馮 柳,周邦新,彭劍超,王均安
(1 上海大學(xué) 材料研究所,上海 200072;2 山東理工大學(xué) 分析測(cè)試中心,山東 淄博 255049;3上海大學(xué) 微結(jié)構(gòu)重點(diǎn)實(shí)驗(yàn)室, 上海 200444)
?
RPV模擬鋼中納米富Cu析出相的復(fù)雜晶體結(jié)構(gòu)表征
馮 柳1,2,周邦新1,3,彭劍超1,3,王均安1,3
(1 上海大學(xué) 材料研究所,上海 200072;2 山東理工大學(xué) 分析測(cè)試中心,山東 淄博 255049;3上海大學(xué) 微結(jié)構(gòu)重點(diǎn)實(shí)驗(yàn)室, 上海 200444)
RPV模擬鋼樣品經(jīng)過890℃水淬,660℃調(diào)質(zhì)處理,然后在400℃時(shí)效13000h后,用高分辨透射電鏡和能譜儀相結(jié)合的方法研究了RPV模擬鋼中納米富Cu析出相中的復(fù)雜晶體結(jié)構(gòu)。納米富Cu析出相的平均尺寸約為20nm,除了觀察到常見的亞穩(wěn)態(tài)9R結(jié)構(gòu)、3R結(jié)構(gòu)和穩(wěn)態(tài)fcc結(jié)構(gòu)外,還觀察到同一富Cu析出相由3種不同的晶體結(jié)構(gòu)組成,并分別分布在5個(gè)不同的區(qū)域中,包括1處9R、2處fcc 和2處3R 結(jié)構(gòu)。9R結(jié)構(gòu)與相鄰的2個(gè)fcc結(jié)構(gòu)形成的界面都具有特定的晶體取向,呈半共格關(guān)系,是由非孿晶9R結(jié)構(gòu)演化而來。2處3R結(jié)構(gòu)互為孿晶關(guān)系,是由孿晶9R結(jié)構(gòu)演化而來。這種狀態(tài)反映了納米富Cu析出相從亞穩(wěn)態(tài)演化到穩(wěn)態(tài)結(jié)構(gòu)的復(fù)雜過程。
RPV模擬鋼;熱時(shí)效;納米富Cu析出相;9R晶體結(jié)構(gòu)
本工作采用HRTEM和能譜儀(EDS)相結(jié)合的方法,研究了660℃調(diào)質(zhì)處理后的RPV模擬鋼在400℃時(shí)效13000h后析出富Cu相中的某些復(fù)雜晶體結(jié)構(gòu)特征,為認(rèn)識(shí)RPV鋼中納米富Cu相的晶體結(jié)構(gòu)演變及輻照脆化機(jī)理提供了實(shí)驗(yàn)依據(jù)。
目前,大多數(shù)壓水堆核電站的RPV均采用Mn-Ni-Mo低合金鐵素體鋼(A508-Ⅲ),其中的Cu為煉鋼原料中引入的雜質(zhì)元素,標(biāo)準(zhǔn)中規(guī)定其含量應(yīng)低于0.08%(質(zhì)量分?jǐn)?shù),下同),Ni含量在0.4%~1.0 %之間。本實(shí)驗(yàn)所用材料是在A508-Ⅲ鋼成分基礎(chǔ)上提高了Cu和Ni的含量,這種改變了成分的鋼稱為RPV模擬鋼,化學(xué)成分如表1所示。
鋼錠質(zhì)量約40kg,由真空感應(yīng)爐冶煉,將鋼錠經(jīng)熱鍛和熱軋制成6mm厚的鋼板,然后再切成35mm×40mm的小樣品。隨后在890℃加熱0.5h后水淬,在660℃加熱10h進(jìn)行調(diào)質(zhì)處理,最后在400℃進(jìn)行了長(zhǎng)達(dá)13000h的時(shí)效處理。本實(shí)驗(yàn)提高了RPV鋼中Cu和Ni的含量,并選用了高于RPV運(yùn)行溫度(290℃)的400℃時(shí)效,這主要是為了能夠方便地觀察到熱時(shí)效過程中富Cu相的析出以及長(zhǎng)大過程中晶體結(jié)構(gòu)的轉(zhuǎn)變。
采用電火花線切割方法將時(shí)效處理后的樣品沿截面切下厚度約0.5mm的薄片,然后用砂紙將其磨薄至0.1mm,用沖片機(jī)沖出直徑為3mm的圓片,再用細(xì)砂紙將其磨至約50μm,最后用10%HClO4+90%C2H5OH溶液在-40℃ 進(jìn)行雙噴電解拋光。采用JEM-2010F HRTEM觀察富Cu相的微觀結(jié)構(gòu),并用INCA-OXFORD能譜儀對(duì)析出相進(jìn)行成分分析。HRTEM圖像用Digital Micrograph軟件進(jìn)行輔助分析,研究析出相的晶體結(jié)構(gòu)。
表1 RPV模擬鋼的化學(xué)成分(質(zhì)量分?jǐn)?shù)/%)
2.1 富Cu析出相的HRTEM觀察
圖1為納米富Cu析出相的分布狀態(tài)及元素分析結(jié)果,圖1(a)中可以看出,富Cu相的平均尺寸約為20 nm,形貌主要以橢球形為主。與時(shí)效1000h的RPV模擬鋼中析出的納米富Cu析出相相比[20],數(shù)量密度較低。圖1(b)為(a)圖圓圈內(nèi)一個(gè)析出相的EDS分析結(jié)果,析出相中除含有34%的Cu外,還有大量的Fe及少量的Mn和Ni。因?yàn)楦籆u相尺寸較小,能譜分析結(jié)果中有部分Fe的含量可能源自基體,所以Fe比實(shí)際析出相中的含量偏高,導(dǎo)致Cu含量偏低。
圖1 RPV模擬鋼樣品調(diào)質(zhì)處理后在400℃時(shí)效13000h得到富Cu析出相的分布狀態(tài)和富Cu相的元素分析(a)TEM圖像;(b)圖(a)中白色圓圈內(nèi)富Cu析出相的EDS分析結(jié)果Fig.1 Distribution and element analysis of Cu-rich precipitates in RPV model steel after aging at 400℃ for 13000h (a)TEM micrograph;(b)EDS analysis of a Cu-rich precipitate marked with a white circle in fig.(a)
為了研究富Cu相的晶體結(jié)構(gòu),需要拍攝HRTEM圖像進(jìn)行分析。在拍攝HRTEM圖像時(shí),將電子束入射方向調(diào)整至與α-Fe基體的〈111〉方向平行。所觀察到的富Cu相中除常見的亞穩(wěn)態(tài)3R結(jié)構(gòu)、9R結(jié)構(gòu)和穩(wěn)態(tài)fcc結(jié)構(gòu)外,還觀察到同一個(gè)富Cu相中具有多種晶體結(jié)構(gòu)的復(fù)雜現(xiàn)象。圖2為典型的具有復(fù)雜晶體結(jié)構(gòu)的富Cu析出相,此富Cu相的大小約27 nm,可以看出該富Cu相的圖片中具有不同方向的莫爾條紋,由于該富Cu相嵌入的基體是一個(gè)單晶體,同一個(gè)富Cu相中存在不同方向的莫爾條紋,只可能是該富Cu相中存在不同的晶體結(jié)構(gòu)或者是不同的晶體取向。按照莫爾條紋的走向?qū)⑵浞譃?個(gè)區(qū)域,以便詳細(xì)地分析其晶體結(jié)構(gòu)和晶體取向的差別,如圖2(a)中白線所標(biāo)示。圖2(b)為富Cu相的能譜分析結(jié)果,Cu含量約為60%,仍含有35%左右的Fe和少量的Ni和Mn。
圖2 一個(gè)富Cu相的微觀形貌圖及該富Cu相的元素分析 (a)HRTEM圖;(b)EDS分析結(jié)果Fig.2 Micrograph and element analysis of Cu-rich precipitate (a)HRTEM micrograph;(b)EDS analysis of Cu-rich precipitate
圖3 富Cu相區(qū)域1~3之間的FFT和IFFT圖 (a)區(qū)域“1”的FFT圖;(b)區(qū)域“1”的IFFT圖;(c)區(qū)域“2”的FFT圖;(d)區(qū)域“1”和區(qū)域“2”界面附近IFFT圖;(e)區(qū)域“3”的FFT圖;(f)區(qū)域“1”和區(qū)域“3”界面附近的IFFT圖Fig.3 FFT and IFFT patterns of the Cu-rich precipitate from region 1 to 3 (a)FFT pattern of region “1”; (b)IFFT pattern of region “1”;(c)FFT pattern of region “2”;(d)IFFT pattern near the interface of region “1” and “2”;(e)FFT pattern of region “3”;(f)IFFT pattern near the interface of region “1” and “3”
圖4 富Cu相區(qū)域4,5的FFT和IFF圖 (a)區(qū)域“4”的FFT圖;(b)區(qū)域“5”的FFT圖;(c)區(qū)域“4”的IFFT圖;(d)區(qū)域“5”的IFFT圖;(e)區(qū)域“3”和區(qū)域“4”界面附近的IFFT圖;(f)區(qū)域“4”和區(qū)域“5”界面附近的IFFT圖Fig.4 FFT and IFFT patterns of the Cu-rich precipitate between region 4 and 5 (a)FFT pattern of region “4”; (b)FFT pattern of region “5”;(c)IFFT pattern of region “4”;(d)IFFT pattern of region “5”;(e)IFFT pattern near the interface between region “3” and region “4”;(f)IFFT pattern near the interface between region “4” and region “5”
上述對(duì)圖2(a)的一系列分析表明,此富Cu相中包括了9R,3R 和fcc等3種不同的晶體結(jié)構(gòu),分別分布在5個(gè)不同的區(qū)域中。在“1”,“2”,“3”區(qū)域中,9R與其相鄰兩側(cè)的fcc結(jié)構(gòu)組成的界面呈半共格關(guān)系。Heo等[25]報(bào)道了非孿晶9R結(jié)構(gòu)可以直接轉(zhuǎn)變?yōu)閒cc結(jié)構(gòu),而不需要優(yōu)先轉(zhuǎn)變?yōu)?R結(jié)構(gòu)。9R到fcc結(jié)構(gòu)演變的過渡結(jié)構(gòu)是由9R及其兩側(cè)的fcc結(jié)構(gòu)組成。本工作觀察到富Cu相中的 “1”,“2”,“3” 區(qū)域與此現(xiàn)象類似,可以認(rèn)為是9R結(jié)構(gòu)向?qū)\晶fcc結(jié)構(gòu)演化的過渡階段。區(qū)域“4”和“5”都為3R結(jié)構(gòu),且互為孿晶關(guān)系,根據(jù)目前的研究結(jié)果[26],9R孿晶結(jié)構(gòu)會(huì)繼續(xù)演變?yōu)楦€(wěn)定的3R結(jié)構(gòu),可以認(rèn)為此結(jié)構(gòu)是由9R孿晶結(jié)構(gòu)經(jīng)過切變后形成。
2.2 討論
RPV模擬鋼中提高了Cu的含量,同時(shí)Ni,Mn元素也會(huì)促進(jìn)富Cu相的析出[27,28],形核時(shí)間較短,所以試樣在400℃時(shí)效時(shí)間13000h后,富Cu相應(yīng)處于長(zhǎng)大或粗化階段,這時(shí)富Cu相尺寸不斷增大,數(shù)量密度減小,相間距也變大[29]。富Cu相長(zhǎng)大的過程中,其晶體結(jié)構(gòu)會(huì)發(fā)生一系列復(fù)雜的變化。圖2(a)中所示的富Cu相,為亞穩(wěn)態(tài)的9R結(jié)構(gòu)繼續(xù)向更穩(wěn)定的晶體結(jié)構(gòu)演化時(shí)的過渡狀態(tài),區(qū)域“1”,“2”,“3”和區(qū)域“4”,“5”的演變機(jī)理都是通過不全位錯(cuò)沿9R結(jié)構(gòu)的(001)9R基面進(jìn)行a/3 [100]9R大小的切變[25,30],但切變方向不同。
圖5 非孿晶9R向fcc/9R/fcc結(jié)構(gòu)演化的簡(jiǎn)化示意圖及富Cu相與之相對(duì)應(yīng)的原子排列(a)簡(jiǎn)化示意圖;(b)區(qū)域“1”,“2”與(a)相對(duì)應(yīng)的原子排列Fig.5 The schematic diagram showing the transformation of non-twin 9R to fcc/9R/fcc crystal structure (a)the schematic diagram;(b)the corresponding atoms arrangement in region “1” and “2” of the Cu-rich precipitate
圖6 孿晶9R向?qū)\晶3R結(jié)構(gòu)演化的簡(jiǎn)化示意圖及富Cu相與之相對(duì)應(yīng)的原子排列(a)簡(jiǎn)化示意圖;(b)區(qū)域“4”,“5”與(a)相對(duì)應(yīng)的原子排列Fig.6 The schematic diagram showing the transformation of twin 9R to twin 3R crystal structure (a) the schematic diagram;(b)the corresponding atoms arrangement in region “4”, “5” of the Cu-rich precipitate
圖5和圖6說明了非孿晶9R結(jié)構(gòu)、孿晶9R結(jié)構(gòu)的演化機(jī)理相似,但切變方向和切變?cè)用婷黠@不同,所得晶體結(jié)構(gòu)也會(huì)完全不同。9R結(jié)構(gòu)、3R結(jié)構(gòu)、fcc結(jié)構(gòu)的晶格常數(shù)都不同,所以原子切變后晶格會(huì)發(fā)生一定程度的畸變,但會(huì)通過方向相反的a/3 [100]9R大小的切變兩兩抵消。需要說明的是,在圖5,6中為了說明不同結(jié)構(gòu)間每層原子的對(duì)應(yīng)關(guān)系,將兩對(duì)應(yīng)c軸長(zhǎng)度設(shè)置為相等。由于此富Cu相由3種不同的晶體結(jié)構(gòu)組成并分布在5個(gè)不同的區(qū)域中,所以可推斷此富Cu相最終可能會(huì)形成穩(wěn)態(tài)的fcc多孿晶結(jié)構(gòu),但包括兩種不同的演化序列:非孿晶9R結(jié)構(gòu)直接轉(zhuǎn)變?yōu)閒cc結(jié)構(gòu);9R孿晶結(jié)構(gòu)優(yōu)先轉(zhuǎn)變?yōu)?R孿晶結(jié)構(gòu)再轉(zhuǎn)變?yōu)閒cc孿晶結(jié)構(gòu)。
(1)納米富Cu析出相的平均尺寸約為20nm,除了觀察到常見的亞穩(wěn)態(tài)9R結(jié)構(gòu)、3R結(jié)構(gòu)和穩(wěn)態(tài)fcc結(jié)構(gòu)外,還觀察到同一富Cu相由3種不同的晶體結(jié)構(gòu)組成,并分別分布在5個(gè)不同的區(qū)域中,包括1處9R、2處fcc 和2處3R 結(jié)構(gòu)。
(2)9R結(jié)構(gòu)與相鄰的2個(gè)fcc結(jié)構(gòu)形成的界面都具有特定的晶體取向,呈半共格關(guān)系,是由非孿晶9R結(jié)構(gòu)演化而來。2處3R結(jié)構(gòu)互為孿晶關(guān)系,是由孿晶9R結(jié)構(gòu)演化而來。這種狀態(tài)反映了納米富Cu析出相從亞穩(wěn)態(tài)演化到穩(wěn)態(tài)結(jié)構(gòu)的復(fù)雜過程。
[1] ZHANG Z W, LIU C T, WANG X L, et al. Effects of proton irradiation on nanocluster precipitation in ferritic steel containing fcc alloying additions[J]. Acta Mater, 2012, 60(6-7):3034-3046.
[2] STYMAN P, HYDE J, WILFORD K, et al. Precipitation in long term thermally aged high copper, high nickel model RPV steel welds[J]. Prog Nucl Energ, 2012, 57(5):86-92.
[3] LAMBRECHT M, MESLIN E, MALERBA L, et al. On the correlation between irradiation-induced microstructural features and the hardening of reactor pressure vessel steels[J]. J Nucl Mater, 2010, 406(1):84-89.
[4] FUJII K, NAKATA H, FUKUYA K, et al. Hardening and microstructural evolution in A533B steels under neutron irradiation and a direct comparison with electron irradiation[J].J Nucl Mater, 2010, 400(1):46-55.
[5] RADIGUET B, PAREIGE P, BARBY A. Irradiation induced clustering in low copper or copper free ferritic model alloys[J]. Nucl Instrum and Methods Phys Res B, 2009, 267:1496-1499.
[6] 呂錚. 核反應(yīng)堆壓力容器的輻照脆化與延壽評(píng)估[J].金屬學(xué)報(bào),2011,47(7):777-783.
LU Z. Radiation-induced embrittlement and life evaluation of reactor pressure vessels[J]. Acta Metall Sin, 2011, 47(7): 777-783.
[7] NIFFENEGGER M, LEBER H. Monitoring the embrittlement of reactor pressure vessel steels by using the Seebeck coefficient[J]. J Nucl Mater, 2009,389(1): 62-67.
[8] BERGNER F, LAMBRECHT M, ULBRICHT A, et al. Comparative small-angle neutron scattering study of neutron-irradiated Fe, Fe-based alloys and a pressure vessel steel[J]. J Nucl Mater, 2010, 399(2-3):129-136.
[9] TIMOFEEV B. Assessment of the first generation RPV state after designed lifetime[J]. Int J of Pres Ves Pip, 2004, 81:703-712.
[10] LEE K, KIMB M, LEEB B, et al. Analysis of the master curve approach on the fracture toughness properties of SA508 Gr.4N Ni-Mo-Cr low alloy steels for reactor pressure vessels[J]. Mater Sci Eng A, 2010, 527: 3329-3334.
[11] CAMMELLI S, DEGUELDRE C, CERVELLINO A, et al. Cluster formation, evolution and size distribution in Fe-Cu alloy:Analysis by XAFS XRD and TEM[J]. Nucl Instrum and Methods Phys Res B, 2010, 268:632-637.
[12] SCHOBER M, EIDENBERGER E, STARON P, et al. Critical consideration of precipitate analysis of Fe-1at% Cu using atom probe and small-angle neutron scattering[J]. Microsc Microanal, 2011, 17(1):26-33.
[13] KAMADA Y, TAKAHASHI S, KIKUCHI H, et al. Effect of pre-deformation on the precipitation process and magnetic properties of Fe-Cu model alloys[J]. J Mater Sci, 2009, 44: 949-953.
[14] KOLLI R, SEIDMAN D. The temporal evolution of the decomposition of a concentrated multicomponent Fe-Cu-based steel[J]. Acta Mater, 2008, 56: 2073-2088.
[15] 張植權(quán), 周邦新, 蔡琳玲, 等. 利用APT研究RPV模擬鋼中相界面原子偏聚特征[J]. 材料工程, 2014, (9): 89-93.
ZHANG Zhi-quan, ZHOU Bang-xin, CAI Lin-ling, et al. Characterization of atom segregation at phase interfaces in RPV model steel by APT[J]. Journal of Materials Engineering , 2014, (9): 89-93.
[16] HABIBI H. Atomic structure of the Cu precipitates in two stages hardening in maraging steel[J]. Mater Lett, 2005, 59: 1824-1827.
[17] LEE T, KIM Z Y, KIM S. Crystallographic model for bcc-to-9R martensitic transformation of Cu precipitates in ferritic steel[J]. Philos Mag A, 2007, 87(2):209-224.
[18] HABIBI-BAJURIANI H, JENKINS M. High-resolution electron microscopy analysis of the structure of copper precipitates in a martensitic stainless steel of type PH 15-5[J]. Philos Mag Lett, 1996, 73(4): 155-162.
[19] BLACKSTOCK J, ACKLA G. Phase transitions of copper precipitates in Fe-Cu alloys[J]. Philos Mag A, 2001, 81:2127-2148.
[20] 蔡琳玲,徐剛,馮柳,等. 核反應(yīng)堆壓力容器模擬鋼中納米富Cu相的變形特征[J].上海大學(xué)學(xué)報(bào):自然科學(xué)版,2012, 18(3):311-316.
CAI L L, XU G, FENG L, et al. Deformation characterization of nano-scale Cu precipitates in RPV model steel[J]. J Shanghai Univ:Nat Sci, 2012, 18(3): 311-316.
[21] OTHEN P, JENKINS M, SMITH G, et al. Transmission electron microscope investigations of the structure of copper precipitates in thermally aged Fe-Cu and Fe-Cu-Ni[J]. Philos Mag Lett, 1991, 64: 383-391.
[22] DUPARC H, DOOLE R, JENKINS M, et al. A high-resolution electron microscopy study of copper precipitation in Fe-1.5 wt% Cu under electron irradiation[J]. Philos Mag Lett, 1995, 71:325-333.
[23] MOZEN R, JENKINS M, SUTTON A. The bcc-to-9R martensitic transformation of Cu precipitates and the relaxation process of elastic strains in an Fe-Cu alloy[J]. Philos Mag A, 2000, 80(3): 711-723.
[24] 徐剛,楚大峰,蔡琳玲,等. RPV模擬鋼中納米富Cu相的析出和結(jié)構(gòu)演化研究[J]. 金屬學(xué)報(bào),2011,47(7): 905-911.
XU G, CHU D F, CAI L L, et al. Investigation on the precipitation and structure evolution of Cu-rich nanophase in RPV model steel[J]. Acta Metall Sin, 2011,47(7): 905-911.
[25] HEO Y, KIM B Y, KIM J, et al. Phase transformation of Cu precipitates from bcc to fcc in Fe-3Si-2Cu alloy[J]. Acta Mater, 2013,61: 519-528.
[26] OTHEN P,JENKINS M, SMITH G. High resolution electron microscopy studies of the structure of Cu-precipitates in α-Fe[J]. Philos Mag A, 1994, 70:1-24.
[27] FUJII K, OHKUBO T, FUKUY K. Effects of solute elements on irradiation hardening and microstructural evolution in low alloy steels[J]. J Nucl Mater, 2011, 417: 949-952.
[28] MILLER M, WIRTH B, ODETTE G. Precipitation in neutron-irradiated Fe/Cu and Fe/Cu/Mn model alloys: a comparison of APT and SANS data[J]. Mater Sci Eng A, 2003, 353:133-139.
[29] 安治國(guó),任慧平,劉宗昌,等. 1.18Cu高純鋼等溫時(shí)效時(shí)富銅相的析出行為[J]. 特殊鋼,2006, 27(2): 20-22.
AN Z G, REN H P, LIU Z C, et al. Precipitation behavior of rich copper phase in 1.18Cu high purity steel during isothermal aging[J]. Special Steel, 2006, 27(2): 20-22.
[30] 王偉. 反應(yīng)堆壓力容器模擬鋼中富Cu相的析出及晶體結(jié)構(gòu)演化研究[D].上海:上海大學(xué),2011.
WANG W. Precipitation and structural evolution of copper-rich nano phases in reactor pressure vessel model steels [D]. Shanghai: Shanghai University, 2011.
Characterization of a Complex Crystal Structure Within Cu-rich Precipitates in RPV Model Steel
FENG Liu1,2,ZHOU Bang-xin1,3,PENG Jian-chao1,3,WANG Jun-an1,3
(1 Institute of Materials,Shanghai University,Shanghai 200072,China; 2 Analysis and Testing Center,Shandong University of Technology, Zibo 255049,Shandong,China;3 Laboratory for Microstructures, Shanghai University,Shanghai 200444,China)
The specimens of the reactor pressure vessel (RPV) model steels were tempered at 660℃ after water quenching from 890℃, aging treatment was then conducted at 400℃ for 13000h. The Cu-rich precipitates were characterized by high resolution transmission electron microscopy (HRTEM) and energy dispersive spectroscopy (EDS) in order to study the transition process from metastable to stable structure. The average size of the nano Cu-rich precipitates is about 20nm, besides the metastable 9R,3R and the stable fcc crystal structures, it is observed that three different crystal structures distributed in five different regions existing in the same nano Cu-rich precipitate, including one 9R, two of fcc and two of 3R crystal structures. The boundaries formed by 9R structure with its two adjacent fcc structures have specific crystal orientations, their interfaces are semi-coherent. They are evolved from non-twin 9R structure. The two 3R structures are twins, and evolved from twin 9R structure. The above phenomena reflect the complex processes from metastable to stable structure.
reactor pressure vessel model steel;thermal aging;nano Cu-rich precipitate;9R crystal structure
10.11868/j.issn.1001-4381.2015.07.014
TG113.25
A
1001-4381(2015)07-0080-07
國(guó)家重點(diǎn)基礎(chǔ)研究發(fā)展規(guī)劃(973計(jì)劃2011CB610503);國(guó)家自然科學(xué)基金重點(diǎn)項(xiàng)目(50931003);上海市重點(diǎn)學(xué)科建設(shè)項(xiàng)目(S30107)。
2013-10-09;
2014-11-20
周邦新(1935—),男,中國(guó)工程院院士,博士,從事核材料和核燃料元件的研究,聯(lián)系地址:上海大學(xué)材料研究所(200072),E-mail: zhoubx@shu.edu.cn