǎn)生被稱為異位電活動,它可以驅動AF發(fā)生,也可以在有效不應期縮短、緩慢和不均一傳導的不穩(wěn)定基質中形成折返激動。而這種不穩(wěn)定基質的形成可能與遺傳背景以及老化有關,也可能與心力衰竭、高血壓等疾病相關[20]。折返激動可以在解剖或者功能異常的情況下發(fā)生,它也被認為是AF維持的主要機制。一旦AF持續(xù),心房心動過速相關的電重構和結構重構可進一步促進AF的持續(xù)和穩(wěn)定,最終可導致更加難以治療的持續(xù)性AF的形成。
細胞水平的異位激動機制主要包括早后去極化(EADs)和遲后去極化(DADs)。當APD過度延長,失活的Ca2+通道可重新恢復開放,導致Ca2+內(nèi)流產(chǎn)生EADs;當EADs足夠大,便可產(chǎn)生新的動作電位,觸發(fā)心律失常[21]。在房性心律失常的形成過程中,DADs起著重要的作用,這與舒張期Ca2+在肌漿網(wǎng)RyR2的異常釋放密切相關[22]。當舒張期產(chǎn)生過量的Ca2+,就可以激活細胞膜上的鈉鈣交換體(NCX),這將促進Ca2+-3Na+的交換,從而產(chǎn)生瞬時內(nèi)向電流(Iti),導致DADs;如果這個產(chǎn)生的DADs足夠大,達到閾值便可產(chǎn)生異位激動,而反復出現(xiàn)的DADs則會導致房性心動過速。
SR的鈣超載或者RyR2功能紊亂均可導致肌漿網(wǎng)內(nèi)Ca2+的釋放。RyR2的功能是通過通道磷酸化來調節(jié)的,RyR2的過度磷酸化可致Ca2+異常釋放和心律失常[23]。RyR2磷酸化后可以增加它的Ca2+敏感性,增強通道開放的概率[24]。FK506結合蛋白12.6是RyR2的抑制物,當其缺失時可明顯增加大鼠心房肌細胞SR Ca2+釋放和觸發(fā)激動,進而易發(fā)展為AF;在獲得性RyR2基因突變的大鼠,也有相同的發(fā)現(xiàn)[24-25]。系列研究發(fā)現(xiàn),蛋白激酶A(PKA)磷酸化RyR2第2808位點的絲氨酸后,以及Ca2+/鈣調蛋白依賴性蛋白激酶Ⅱ(CaMKⅡ)或β1腎上腺受體激動劑cAMP2(Epac2)磷酸化RyR2第2814位點的絲氨酸后,均可以促進肌漿網(wǎng)內(nèi)Ca2+的釋放,從而增加AF的發(fā)生率[24,26-28]。
CaMKⅡ參與的RyR2過度磷酸化和相關的Ca2+異常調節(jié)是促發(fā)AF的最重要因素之一[22]。以往研究發(fā)現(xiàn),CaMKⅡ的活性是通過Ca2+和鈣調蛋白復合物激活[26]。但是,近年來的研究證實,鈣調蛋白也可以直接調節(jié)RyR2,穩(wěn)定SR Ca2+釋放[29]。有研究發(fā)現(xiàn),在AF發(fā)生后,不但總的鈣調蛋白水平增加[30],而且CaMKⅡ氧化也隨之增加[31]。血管緊張素除可以促進結構的重構與AF的發(fā)生相關外,研究還發(fā)現(xiàn)其也可氧化CaMKⅡ,并增強CaMKⅡ對RyR2磷酸化作用促進AF的形成[32]。
有研究發(fā)現(xiàn),RyR2表達與RyR2單通道開放概率在陣發(fā)性AF(pAF)患者中是增加的,同時伴隨SR Ca2+的負荷增加,可能與PKA依賴的肌漿網(wǎng)受磷蛋白(PLB)過度磷酸化有關[33],因為PLB過度磷酸化可以導致Ca2+超載,誘導RyR2的功能障礙。移除肌漿網(wǎng)Ca2+-ATP酶(SERCA)的PLB抑制物,可以增強SR對Ca2+的攝取。增強PKA和/或CaMKⅡ的活性,或增加堿性磷酸酶抑制蛋白的活性,都能減少堿性磷酸酶的作用,促進肌漿網(wǎng)PLB的過度磷酸化[22,34]。
在許多AF相關的研究中,可以很普遍地觀察到存在NCX表達增強,舒張期SR Ca2+釋放增多,導致Iti的產(chǎn)生[12,26,34],增加了DADs和觸發(fā)激動的風險[22]。有證據(jù)顯示,使用β腎上腺受體激動劑后,CaMKⅡ可以使NCX1的轉錄上調[35],使NCX1表達增加,可能與AF的發(fā)生相關。IP3受體(IP3R2)也參與了Ca2+的轉運,促進了心律失常SR Ca2+的釋放[36],可能導致AF相關的觸發(fā)激動[37]。
4房顫治療新靶點的研究進展
大量研究表明,Ca2+異常調節(jié)在AF發(fā)病機制中起著重要的作用,提示其將是一個有價值的治療心律失常的新靶點。RyR2的穩(wěn)定化治療,可以作為抑制Ca2+異常釋放,有效控制心律失常的新方法。目前幾種有效的抗心律失常藥物,包括Ic類Na+通道阻滯劑(氟卡尼)[38]、β腎上腺受體阻滯劑(卡維地洛)[39]和抗心絞痛治療藥物(雷諾嗪)[40],都可以結合或者抑制RyR2通道,可能是其治療AF有效性的原因之一。已有研究證實,氟卡尼成功用于與Ca2+異常釋放有關的兒茶酚胺敏感性多形性室速(CPVT)的治療[41]。而且,氟卡尼也可以抑制心房細胞IK,ACh[42],可能對AF治療有效。CaMKⅡ抑制劑或者抑制RyR2依賴CaMKⅡ的磷酸化,已經(jīng)被證實在AF老鼠模型具有抗心律失常作用,并且在慢性AF患者心房肌細胞實驗中顯示了有利的影響[9,24,43]。但是,CaMKⅡ在許多生理過程中均有重要的作用,廣泛的CaMKⅡ抑制可能出現(xiàn)各種各樣的副作用,包括生育能力下降和記憶障礙等[44-45]。近年來還有研究顯示,145微小RNA和30b-5p微小RNA可以抑制CaMKⅡδ的表達[46-47]。因此,增加這些微小RNA在心臟的水平,或許能選擇性抑制CaMKⅡ,從而可能是AF治療的新策略。
總之,Ca2+的調節(jié)異常不但促進異位激動產(chǎn)生導致AF,而且促成折返形成導致AF維持。目前抗心律失常藥物治療AF僅有有限的療效和安全性。更好地了解這些AF調節(jié)的機制對改進治療策略,提高療效,減少副作用至關重要。Ca2+的調節(jié)異常為治療AF提供了一個潛在的新穎的治療靶點。然而,臨床AF的發(fā)生和發(fā)展是多種病因和復雜機制調控的結果,不同發(fā)病機制和調控機制導致的AF,必須采用針對性的個體化治療。抑制心臟舒張期Ca2+異常釋放的特異性藥物,有可能成為特定AF患者的治療策略。
【參考文獻】
[1]Chugh SS,Havmoeller R,Narayanan K,et al.Worldwide epidemio-logy of atrial fibrillation:a Global Burden of Disease 2010 Study[J].Circulation,2014,129(8):837-847.
[2]Miyasaka Y,Barnes ME,Gersh BJ,et al.Secular trends in incidence of atrial fibrillation in Olmsted County,Minnesota,1980 to 2000,and implications on the projections for future prevalence[J].Circulation,2006,114(2):119-125.
[3]Camm AJ,Lip GY,De Caterina R,et al.2012 focused update of the ESC Guidelines for the management of atrial fibrillation:an update of the 2010 ESC Guidelines for the management of atrial fibrillation.Developed with the special contribution of the European Heart Rhythm Association[J].Eur Heart J,2012,33(21):2719-2747.
[4]Camm J.Antiarrhythmic drugs for the maintenance of sinus rhythm:risks and benefits[J].Int J Cardiol,2012,155(3):362-371.
[5]Zimetbaum P.Antiarrhythmic drug therapy for atrial fibrillation[J].Circulation,2012,125(2):381-389.
[6]Heijman J,Voigt N,Dobrev D.New directions in antiarrhythmic drug therapy for atrial fibrillation[J].Future Cardiol,2013,9(1):71-88.
[7]Dobrev D,Carlsson L,Nattel S.Novel molecular targets for atrial fibrillation therapy[J].Nat Rev Drug Discov,2012,11(4):275-291.
[8]Dobrev D,Nattel S.Calcium handling abnormalities in atrial fibril-lation as a target for innovative therapeutics[J].J Cardiovasc Pharmacol,2008,52(4):293-299.
[9]Heijman J,Voigt N,Nattel S,et al.Calcium handling and atrial fibrillation[J].Wien Med Wochenschrm,2012,162(13-14):287-291.
[10]Nattel S,Dobrev D.The multidimensional role of calcium in atrial fibrillation pathophysiology:mechanistic insights and therapeutic opportunities[J].Eur Heart J,2012,33(15):1870-1877.
[11]Dibb KM,Clarke JD,Horn MA,et al.Characterization of an extensive transverse tubular network in sheep atrial myocytes and its depletion in heart failure[J].Circ Heart Fail,2009,2(5):482-489.
[12]Lenaerts I,Bito V,Heinzel FR,et al.Ultrastructural and func-tional remodeling of the coupling between Ca2+influx and sarcoplasmic reticulum Ca2+release in right atrial myocytes from experimental persistent atrial fibrillation[J].Circ Res,2009,105(9):876-885.
[13]Richards MA,Clarke JD,Saravanan P,et al.Transverse tubules are a common feature in large mammalian atrial myocytes including human[J].Am J Physiol Heart Circ Physiol,2011,301(5):H1996-2005.
[14]Trafford AW,Clarkez JD,Richards MA,et al.Calcium signalling microdomains and the t-tubular system in atrial mycoytes:potential roles in cardiac diseaseand arrhythmias[J].Cardiovasc Res,2013,98(2):192-203.
[15]Christ T,Wettwer E,Voigt N,et al.Pathology-specific effects of the IKur/Ito/IK,AChblocker AVE0118 on ion channels in human chronic atrial fibrillation[J].Br J Pharmacol,2008,154(8):1619-1630.
[16]Bers DM,Guo T.Calcium signaling in cardiac ventricular myocytes[J].Ann N Y Acad Sci,2005,1047:8698.
[17]Bers DM.Cardiac excitation-contraction coupling[J].Nature,2002,415(6868):198-205.
[18]Roderick HL,Knollmann BC.Inositol 1,4,5-trisphosphate receptors:“exciting” players in cardiac excitation-contraction coupling[J]? Circulation,2013,128(12):1273-1275.
[19]Nattel S,Burstein B,Dobrev D.Atrial remodeling and atrial fibril-lation:mechanisms and implications[J].Circ Arrhythm Electrophysiol,2008,1(1):62-73.
[20]Wakili R,Voigt N,K??b S,et al.Recent advances in the molecular pathophysiology of atrial fibrillation[J].J Clin Invest,2011,121(8):2955-2968.
[21]Nattel S.From guidelines to bench:implications of unresolved clinical issues for basic investigations of atrial fibrillation mechanisms[J].Can J Cardiol,2011,27(1):19-26.
[22]Dobrev D,Voigt N,Wehrens XH.The ryanodine receptor channel as a molecular motif in atrial fibrillation:pathophysiological and therapeutic implications[J].Cardiovasc Res,2011,89(4):734-743.
[23]MacLennan DH,Chen SR.Store overload-induced Ca2+release as a triggering mechanism for CPVT and MH episodes caused by mutationsin RYR and CASQ genes[J].J Physiol,2009,587(Pt 13):3113-3115.
[24]Chelu MG,Sarma S,Sood S,et al.Calmodulin kinase Ⅱ-mediated sarcoplasmic reticulum Ca2+leak promotes atrial fibrillation in mice[J].J Clin Invest,2009,119(7):1940-1951.
[25]Sood S,Chelu MG,van Oort RJ,et al.Intracellular calcium leak due to FKBP12.6 deficiency in mice facilitates the inducibility of atrial fibrillation[J].Heart Rhythm,2008,5(7):1047-1054.
[26]Neef S,Dybkova N,Sossalla S,et al.CaMKⅡ-dependent diastolic SR Ca2+leak and elevated diastolic Ca2+levels in right atrial myocardium of patients with atrial fibrillation[J].Circ Res,2010,106(6):1134-1144.
[27]Greiser M,Neuberger HR,Harks E,et al.Distinct contractile and molecular differences between two goat models of atrial dysfunction:AV block-induced atrial dilatation and atrial fibrillation[J].J Mol Cell Cardiol,2009,46(3):385-394.
[28]Pereira L,Cheng H,Lao DH,et al.Epac2 mediates cardiac β1-adrenergic-dependent sarcoplasmic reticulum Ca2+leak and arrhythmia[J].Circulation,2013,127(8):913-922.
[29]Yang Y,Guo T,Oda T,et al.Cardiac myocyte Z-line calmodulin is mainly RyR2-bound,and reduction is arrhythmogenic and occurs in heart failure[J].Circ Res,2014,114(2):295-306.
[30]Voigt N,Li N,Wang Q,et al.Enhanced sarcoplasmic reticulum Ca2+leak and increased Na+-Ca2+exchanger function underlie delayed after depolarizations in patients with chronic atrial fibrillation[J].Circulation,2012,125(17):2059-2070.
[31]Purohit A,Rokita AG,Guan X,et al.Oxidized Ca(2+)/calmodulin-dependent protein kinase Ⅱ triggers atrial fibrillation[J].Circulation,2013,128(16):1748-1757.
[32]Gassanov N,Brandt MC,Michels G,et al.Angiotensin Ⅱ-induced changes of calcium sparks and ionic currents in human atrial myocytes:potential role for early remodeling in atrial fibrillation[J].Cell Calcium,2006,39(2):175-186.
[33]Voigt N,Heijman J,Wang Q,et al.Cellular and molecular mecha-nisms of atrial arrhythmogenesis in patients with paroxysmal atrial fibrillation[J].Circulation,2014,129(2):145-156.
[34]El-Armouche A,Boknik P,Eschenhagen T,et al.Molecular deter-minants of altered Ca2+handling in human chronic atrial fibrillation[J].Circulation,2006,114(7):670-680.
[35]Mani SK,Egan EA,Addy BK,et al.beta-Adrenergic receptor stimulated Ncx1 upregulation is mediated via a CaMKⅡ/AP-1 signaling pathway in adult cardiomyocytes[J].J Mol Cell Cardiol,2010,48(2):342-351.
[36]Li X,Zima AV,Sheikh F,et al.Endothelin-1-induced arrhythmogenic Ca2+signaling is abolished in atrial myocytes of inositol-1,4,5-trisphosphate(IP3)-receptor type 2-deficient mice[J].Circ Res,2005,96(12):1274-1281.
[37]Zima AV,Blatter LA.Inositol-1,4,5-trisphosphate-dependent Ca(2+) signalling in cat atrial excitation-contraction coupling and arrhythmias[J].J Physiol,2004,555(Pt 3):607-615.
[38]Hilliard FA,Steele DS,Laver D,et al.Flecainide inhibits arrhyth-mogenic Ca2+waves by open state block of ryanodine receptor Ca2+release channels and reduction of Ca2+spark mass[J].J Mol Cell Cardiol,2010,48(2):293-301.
[39]Zhou Q,Xiao J,Jiang D,et al.Carvedilol and its new analogs suppress arrhythmogenic store overload-induced Ca2+release[J].Nat Med,2011,17(8):1003-1009.
[40]Parikh A,Mantravadi R,Kozhevnikov D,et al.Ranolazine stabilizes cardiac ryanodine receptors:a novel mechanism for the suppression of early after depolarization and torsades de pointes in long QT type 2[J].Heart Rhythm,2012,9(6):953-960.
[41]van der Werf C,Kannankeril PJ,Sacher F,et al.Flecainide therapy reduces exercise-induced ventricular arrhythmias in patients with catecholaminergic polymorphic ventricular tachycardia[J].J Am Coll Cardiol,2011,57(22):2244-2254.
[42]Voigt N,Rozmaritsa N,Trausch A,et al.Inhibition of IK,AChcurrent may contribute to clinical efficacy of class Ⅰ and class Ⅲ antiarrhythmic drugs inpatients with atrial fibrillation[J].Naunyn Schmiedebergs Arch Pharmacol,2010,381(3):251-259.
[43]Li N,Wang T,Wang W,et al.Inhibition of CaMK Ⅱ phosphorylation of RyR2 prevents induction of atrial fibrillation in FKBP12.6 knockout mice[J].Circ Res,2012,110(3):465-470.
[44]Backs J,Stein P,Backs T,et al.The gamma isoform of CaM kinase Ⅱ controls mouse egg activation by regulating cell cycle resumption[J].Proc Natl Acad Sci USA,2010,107(1):81-86.
[45]King JH,Zhang Y,Lei M,et al.Atrial arrhythmia,triggering events and conduction abnormalities in isolated murine RyR2-P2328S hearts[J].Acta Physiol(Oxf),2013,207(2):308-323.
[46]Cha MJ,Jang JK,Ham O,et al.MicroRNA-145 suppresses ROS-induced Ca2+overload of cardiomyocytes by targeting CaMKⅡδ[J].Biochem Biophys Res Commun,2013,435(4):720-726.
[47]He J,Jiang S,Li FL,et al.MicroRNA-30b-5p is involved in the regulation of cardiac hypertrophy by targeting CaMKⅡδ[J].J Investig Med,2013,61(3):604-612.
(收稿日期:2014-08-30)
文章編號1004-0188(2015)01-0107-04
doi:10.3969/j.issn.1004-0188.2015.01.046
中圖分類號R 541.75
文獻標識碼A
通訊作者:范忠才,E-mail:wpflying@163.com