鄒榮婕,鄧旭修,王 斌,徐英江,宮向紅,劉慧慧,田秀慧,張華威,任傳博,李佳蔚, 呂振波,*
1 山東省海洋資源與環(huán)境研究院,山東省海洋生態(tài)修復(fù)重點(diǎn)實(shí)驗(yàn)室,煙臺(tái) 264006 2 煙臺(tái)山水海產(chǎn)有限公司,煙臺(tái) 264006
黃河調(diào)水調(diào)沙對(duì)黃河口海域雙酚A的影響
鄒榮婕1,2,鄧旭修1,2,王 斌1,徐英江1,宮向紅1,劉慧慧1,田秀慧1,張華威1,2,任傳博1,2,李佳蔚1,2, 呂振波1,*
1 山東省海洋資源與環(huán)境研究院,山東省海洋生態(tài)修復(fù)重點(diǎn)實(shí)驗(yàn)室,煙臺(tái) 264006 2 煙臺(tái)山水海產(chǎn)有限公司,煙臺(tái) 264006
于2011年6—7月黃河調(diào)水調(diào)沙前、中期、后對(duì)黃河口海域雙酚A(BPA)污染情況進(jìn)行調(diào)查,研究了調(diào)水調(diào)沙對(duì)黃河口海域雙酚A的影響。結(jié)果表明:黃河口13個(gè)站位表層海水和沉積物中均有雙酚A檢出,以調(diào)水調(diào)沙前測(cè)得的海水和沉積物中雙酚A含量評(píng)估黃河口附近雙酚A的污染程度。海水中雙酚A濃度范圍為13.6—64.0 ng/L,平均濃度為26.2 ng/L;沉積物中雙酚A的濃度為0.559—2.73 μg/kg 干重,平均濃度為1.19 μg/kg,是海水中平均含量的48倍。黃河河口區(qū)域海水中雙酚A濃度受調(diào)水調(diào)沙影響而呈現(xiàn)較大變化,調(diào)水調(diào)沙后雙酚A濃度明顯增加,調(diào)水調(diào)沙前、后呈顯著性差異(P<0.01),說(shuō)明陸源輸入是黃河口區(qū)域中雙酚A的主要污染來(lái)源。離入??诮恼疚怀练e物中雙酚A濃度受調(diào)水調(diào)沙影響較大,呈顯著性差異(P<0.01),調(diào)水調(diào)沙后含量顯著降低。黃河口海域已經(jīng)遭受雙酚A污染,存在生態(tài)安全問(wèn)題。
雙酚A;黃河口;調(diào)水調(diào)沙
雙酚A(BPA)學(xué)名2,2′-二(4-羥基苯基)丙烷,分子式為C15H16O2,是一種具有代表性的環(huán)境內(nèi)分泌干擾物,被列為繼臭氧層空洞和地球變暖之后的迫切需要治理的“第三代環(huán)境污染物”[1],已經(jīng)被歐盟一些國(guó)家列入優(yōu)先污染物的黑名單[2],國(guó)際組織已經(jīng)將雙酚A定為持久性有機(jī)污染物[3]。雙酚A被廣泛應(yīng)用于殺真菌劑、染料及制造醫(yī)療器械、食品包裝材料與飲料容器等塑料工業(yè),是生產(chǎn)嬰兒奶瓶、牙套、水瓶、食品飲料容器的原料。目前環(huán)境中的雙酚A主要是由于生產(chǎn)和制造過(guò)程中低濃度直接排放和在制造或使用過(guò)程中的無(wú)序排放造成的[4]。城市污水和工業(yè)廢水及其污泥、地表河流和垃圾滲濾液中常有檢出。目前,大量的研究已經(jīng)證明,由于雙酚A具有雌激素活性,可以干擾人和動(dòng)物體內(nèi)正常的激素分泌,會(huì)導(dǎo)致代謝紊亂,所以它在環(huán)境中的分布特征也備受關(guān)注。
黃河是世界上最復(fù)雜、最難治理的一條河流,其主要癥結(jié)在于泥沙,水少沙多,水沙不平衡。由于黃土高原嚴(yán)重的水土流失,造成大量泥沙在黃河下游強(qiáng)烈堆積,使黃河下游近800 km的河床還以年平均0.1 m的速度淤積抬高。為解決黃河下游泥沙淤積問(wèn)題, 黃河水利委員會(huì)自2002—2011年共進(jìn)行了13次調(diào)水調(diào)沙。黃河調(diào)水調(diào)沙是利用人工擾動(dòng)水庫(kù)及河道泥沙的方式來(lái)改善黃河水沙時(shí)空的不平衡性和輸沙用水的不足,以實(shí)現(xiàn)水沙關(guān)系的和諧[5]。據(jù)統(tǒng)計(jì),黃河13次調(diào)水調(diào)沙累計(jì)進(jìn)入下游總水量509.12億m3,累計(jì)入??偵沉窟_(dá)7.62億t。黃河河口區(qū)域是由黃河攜帶大量泥沙填充淤積而成的,河口是陸海交互作用的典型地帶,具有水動(dòng)力作用強(qiáng)烈、泥沙輸移和物質(zhì)交換頻繁等特點(diǎn),且受人類(lèi)高強(qiáng)度活動(dòng)的干擾和改造,是進(jìn)行生態(tài)環(huán)境監(jiān)測(cè)研究的理想?yún)^(qū)域。90年代以來(lái),由于陸源排污量的迅猛增加,特別是黃河沿岸工農(nóng)業(yè)的快速發(fā)展所帶來(lái)的環(huán)境污染問(wèn)題更是日趨嚴(yán)重,水體污染程度已達(dá)我國(guó)7大江河的第 2位[6],這些污染物最終通過(guò)黃河入海口排放入海,對(duì)海洋環(huán)境造成危害。2007—2010年發(fā)布的《山東省海洋環(huán)境質(zhì)量公報(bào)》顯示黃河口海洋環(huán)境污染嚴(yán)重,主要污染物為無(wú)機(jī)氮、活性磷酸鹽、石油類(lèi)和持續(xù)性有機(jī)污染物等。因此本研究選取黃河口鄰近海域?yàn)檠芯繉?duì)象,分析2011年黃河調(diào)水調(diào)沙前后該海域環(huán)境中雙酚A的污染狀況,探討調(diào)水調(diào)沙對(duì)黃河口鄰近海域污染程度的影響,進(jìn)而對(duì)該海域雙酚A污染狀況進(jìn)行科學(xué)評(píng)價(jià),為科學(xué)制止和治理該海域污染提供基礎(chǔ)數(shù)據(jù)。
1.1 實(shí)驗(yàn)主要儀器與試劑
氣相色譜質(zhì)譜聯(lián)用儀(6890N- 5973i, Agilent, USA);超純水儀(Milli Q Gradient, Millipore, France);超聲波清洗器(KQ- 600E,昆山市超聲儀器有限公司);高速離心機(jī)(TGL- 10 C,安亭科學(xué)儀器廠,上海);氮吹儀(N-EVAPTM112,Organomation Associates,USA);旋轉(zhuǎn)蒸發(fā)儀(R- 215,Buchi,Switzerland)等。
甲醇,丙酮,環(huán)己烷,正己烷均為色譜級(jí)(Merck);鹽酸為分析純(科密歐試劑);七氟丁酸酐(純度>99.0%,Sigma),銅粉為分析純(阿拉丁試劑);所用水為超純水;雙酚A標(biāo)準(zhǔn)品(CAS號(hào):80-05- 7,純度>98.5%,Dr.);固相萃取小柱:HLB,60 mg/3 mL(Waters);石墨化碳,500 mg/6 mL(Agilent)。
1.2 實(shí)驗(yàn)方法
1.2.1 樣品采集
本次研究在黃河河口區(qū)域內(nèi)以均勻布設(shè)原則設(shè)置了13個(gè)站位,如圖 1所示。本次調(diào)水調(diào)沙從6月19日開(kāi)始,7月12日結(jié)束,持續(xù)23d。調(diào)水調(diào)沙水頭6月24日進(jìn)入東營(yíng)市河道,流量超過(guò)2000 m3/s,利津站最大流量3200 m3/s,水位12.98 m。7月12日上午8時(shí),黃河最下游的利津水文站實(shí)測(cè)流量跌落至465 m3/s,標(biāo)志著黃河調(diào)水調(diào)沙流量已全部入海,2011年黃河調(diào)水調(diào)沙順利結(jié)束。本試驗(yàn)于2011年 6月16日(調(diào)沙前)、7月3日(調(diào)沙中期)、7月18日(調(diào)沙后),3次采集表層水體和沉積物樣品。
圖1 取樣站位示意圖Fig.1 Sampling locations in the Yellow River Estuary
表層水水樣采集使用采樣桶,采集后裝入棕色玻璃瓶,樣品采集后倒立放在暗處低溫(4 ℃)保存。沉積物樣品采用抓斗式采泥器(0.1 m2)采集,每個(gè)站位采集約200 g表層(3 cm厚度以內(nèi))沉積物,直接置于-20 ℃的冰柜中保存。所有的樣品運(yùn)回實(shí)驗(yàn)室后在2個(gè)月內(nèi)測(cè)定。
1.2.2 樣品前處理
海水樣品:用0.45 μm混合纖維素濾膜抽濾海水樣品500 mL(準(zhǔn)確到1.0 mL),用6 mol/L鹽酸溶液調(diào)pH值至2—3,加入甲醇40 mL,混勻,用HLB小柱進(jìn)行固相萃取。甲醇溶液(V甲醇∶V水=1∶1)10 mL淋洗柱子,10 mL甲醇洗脫,吹干,用乙酸乙酯復(fù)溶轉(zhuǎn)入進(jìn)樣瓶中濃縮。衍生:于上述進(jìn)樣瓶中加入七氟丁酸酐30 μL、丙酮70 μL,于30 ℃恒溫箱中衍生30 min,氮?dú)獯蹈?,用正己烷定容?.5 mL,供GC-MS分析。
沉積物樣品:準(zhǔn)確稱取10 g自然風(fēng)干后的樣品,加20 mL甲醇超聲提取20 min,殘?jiān)貜?fù)提取一次,合并兩次提取液。用事先處理好的銅粉,震蕩除硫,40 ℃旋轉(zhuǎn)蒸發(fā)至干,用2 mL環(huán)己烷溶解殘留物。過(guò)預(yù)先用10 mL環(huán)己烷活化的石墨化碳固相萃取小柱,10 mL環(huán)己烷-丙酮混合液(V環(huán)己烷∶V丙酮=1∶1)洗脫,收集洗脫液,氮?dú)獯蹈?。同水樣相同的衍生方法衍?30 min,氮?dú)獯蹈?,用正己烷定容?.5 mL,供GC-MS分析。
1.2.3 測(cè)定條件
色譜條件: 色譜柱為HP- 5 ms,30 m×0.25 mm(i. d.)×0.25 μm,柱溫120 ℃保持2 min,以 15 ℃/min 升至250 ℃,以5 ℃/min升至300 ℃,保持5 min;載氣高純氦氣,流量1.0 mL/min;進(jìn)樣口溫度250 ℃;進(jìn)樣方式不分流進(jìn)樣,不分流時(shí)間1 min,進(jìn)樣量1 μL。
質(zhì)譜條件:離子源為EI;離子源溫度230 ℃;四級(jí)桿溫度150 ℃;接口溫度280 ℃;溶劑延遲7 min;掃描方式選擇離子掃描(SIM);定性離子620、331、315;定量離子605。
1.3 質(zhì)量控制和質(zhì)量保證
過(guò)程空白樣品中沒(méi)有檢出目標(biāo)化合物雙酚A??瞻缀K屑訕?biāo)回收率為82.1%—90.2%,相對(duì)標(biāo)準(zhǔn)偏差為4.5%,以S/N=10計(jì),方法定量限為3 ng/L??瞻壮练e物中加標(biāo)回收率為72.8%—85.6%,相對(duì)標(biāo)準(zhǔn)偏差為6.9%,以S/N=10計(jì),方法定量限為0.3 μg/kg。樣品分析過(guò)程中,每個(gè)樣品平行測(cè)定2次,每隔 10個(gè)樣品,進(jìn)行QA/QC控制樣品分析,包括標(biāo)準(zhǔn)溶液、試劑空白、過(guò)程空白及加標(biāo)回收率。
2.1 黃河口海域表層海水中雙酚A的分布特征
圖2 2011年調(diào)水調(diào)沙前后黃河口區(qū)域海水中雙酚A含量的變化Fig.2 Variations of bisphenol A concentration in the surface waters at the Yellow River estuary station during the period of water-sediment regulation in 2011
黃河口13個(gè)站位海水中均有雙酚A檢出,濃度為13.6—64.0 ng/L(以調(diào)水調(diào)沙前測(cè)定的海水中雙酚A含量評(píng)估黃河口附近雙酚A的污染程度),平均濃度為26.2 ng/L,最高濃度出現(xiàn)在E2站位,最低濃度出現(xiàn)在D3站位。除B2、E2站位雙酚A濃度較高之外,其余站位的雙酚A濃度大約都在20 ng/L上下(圖2)。分布規(guī)律為離河口越近的站位雙酚A濃度越高,然后向遠(yuǎn)海逐漸降低。遠(yuǎn)岸站位海域比較寬闊,水交換條件比較好,雙酚A濃度較低(圖3)。
圖3 2011年調(diào)水調(diào)沙前后海水中雙酚A含量(ng/L)平面分布Fig.3 Horizontal distribution of bisphenol A concentration in the surface waters a during the period of water-sediment regulation in 2011
國(guó)內(nèi)外對(duì)水體中雙酚A的研究也多有報(bào)道。天津海河水體中雙酚A的濃度為19.1— 106 ng/L[7];珠江口表層水中雙酚A濃度為1.17—3.92 μg/L[8];冬季膠州灣中雙酚A的濃度為3.8—161.5 ng/L[9];松花江水雙酚A含量為13.0—206.5 ng/L[10];韓國(guó)西瓦湖水體雙酚A的濃度為6.7—37.8 ng/L[11];德國(guó)Rhine河中的雙酚A濃度為10—119 ng/L[4],黃河口海域海水中雙酚A濃度超過(guò)韓國(guó)西瓦湖,低于天津海河、珠江口、膠州灣、松花江和德國(guó)Rhine河,污染狀況屬于中等水平。
圖4 2011年調(diào)水調(diào)沙前后黃河口區(qū)域沉積物中雙酚A含量的變化Fig.4 Variations of bisphenol A concentration in the sediments at the Yellow River estuary station during the period of water-sediment regulation in 2011
2.2 黃河口海域沉積物中雙酚A的分布
沉積物是眾多污染物在環(huán)境中遷移轉(zhuǎn)化的載體、歸宿和蓄積庫(kù)。一些在水中溶解度較低的有機(jī)物質(zhì)易被顆粒物吸附, 沉降于河底并難以降解, 這在一定程度上對(duì)水體起到了吸附凈化作用, 但同時(shí)它將作為有機(jī)污染物長(zhǎng)期的潛在釋放源, 對(duì)水生生物和人體健康產(chǎn)生危害[12]。由于雙酚A水溶性小,污染物容易被吸附到懸浮體上,然后轉(zhuǎn)移到沉積物中,因此沉積物中的含量要遠(yuǎn)遠(yuǎn)高于水體。以調(diào)水調(diào)沙前沉積物中雙酚A的含量評(píng)估黃河口附近雙酚A的污染程度,黃河口沉積物中雙酚A濃度為0.559—2.73 μg/kg 干重,平均濃度為1.19 μg/kg,是海水中平均含量的48倍,靠近黃河入??趨^(qū)域的站位,雙酚A濃度比較高(圖4和圖5)。本研究的結(jié)果高于渤海表層沉積物(ND—1.44 μg/kg)[13]和韓國(guó)Yeongil灣(<1 μg/kg)中雙酚A濃度[14];低于膠州灣(0.7—5.4 μg/kg)[9]、長(zhǎng)江入??诩捌渑彽臇|海海域(0.72—13.2 μg/kg)[15]及韓國(guó)西瓦湖沉積物中雙酚A的濃度(1.3—11.2 μg/kg)[11];遠(yuǎn)遠(yuǎn)低于韓國(guó)馬山灣(2.7—50.3 μg/kg)[16]和韓國(guó)南部Masan灣中雙酚A濃度(2.70—50.3 μg/kg)[16],處于中等污染狀態(tài)。
2.3 黃河調(diào)水調(diào)沙對(duì)黃河河口區(qū)域雙酚A含量的影響
通過(guò)SPSS 13.0統(tǒng)計(jì)軟件LSD法對(duì)調(diào)水調(diào)沙前、中期、后3次水樣和沉積物的分析結(jié)果進(jìn)行差異顯著性分析后發(fā)現(xiàn),對(duì)于離入??谳^近的A2,B1,C1,D1站位來(lái)說(shuō),調(diào)水調(diào)沙后海水中雙酚A的濃度明顯增高(濃度范圍為73.2—207.0 ng/L),與調(diào)水調(diào)沙前差異極顯著(P<0.01),平均濃度增高了6倍;對(duì)于遠(yuǎn)岸的A3,B3,C3,D3,E3站位來(lái)說(shuō),調(diào)水調(diào)沙中(濃度范圍為50.7—143.0 ng/L)和調(diào)水調(diào)沙后(濃度范圍為18.0—108.0 ng/L)海水中雙酚A的濃度都與調(diào)水調(diào)沙前差異極顯著(P<0.01),調(diào)水調(diào)沙中期比調(diào)水調(diào)沙前平均濃度增高了5倍;調(diào)水調(diào)沙后比調(diào)水調(diào)沙前平均濃度增高了4倍。
黃河河口區(qū)域中雙酚A的污染來(lái)源主要是陸源輸入,調(diào)水調(diào)沙期間,巨大的徑流量攜帶了黃河上游大量的污染物,直接排放入海,應(yīng)該是造成調(diào)水調(diào)沙前后海水中雙酚A含量差異顯著的主要原因。
黃河調(diào)水調(diào)沙分為兩個(gè)階段,第一階段為小浪底水庫(kù)放水造峰;第二階段在小浪底水庫(kù)基本放空時(shí)三門(mén)峽等水庫(kù)放水,在落水期進(jìn)行異重流排沙與之搭接。調(diào)水調(diào)沙對(duì)下游河道沖刷作用主要是第一階段放水造峰形成[17]。沉積物中測(cè)得的雙酚A含量,調(diào)水調(diào)沙前與調(diào)水調(diào)沙中(濃度范圍為0.230—0.507 μg/kg)、調(diào)水調(diào)沙后(濃度范圍為0.094—0.274 μg/kg)差異極顯著(P<0.01),調(diào)水調(diào)沙后含量顯著降低;而離河口較遠(yuǎn)的站位,調(diào)水調(diào)沙前、中、后差異不顯著。沉積物中雙酚A濃度的差異性變化,可能有以下幾個(gè)方面原因:(1)河口附近的站位是黃河調(diào)水調(diào)沙的主要承泄區(qū),調(diào)水調(diào)沙過(guò)程是一個(gè)動(dòng)態(tài)的過(guò)程,調(diào)水調(diào)沙中期大量黃河上游淺層泥沙沖到河口區(qū)域,淺層泥沙雙酚A的污染程度比底層泥沙高(孫衛(wèi)玲等[18]研究表明:黃河泥沙懸浮顆粒物有機(jī)質(zhì)含量明顯高于底泥,粒徑也比底泥細(xì),所以雙酚A的吸附量明顯大),泥沙各個(gè)層面雙酚A含量的不均勻應(yīng)該是導(dǎo)致調(diào)水調(diào)沙中期比調(diào)水調(diào)沙后高很多的一個(gè)主要原因。(2)雙酚A的污染來(lái)源主要是陸源輸入,雙酚A水溶性小,在沉積物中的沉降富集是一個(gè)長(zhǎng)期的過(guò)程,其中還伴隨有泥沙的不斷運(yùn)移和懸浮物的沉降。調(diào)水調(diào)沙過(guò)程中,從上游攜帶下來(lái)的大量雙酚A懸浮于水中,經(jīng)過(guò)長(zhǎng)時(shí)間的沉降富集,表層泥沙中的雙酚A含量會(huì)比調(diào)水調(diào)沙后馬上測(cè)得的雙酚A濃度高,這應(yīng)該是調(diào)水調(diào)沙后測(cè)得的雙酚A含量顯著比調(diào)水調(diào)沙前低的一個(gè)主要原因。至于產(chǎn)生上述結(jié)果的具體原因,還需要進(jìn)一步進(jìn)行調(diào)查研究。
圖5 2011年調(diào)水調(diào)沙前后沉積物中雙酚A含量(μg/kg )平面分布Fig.5 Horizontal distribution of bisphenol A concentration in sediment during the period of water-sediment regulation in 2011
2.4 黃河口海域雙酚A潛在生態(tài)風(fēng)險(xiǎn)評(píng)估
雙酚A屬于內(nèi)分泌干擾物,且具有致癌性,當(dāng)水體中雙酚A濃度達(dá)到1 μg/L時(shí),能引起腹足類(lèi)Nucellalapillus雄性個(gè)體出現(xiàn)雌性化特征[19]。Duft等還報(bào)道了雙酚A對(duì)泥螺胚胎生成的4周半效應(yīng)濃度(EC50)為5.67 μg/kg,10%效應(yīng)濃度(EC10)僅為0.19 μg/kg[20]。本研究數(shù)據(jù)顯示,黃河口沉積物中雙酚A的平均濃度為1.19 μg/kg,因此河口附近的一些生物可能已經(jīng)受到了雙酚A的危害,這方面的研究還有待于進(jìn)一步開(kāi)展。
(1)黃河河口區(qū)域13個(gè)站位表層海水和沉積物中均有雙酚A檢出,以調(diào)水調(diào)沙前海水和沉積物中雙酚A的含量評(píng)估黃河口附近雙酚A的污染程度。海水中雙酚A濃度為13.6—64.0 ng/L,平均濃度為26.2 ng/L,分布規(guī)律為離河口越近的站位雙酚A濃度較高,然后向遠(yuǎn)海逐漸降低;沉積物中雙酚A的濃度為0.559—2.73 μg/kg 干重,平均濃度為1.19 μg/kg,是海水中平均含量的48倍,靠近黃河入??趨^(qū)域的站位,雙酚A濃度比較高。
(2)黃河河口區(qū)域海水中雙酚A濃度受調(diào)水調(diào)沙影響而呈現(xiàn)較大變化,調(diào)水調(diào)沙后的雙酚A濃度明顯提高,調(diào)水調(diào)沙前與調(diào)水調(diào)沙后水中的雙酚A濃度呈顯著性差異(P<0.01)。離入海口近的站位,沉積物中雙酚A濃度受調(diào)水調(diào)沙影響較大,調(diào)水調(diào)沙前與調(diào)水調(diào)沙中、后呈顯著性差異(P<0.01),調(diào)水調(diào)沙后含量顯著降低。
(3)所監(jiān)測(cè)13個(gè)站位中,所有站位的雙酚A濃度均超過(guò)10%效應(yīng)濃度(EC10),河口附近的一些生物可能已經(jīng)受到了雙酚A的危害,存在生態(tài)安全問(wèn)題。
[1] 蔣俊, 李秀艷. 水環(huán)境內(nèi)分泌干擾物雙酚A的降解研究進(jìn)展. 上海化工, 2009, 34(4): 25- 30.
[2] Craig D R, Brown E, Craft J A, Davies I M, Moffat C F, Pirie D, Robertson F, Stagg R M, Struthers S. Effects of sewage effluent and ethynyl oestradiol upon molecular markers of oestrogenic exposure, maturation and reproductive success in the sand goby (Pomatoschistusminutus, Pallas). Aquatic Toxicology, 2003, 62(2): 119- 134.
[3] 黃少嬋, 杭義萍. 液相色譜-質(zhì)譜法同時(shí)測(cè)定塑料制品中的雙酚A和四溴雙酚A. 色譜, 2010, 28(9): 863- 866.
[4] Staples C A, Dorn P B, Klecka G M, Oblock S T, Harris L R. A review of the environmental fate, effects, and exposures of bisphenol A. Chemosphere, 1998, 36(10): 2149- 2173.
[5] 李國(guó)英. 黃河第三次調(diào)水調(diào)沙試驗(yàn). 人民黃河, 2004, 26(10): 1- 8.
[6] 張大偉, 徐輝, 王剛. 黃河流域水污染問(wèn)題研究. 人民黃河, 2005, 25(10): 12- 13, 16.
[7] Jin X L, Jiang G B, Huang G L, Liu J F, Zhou Q F. Determination of 4-tert-octylphenol, 4-nonylphenol and bisphenol A in surface waters from the Haihe River in Tianjin by gas chromatography-mass spectrometry with selected ion monitoring. Chemosphere, 2004, 56(11): 1113- 1116.
[8] 董軍, 李向麗, 梁銳杰. 珠江口地區(qū)水體中雙酚A污染及其與環(huán)境因子的關(guān)系. 生態(tài)與農(nóng)村環(huán)境學(xué)報(bào), 2009, 25(2): 94- 97.
[9] 李正炎, 傅明珠, 王馨平, 高會(huì)旺. 冬季膠州灣及其周邊河流中酚類(lèi)環(huán)境激素的分布特征. 中國(guó)海洋大學(xué)學(xué)報(bào): 自然科學(xué)版, 2006, 36(3): 451- 455.
[10] 張照韓, 馮玉杰, 高鵬, 孫清芳, 任南琪. 松花江水內(nèi)分泌干擾物及雌激素活性調(diào)查. 哈爾濱工業(yè)大學(xué)學(xué)報(bào), 2011, 43(12): 58- 62.
[11] 李正炎, Li D H. 西瓦湖及其鄰近河流中雙酚A的濃度分布. 海洋湖沼通報(bào), 2004, (2): 30- 35.
[12] 閻波, 楊衛(wèi)芳, 李燁, 李勁. 洹河底泥中有機(jī)污染物調(diào)查與分析. 環(huán)境科學(xué)與技術(shù), 2004, 27(1): 44- 46.
[13] 邵亮, 邊海燕, 李正炎. 夏季渤海表層沉積物中壬基酚和雙酚A的分布特征與潛在生態(tài)風(fēng)險(xiǎn). 海洋環(huán)境科學(xué), 2011, 30(2): 158- 161.
[14] Kon C H, Khim J S, Villeneuve D L, Kannan K, Giesy J P. Characterization of trace organic contaminants in marine sediment from Yeongil Bay, Korea: 1. Instrumental analyses. Environmental Pollution, 2006, 142(1): 39- 47.
[15] Bian H Y, Li Z Y, Liu P, Pan J F. Spatial distribution and deposition history of nonylphenol and bisphenol A in sediments from the Changjiang River (Yangtze River) Estuary and its adjacent East China Sea. Acta Oceanologica Sinica, 2010, 29(5): 44- 51.
[16] Khim J S, Kannan K, Villeneuve D L, Koh C H, Giesy J P. Characterization and distribution of trace organic contaminants in sediment from Masan Bay, Korea: 1. Instrumental analysis. Environmental Science and Technology, 1999, 33(23): 4199- 4205.
[17] 齊璞, 曲少軍, 孫贊盈. 優(yōu)化小浪底水庫(kù)調(diào)水調(diào)沙運(yùn)用方式的建議. 人民黃河, 2012, 34(1): 5- 8.
[18] 孫衛(wèi)玲, 倪晉仁, 郝鵬鵬, 孫莉英. 泥沙對(duì)雙酚A的吸附及其影響因素研究. 環(huán)境科學(xué)學(xué)報(bào), 2004, 24(6): 975- 981.
[19] Oehlmann J, Schulte-Oehlmann U, Tillmann M, Tillmann B. Effects of endocrine disruptors on Prosobranch Snails (Mollusca: Gastropoda) in the Laboratory. Part I: Bisphenol A and Octylphenol as Xeno-Estrogens. Ecotoxicology, 2000, 9(6): 383- 397.
[20] Duft M, Schulte-Oehlmann U, Weltje L, Tillmann J, Oehlmann J. Stimulated embryo production as a parameter of estrogenic exposure via sediments in the freshwater mudsnailPotamopyrgusantipodarum. Aquatic Toxicology, 2003, 64(4): 437- 449.
Effect of water-sediment flushing events on bisphenol A contamination in the Yellow River estuary
ZOU Rongjie1,2,DENG Xuxiu1,2, WANG Bin1, XU Yingjiang1, GONG Xianghong1, LIU Huihui1,TIAN Xiuhui1, ZHANG Huawei1,2, REN Chuanbo1,2, LI Jiawei1,2, Lü Zhenbo1,*
1ShandongMarineResourceandEnvironmentResearchInstitute,ShandongProvinceKeyLaboratoryofRestorationforMarineEcology,Yantai264006,China2ShanshuiMarineProductsCO.,LTD,Yantai264006,China
Bisphenol A is an environmental endocrine disruptor, and is regarded as the third most important global environmental problem that needs to be solved, after the Ozone hole and global warming. It also features on the European Union blacklist of priority pollutants and international organizations have confirmed bisphenol A as a permanent organic pollutant. Bisphenol A is introduced to the environment mainly through the production of low concentration emissions in manufacturing processes, or through the manufacture or use of disordered emissions. Research to date indicates that bisphenol A disturbs normal hormone secretion of humans and animals, and that it can lead to metabolic disorders because of its known ability to mimic estrogen. There is therefore much concern about its distribution patterns in the environment. The Yellow River estuary is located in the northeast of Shandong Province, on the southern side of the Bohai Sea. The Yellow River estuary region is rich in fine sediments, transported and deposited by the Yellow River, and, as a very active land-ocean interaction zone, is an ideal region for ecological environmental monitoring research. The Yellow River Conservancy Commission has implemented water and sediment regulation and there have been 13 water-sediment flushing events between 2002 and 2011, in an attempt to solve the problem of sediment deposition in the lower Yellow River. Water-sediment regulation is seen as the only way to improve the time-space imbalance between water and sediment, through washing reservoir and river sediment from the Yellow River into the sea. According to statistics, a total of 50.912 billion cubic meters of water have been discharged to the downstream reaches, and 762 million tons sediment have been washed into the sea in these 13 periods of water-sediment flushing. Since the 1990s, the Yellow River has been ranked second in China′s main rivers in terms of its water pollution because of a rapid increase in discharges from land. These pollutants may damage the marine environment once discharged from the Yellow River estuary into the sea.Surveys were carried out in the Yellow River estuary and adjacent areas during one of the water-sediment flushing events (June and July 2011) to evaluate the effects of the flushing on bisphenol A contamination. The evaluation of bisphenol A pollution was based on the concentrations of bisphenol A before water-sediment flushing in the area just upstream of the Yellow River estuary. Results showed that bisphenol A was detected in surface water at all 13 sampling sites. Surface water concentrations of bisphenol A ranged from 13.6 to 64.0 ng/L, and the average concentration was 26.2 ng/L. Bisphenol A concentrations in the sediments were higher, and ranged from 0.559 to 2.73 μg/kg dry weight, with an average concentration of 1.19 μg/kg. Based on these figures, the average concentration of bisphenol A in the sediments was 48 times higher than the average concentration in surface water. Therefore, the water-sediment flushing events had a significant effect on the concentrations of bisphenol A in the surface waters of the Yellow River estuary, during which the contamination of bisphenol A increased sharply. There was a highly significant relationship between bisphenol A concentrations before and after the water-sediment flushing event (P< 0.01), which indicated that pollution inputs from land were a major source of bisphenol A pollution in the Yellow River estuary. Bisphenol A concentrations in sediments sampled before and after the water-sediment flushing event at the coastal station of the Yellow River Estuary were significantly different (P< 0.01). Results show that the contamination decreased significantly after water-sediment flushing. Results suggest that the Yellow River estuary is polluted by bisphenol A, which may compromise the ecological integrity of the area.
bisphenol A; the Yellow River estuary; water-sediment flushing events
海洋公益性行業(yè)科研專項(xiàng)經(jīng)費(fèi)資助項(xiàng)目(200805031,200905019,201105013);山東省水生動(dòng)物營(yíng)養(yǎng)與飼料“泰山學(xué)者”崗位資助項(xiàng)目(2006-)
2013- 04- 01;
日期:2014- 03- 25
10.5846/stxb201304010569
*通訊作者Corresponding author.E-mail: ytlvzhenbo@163.com
鄒榮婕,鄧旭修,王斌,徐英江,宮向紅,劉慧慧,田秀慧,張華威,任傳博,李佳蔚, 呂振波.黃河調(diào)水調(diào)沙對(duì)黃河口海域雙酚A的影響.生態(tài)學(xué)報(bào),2015,35(2):263- 269.
Zou R J,Deng X X, Wang B, Xu Y J, Gong X H, Liu H H,Tian X H, Zhang H W, Ren C B, Li J W, Lü Z B.Effect of water-sediment flushing events on bisphenol A contamination in the Yellow River estuary.Acta Ecologica Sinica,2015,35(2):263- 269.