高艷彬, 盧志陽, 金 輝, 史鵬偉, 王桂芳, 溫皇鼎, 楊 磊
(南方醫(yī)科大學(xué)南方醫(yī)院燒傷科,廣東廣州510515)
小鼠燒傷后時(shí)序芯片數(shù)據(jù)分析及免疫標(biāo)志物的初步篩選
高艷彬1, 盧志陽1, 金 輝1, 史鵬偉1, 王桂芳1, 溫皇鼎1, 楊 磊1
(南方醫(yī)科大學(xué)南方醫(yī)院燒傷科,廣東廣州510515)
目的:從基因轉(zhuǎn)錄水平探討燒傷早期免疫系統(tǒng)功能變化情況,并篩選燒傷后免疫相關(guān)標(biāo)志物,為臨床診療提供新思路.方法:GEO數(shù)據(jù)庫下載GSE7404數(shù)據(jù)集(小鼠,25%TBSA,3度),共獲得32例基因表達(dá)譜數(shù)據(jù).應(yīng)用配對(duì)樣本t檢驗(yàn)和倍比法(fold-change,F(xiàn)C)篩選差異表達(dá)基因(P-value<0.01和|lgFC|>1).分別利用DAVID數(shù)據(jù)庫和STRING數(shù)據(jù)庫進(jìn)行生物學(xué)過程功能富集分析及構(gòu)建免疫相關(guān)蛋白互作網(wǎng)絡(luò).互作網(wǎng)絡(luò)的模塊及可視化分析應(yīng)用Cytoscape軟件進(jìn)行,并用BINGO插件進(jìn)行模塊功能分析.結(jié)果:在燒傷后第1 d的基因表達(dá)譜的變化最顯著,共1 825個(gè)差異基因被選出,其中上調(diào)基因658個(gè),下調(diào)基因1 167個(gè).功能富集分析顯示刺激反應(yīng)和免疫系統(tǒng)過程等生物學(xué)功能貫穿整個(gè)燒傷早期.蛋白互作網(wǎng)絡(luò)分析表明LCK、CCR2、TLR2和MyD88等免疫相關(guān)基因可能在燒傷早期免疫功能變化過程中起著重要的作用.結(jié)論:利用生物信息學(xué)方法,分析燒傷后時(shí)序基因芯片數(shù)據(jù),可以有效地揭示燒傷后免疫系統(tǒng)潛在的分子機(jī)制,可以為早期診斷和治療靶點(diǎn)的篩選提供新的思路.
燒傷; 免疫系統(tǒng)過程; 功能富集分析; 免疫相關(guān)蛋白互作網(wǎng)絡(luò)
燒傷,尤其是嚴(yán)重?zé)齻麑⒁饳C(jī)體免疫功能紊亂,免疫功能紊亂被認(rèn)為是引發(fā)全身炎癥反應(yīng)綜合征(SIRS)、多器官功能障礙(MODS)甚至死亡等的重要原因[1].燒傷后免疫功能的變化一直貫穿著燒傷治療全程,不僅引起全身非特異性免疫功能的變化,引發(fā)大量炎癥因子及細(xì)胞因子的釋放,并能造成全身特異性免疫功能的改變,引起體液免疫失調(diào),細(xì)胞免疫功能受損[2].
燒傷后免疫功能變化的過程是一個(gè)動(dòng)態(tài)變化的過程,其病理生理學(xué)過程要受到燒傷面積,深度,年齡等多方面因素的影響,盡管燒傷后免疫功能的研究一直備受關(guān)注,但其確切的發(fā)生機(jī)制至今尚未明確.在2008年和2011年James A[3]和Wenzhong Xiao[4]等就分別利用基因芯片技術(shù)對(duì)小鼠和人創(chuàng)傷及燒傷后免疫細(xì)胞基因組的序貫性變化做出了初步探究,并發(fā)現(xiàn)了許多值得深思及顛覆性的信息,遺憾的是這些研究均著重于燒傷與創(chuàng)傷之間的對(duì)比,并無對(duì)燒傷后基因轉(zhuǎn)錄水平變化進(jìn)行深入的研究與分析.本實(shí)驗(yàn)應(yīng)用小鼠燒傷后免疫細(xì)胞時(shí)序基因芯片數(shù)據(jù),對(duì)燒傷早期不同時(shí)間點(diǎn)的免疫相關(guān)基因進(jìn)行生物信息學(xué)分析,以期從細(xì)胞轉(zhuǎn)錄水平了解燒傷后免疫功能變化情況,并篩選潛在的重要的生物學(xué)靶點(diǎn).
在美國(guó)生物技術(shù)信息中心GEO數(shù)據(jù)庫(http://www.ncbi.nlm.nih.gov/geo/)下載GSE7404[3]數(shù)據(jù)集.GSE7404數(shù)據(jù)集(小鼠,25%TBSA,三度燒傷)為GPL1261平臺(tái)Affymetrix Mouse Genome 430 2.0 Array基因芯片.從中選取燒傷相關(guān)芯片數(shù)據(jù)進(jìn)行分析,總共有32個(gè)樣本符合分析要求(包括16個(gè)燒傷和16個(gè)對(duì)照).根據(jù)芯片注釋及處理情況進(jìn)行分組:燒傷后2 h組及其對(duì)照組、燒傷后1 d組及其對(duì)照組,燒傷后3 d組及其對(duì)照組,燒傷后7 d組及其對(duì)照組.
1.1 統(tǒng)計(jì)方法
芯片質(zhì)量評(píng)估、差異基因獲取及統(tǒng)計(jì)分析應(yīng)用開源統(tǒng)計(jì)軟件R3.01進(jìn)行(http://www.r-project.org).通過對(duì)原始數(shù)據(jù)進(jìn)行RMA(robust multiarray average)背景矯正、四分位數(shù)法進(jìn)行歸一化處理,并進(jìn)行匯總以獲取表達(dá)水平數(shù)據(jù)[5-6].差異基因獲取采用配對(duì)樣本t檢驗(yàn)和倍比法(fold change,F(xiàn)C),選出P-value<0.01和|lgFC|>1的基因作為差異表達(dá)基因進(jìn)行下一步分析.
1.2 功能富集分析及原始蛋白互作網(wǎng)絡(luò)的構(gòu)建
應(yīng)用DAVID[7](Database for Annotation,Visualization,and Integrated Discovery)(http://david.abcc.ncifcrf.gov/)網(wǎng)絡(luò)數(shù)據(jù)庫對(duì)所選出的差異基因進(jìn)行Gene Ontology(GO)[8]功能富集分析.選取EASE(Expression Analysis Systemic Explorer)<0.05的生物學(xué)功能,并將差異表達(dá)基因根據(jù)功能富集結(jié)果進(jìn)行功能分類.原始蛋白互作網(wǎng)絡(luò)的構(gòu)建由DAVID及STRING數(shù)據(jù)庫進(jìn)行.先將不同組的差異基因經(jīng)DAVID基因轉(zhuǎn)換工具(Gene ID Conversion Tool)進(jìn)行基因ID轉(zhuǎn)換;再將轉(zhuǎn)換后的基因通過STRING9.1[9](functional protein association networks)數(shù)據(jù)庫構(gòu)建原始蛋白互作網(wǎng)絡(luò)(Protein-protein interaction network)并選取中等可信度的互作關(guān)系(交互作用評(píng)分大于0.4)進(jìn)入下一步分析.
1.3 免疫系統(tǒng)過程相關(guān)基因的選取及蛋白互作網(wǎng)絡(luò)分析
將經(jīng)過Gene Ontology(GO)功能富集分析所選取的免疫系統(tǒng)過程相關(guān)基因(GO:0002376 immune system process)映射到各組的原始蛋白互作網(wǎng)絡(luò)中構(gòu)建免疫相關(guān)基因的蛋白互作網(wǎng)絡(luò).免疫相關(guān)基因的蛋白互作網(wǎng)絡(luò)分析及MCL網(wǎng)絡(luò)模塊分析采用生物圖表可視化工具Cytoscape軟件[10]進(jìn)行,并應(yīng)用BinGO2.44[11]對(duì)網(wǎng)絡(luò)模塊進(jìn)行Gene Ontology功能富集分析.
2.1 功能富集分析及免疫系統(tǒng)相關(guān)差異基因獲取
共有2 725個(gè)差異基因符合P-value<0.01和|lgFC|>1,且表達(dá)量變化超過2倍標(biāo)準(zhǔn)(表1).差異基因最顯著變化發(fā)生在燒傷后第1 d,有1 825個(gè)基因被選出,其中上調(diào)基因658個(gè),下調(diào)基因1 167個(gè).
小鼠燒傷后不同組間基因功能富集(Gene Ontology)情況如表2所示,其中以燒傷后1 d組的變化最顯著,上調(diào)和下調(diào)差異基因同時(shí)富集在細(xì)胞過程,生物調(diào)節(jié),代謝過程,免疫系統(tǒng)過程及刺激反應(yīng)等生物學(xué)功能中.通過對(duì)不同組間基因功能富集情況進(jìn)行分析發(fā)現(xiàn):免疫系統(tǒng)過程及應(yīng)對(duì)刺激反應(yīng)等生物學(xué)功能一直貫穿燒傷早期,說明燒傷后免疫系統(tǒng)過程在燒傷后起著十分重要的作用.
表1 燒傷早期不同時(shí)間點(diǎn)差異表達(dá)基因Table 1 Signature genes involved in time series stage of burn
表2 差異表達(dá)基因功能富集結(jié)果Table 2 Results of functional enrichment analysis for DEGs
2.2 免疫相關(guān)基因選取及蛋白網(wǎng)絡(luò)分析
為了進(jìn)一步了解燒傷早期免疫相關(guān)基因功能變化情況,我們將不同時(shí)間點(diǎn)的差異基因構(gòu)建原始蛋白互作網(wǎng)絡(luò),并將免疫系統(tǒng)相關(guān)基因映射到網(wǎng)絡(luò)中構(gòu)建免疫相關(guān)基因的蛋白互作網(wǎng)絡(luò).同時(shí)應(yīng)用Cytoscape軟件對(duì)網(wǎng)絡(luò)進(jìn)行MCL網(wǎng)絡(luò)模塊化分析及應(yīng)用BinGO2.44對(duì)模塊進(jìn)行Gene Ontology功能富集分析(如圖2、表4).
以LCK-CD48為中心的網(wǎng)絡(luò)模塊a(圖2-a)為燒傷后2h組免疫互作網(wǎng)絡(luò)經(jīng)MCL聚類分析所得,LCK、CD48、CD5,CD80,PTPN6等5個(gè)基因在網(wǎng)絡(luò)模塊a中擁有最大互作關(guān)系,功能富集分析顯示,其在免疫系統(tǒng)過程正性調(diào)節(jié)中起到重要的作用.
在燒傷后1 d組中原始蛋白互作網(wǎng)絡(luò)及免疫相關(guān)差異基因映射情況如圖1所示.MCL富集分析顯示Traf6,Lck,Cd19,Tlr2,Myd88,Cd79a,Cxcr5,Ccr2等28個(gè)差異基因在網(wǎng)絡(luò)模塊b-f中具有最高互作關(guān)系(如表3).功能富集分析顯示他們?cè)诠逃忻庖叻磻?yīng),免疫系統(tǒng)正性調(diào)節(jié),抗原處理和表達(dá)及防御反應(yīng)中起到關(guān)鍵作用.
網(wǎng)絡(luò)模塊g為燒傷后3 d組MCL模塊分析所得,CCR2,MYD88,TLR4,TLR2,在模塊中處于中心位置,且擁有最大互作關(guān)系,且在炎癥反應(yīng)中有著重要作用.網(wǎng)絡(luò)模塊h-i為燒傷7 d組差異基因經(jīng)MCL分析所得,Tlr2,MYD88,Gp49a,Clec4n,AF251705等 14個(gè)基因擁有最大互作,并在固有免疫反應(yīng)中起著重要作用.
表3 燒傷后1 d組擁有最大互作關(guān)系的差異基因(前10)Table 3 The characteristics for the 10 genes in the network
圖1 燒傷后第一天原始蛋白互作網(wǎng)絡(luò)及免疫相關(guān)基因(150個(gè))映射情況.紅色為免疫系統(tǒng)過程上調(diào)基因,藍(lán)色為免疫系統(tǒng)過程下調(diào)基因Fig.1 The interaction network for the 150 immune related DEGs in the 1day post burn injury.The red dots represent up-regulated gene and blue dots down-regulated gene.The edges represent interaction.
圖2 經(jīng)MCL聚類分析后各組網(wǎng)絡(luò)模塊.a為燒傷后2小時(shí)組網(wǎng)絡(luò)模塊,b-f為燒傷后1天組網(wǎng)絡(luò)模塊,g為燒傷后3天組網(wǎng)絡(luò)模塊,h-i為燒傷后7天組網(wǎng)絡(luò)模塊.紅色為免疫系統(tǒng)進(jìn)程上調(diào)基因,藍(lán)色為免疫系統(tǒng)進(jìn)程下調(diào)基因.Fig.2 Clusters a-i and the top eight subnetworks in PPI network in detail.Red nodes represent genes upregulated and blue nodes represent genes downregulated.Cluster a was the subnetworks for 2 hour group post injury;cluster b-f were the subnetworks for 1day group post injury;cluster g was the subnetworks for3day group post injury and cluster h-1 were the subnetworks for7day group post injury.
表4 MCL網(wǎng)絡(luò)功能富集分析結(jié)果Table 4 The largest eight PPI subnetworks
基因芯片作為一種高效、大規(guī)模獲取生物信息的技術(shù),可以同時(shí)捕捉成千上萬的基因的動(dòng)態(tài)變化,現(xiàn)已經(jīng)廣泛地用于分子生物學(xué)研究中[12].本研究應(yīng)用小鼠燒傷后免疫細(xì)胞時(shí)序芯片數(shù)據(jù)進(jìn)行初步分析,通過選取免疫系統(tǒng)過程相關(guān)基因構(gòu)建蛋白互作網(wǎng)絡(luò),篩選燒傷后免疫系統(tǒng)功能變化過程中可能起到關(guān)鍵作用的基因.通過分析我們發(fā)現(xiàn)Lck,Ccr2,TLR2和Myd88等基因可能在燒傷早期免疫功能紊亂發(fā)生、發(fā)展中起到關(guān)鍵性的作用.
功能富集分析顯示Lck(淋巴細(xì)胞蛋白酪氨酸激酶)作為燒傷后2 h組和1 d組的下調(diào)基因在燒傷后免疫系統(tǒng)正性調(diào)節(jié)過程中起到重要的作用(P值分別為5.8948E-11,2.8087E-6).LCK基因編碼所產(chǎn)生p56(LCK),是非受體酪氨酸蛋白激酶致癌基因家族成員之一,表達(dá)于所有的T細(xì)胞譜系細(xì)胞中[13].p56(LCK)蛋白錨定到細(xì)胞膜并與CD4/CD8共同受體的胞內(nèi)結(jié)構(gòu)域相互作用,并具有酪氨酸激酶活性[14].質(zhì)膜上的Lck使得TCR復(fù)合中的信號(hào)模體磷酸化從而啟動(dòng)T細(xì)胞受體信號(hào)轉(zhuǎn)導(dǎo)過程,然后磷酸化的信號(hào)模體為TCR復(fù)合招募磷酸化的ZAP-70 PTK分子[15].p56(LCK)是在絕大多數(shù)胸腺細(xì)胞發(fā)育過程中啟動(dòng)TCR信號(hào)轉(zhuǎn)導(dǎo)的蛋白酪氨酸激酶[16],對(duì)成熟T細(xì)胞的選擇和成熟中發(fā)揮核心作用[17].Lck可能在燒傷后T細(xì)胞所介導(dǎo)的免疫功能中起著重要的作用.
CCR2是單核細(xì)胞趨化蛋白-1(monocyte chemoattractant protein-1,MCP-1)的特異的受體.CCR2在炎癥細(xì)胞表面普遍表達(dá).趨化因子MCP-1與CCR2特異性結(jié)合后可趨化多種炎癥細(xì)胞(單核、巨噬細(xì)胞、記憶和殺傷T淋巴細(xì)胞等)至炎癥病灶而發(fā)揮免疫作用[18].實(shí)驗(yàn)表明CCR2缺乏可抑制MCP-1的基因表達(dá),成纖維細(xì)胞積累和巨噬細(xì)胞浸潤(rùn)降低TNF-α和IFN-γ基因表達(dá)[19].同時(shí)研究發(fā)現(xiàn)CCR2信號(hào)調(diào)節(jié)細(xì)胞外基質(zhì)蛋白的生產(chǎn)[20].CCR2分析顯示CCR2在燒傷后防御反應(yīng)及炎癥反應(yīng)中起著重要的作用,可能在燒傷后免疫細(xì)胞趨化作用及創(chuàng)面修復(fù)過程中起著中起著重要的作用.
TLR2和Myd88同時(shí)在燒傷后第1d組至第7 d組,功能富集分析顯示其在固有免疫反應(yīng)中起著重要的作用.其中,TLR2為Toll樣受體(TLRs)家族成員,為Ⅰ型跨膜蛋白受體,廣泛表達(dá)于先天免疫細(xì)胞中(如巨噬細(xì)胞和樹突細(xì)胞),可以識(shí)別細(xì)菌和病毒及相關(guān)物質(zhì)等外源性配體.Myd88(髓樣分化因子88)作為銜接蛋白在機(jī)體固有免疫應(yīng)答反應(yīng)中能直接參與到Toll樣受體信號(hào)轉(zhuǎn)導(dǎo)通路中[21].TLR2是啟動(dòng)Myd88依賴性防御反應(yīng)的重要的模式識(shí)別受體,免疫細(xì)胞胞膜上的TLR2受體可特異性識(shí)別革蘭氏陽性和革蘭氏陰性細(xì)菌的膜組件可以病原體,并啟動(dòng)Myd88依賴性防御反應(yīng),并通過IRAK1,IRAK2和TRAF6[22]等作用可以通過快速激動(dòng)NF-κB和MAPK傳導(dǎo)通路誘導(dǎo)產(chǎn)生促炎性細(xì)胞因子(TNFα,IL-1β,IL-6,IL-12)的產(chǎn)生引發(fā)前炎性反應(yīng)并能上調(diào)共刺激分子(IL-8,RANTES,MIP-1α)的上調(diào)引發(fā)先天免疫的快速激活[23-24].TLR2和Myd88在燒傷后可以通過Toll樣受體信號(hào)轉(zhuǎn)導(dǎo)通路啟動(dòng)機(jī)體的固有免疫反應(yīng),使機(jī)體對(duì)入侵的病原體產(chǎn)生最適當(dāng)?shù)拿庖邞?yīng)答,從而維持內(nèi)環(huán)境的穩(wěn)定.
在本研究中,我們應(yīng)用生物信息學(xué)方法對(duì)小鼠燒傷后免疫細(xì)胞基因芯片數(shù)據(jù)進(jìn)行了分析,并構(gòu)建免疫系統(tǒng)相關(guān)基因的蛋白互作網(wǎng)絡(luò).通過互作網(wǎng)絡(luò)分析我們發(fā)現(xiàn)LCK,CCR2,TLR2,Myd88等基因在燒傷后免疫系統(tǒng)功能變化過程中可能起到關(guān)鍵作用.由于分析結(jié)果基于基因轉(zhuǎn)錄水平數(shù)據(jù)所得,盡管我們應(yīng)用更嚴(yán)格的分析方法和工具來確保分析數(shù)據(jù)和結(jié)果的可靠性,但是仍需要一個(gè)嚴(yán)謹(jǐn)?shù)纳飳W(xué)實(shí)驗(yàn),以驗(yàn)證分析結(jié)果是否適用于不同燒傷面積及深度.
[1] PARK M S,SALINAS J,WADE C E,et al.Combining early coagulation and inflammatory status improves prediction of mortality in burned and nonburned trauma patients[J].J Trauma,2008,64(2):S188-S194.
[2] 彭代智.我國(guó)燒傷免疫的研究[J].中華燒傷雜志,2008,24(5):390-392.
[3] LEDERER J A,BROWNSTEIN B H,LOPEZ M C,et al.Comparison of longitudinal leukocyte gene expression after burn injury or trauma-hemorrhage in mice[J].Physiol Genomics,2008,32(3):299-310.
[4] XIAO W,MINDRINOS M N,SEOK J,et al.A genomic storm in critically injured humans[J].J Exp Med,2011,208(13):2581-2590.
[5] IRIZARRY R A,HOBBSB,COLLIN F,et al.Exploration,normalization,and summaries of high density oligo-nucleotide array probe level data[J].Biostatistics,2003,4(2):249-264.
[6] GAO L,GAO H,ZHOU H,et al.Gene expression profiling analysis of the putamen for the investigation of compensatory mechanisms in Parkinson's disease[J].BMC Neurol,2013,13:181.
[7] HUANG D W,SHERMAN B T,LEMPICKIR A.Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources[J].Nat Protoc,2009,4(1):44-57.
[8] ASHBURNER M,BALL C A,BLAKE JA,et al.Gene ontology:tool for the unification ofbiology.The Gene Ontology Consortium[J].Nat Genet,2000,25(1):25-29.
[9] FRANCESCHINI A,SZKLARCZYK D,F(xiàn)RANKILD S,et al.STRING v9.1:protein-protein interaction networks,with increased coverage and integration[J].Nucleic Acids Res,2013,41(Database issue):D808-D815.
[10]SHANNON P,MARKIEL A,OZIER O,et al.Cytoscape:a software environment for integrated models of biomolecular interaction networks[J].Genome Res,2003,13(11):2498-2504.
[11]MAERE S,HEYMANS K,KUIPER M.BiNGO:a Cytoscape plugin to assess overrepresentation of gene ontology categories in biological networks[J].Bioinformatics,2005,21(16):3448-3449.
[12]ZHOU B,XU W,HERNDON D,et al.Analysis of factorial time-course microarrays with application to a clinical study of burn injury[J].Proc Natl Acad Sci U SA,2010,107(22):9923-9928.
[13]PAIGE L A,NADLER M J,HARRISON M L,et al.Reversible palmitoylation of the protein-tyrosine kinase p56lck[J].J Biol Chem,1993,268(12):8669-8674.
[14]VANLAETHEM F,TIKHONOVA A N,POBEZINSKY L A,et al.Lck availability during thymic selection determines the recognition specificity of the T cell repertoire[J].Cell,2013,154(6):1326-1341.
[15]GASCOIGNE N R,PALMER E.Signaling in thymic selection[J].Curr Opin Immunol,2011,23(2):207-212.
[16]PALACIOS E H,WEISS A.Function of the Src-family kinases,Lck and Fyn,in T-cell development and activation[J].Oncogene,2004,23(48):7990-8000.
[17]NERVIS,GUINAMARD R,DELAVAL B,et al.A rare mRNA variant of the human lymphocyte-specific protein tyrosine kinase LCK gene with intron B retention and exon 7 skipping encodes a putative protein with altered SH3-dependent molecular interactions[J].Gene,2005,359:18-25.
[18]XIA Y,ENTMAN M L,WANG Y.CCR2 regulates the uptake of bone marrow-derived fibroblasts in renal fibrosis[J].PLoS One,2013,8(10):e77493.
[19]HAUDEK SB,CHENG J,DU J,et al.Monocytic fibroblast precursors mediate fibrosis in angiotensin-Ⅱ-induced cardiac hypertrophy[J].J Mol Cell Cardiol,2010,49(3):499-507.
[20]XU J,LIN SC,CHEN J,et al.CCR2 mediates the uptake of bone marrow-derived fibroblast precursors in angiotensin Ⅱ-induced cardiac fibrosis[J].Am J Physiol Heart Circ Physiol,2011,301(2):H538-H547.
[21]VON BERNUTH H,PICARD C,JIN Z,et al.Pyogenic bacterial infections in humans with MyD88 deficiency[J].Science,2008,321(5889):691-696.
[22]BONNERT T P,GARKA K E,PARNET P,et al.The cloning and characterization of human MyD88:a member of an IL-1 receptor related family[J].FEBS Lett,1997,402(1):81-84.
[23]KAWAIT,AKIRA S.TLR signaling[J].Semin Immunol,2007,19(1):24-32.
[24]UEMATSU S,AKIRA S.Toll-like receptors and innate immunity[J].J Mol Med(Berl),2006,84(9):712-725.
[責(zé)任編輯:孫升云 王景周]
Screening of biomarkers for immune system process with post burn injury time-course gene expression profiling data in m ice
GAO Yanbin1, LU Zhiyang1, JIN Hui1, SHI Pengwei1, WANG Guifang1,WEN Huangding1, YANG Lei1
(Department of Burns,Nanfang hospital,Southern Medical University,Guangzhou 510515,China)
Aim:Our study aims to deepen the understandings about the mechanisms of immune system process post-burn injury via screening relevant biomarkers with time-course gene expression profiling data in mice.Methods:Microarray data set GSE7404 was downloaded from GEO database,including 16 burn injury(Mus musculus,25% TBSA,full-thickness)and 16 controls.Student’s t test and fold change method were employed to identified differentially expressed genes with P<0.01 and|lgFC|>1.Then,we used DAVID to perform functional enrichment analysis to uncover dysfunctional biological processes.Immune related Protein-Protein interaction(PPI)network was constructed by STRING and visualized in Cytoscape.Functional analysis of the hub protein was performed by BinGO.Results:The maximumchange of gene expression profile was found at 1-days post injury a total of 658 up-regulated genes and 1167down-regulated genes were identified.The response to stimulus and immune system process were captured by gene expression signature through all time points.Protein-protein interaction network and module analysis suggested that some immune related genes,such as Lck,Ccr2,TLR2 and Myd88 could be of great value for further investigation.Conclusion:It could be inferred that understanding the underlying molecular mechanism post burn injury,may provide novel insight for development of therapeutics strategy.
post burn injury; immune system process; functional enrichment analysis; Immune related Protein-Protein interaction network
R644
A
1000-9965(2015)03-0275-07
10.11778/j.jdxb.2015.03.016
2014-12-08
南方醫(yī)科大學(xué)南方醫(yī)院院長(zhǎng)基金(2014B013)
高艷彬(1988-),男,研究方向:燒傷危重病救治
楊 磊,副教授.Tel:020-61641841;E-mail:yuanyang@fimmu.com
暨南大學(xué)學(xué)報(bào)(自然科學(xué)與醫(yī)學(xué)版)2015年3期