国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

大氣CO2濃度升高對亞洲玉米螟生長發(fā)育及繁殖的影響

2015-03-10 10:29:57楊群芳解海翠王振營何康來
生態(tài)學(xué)報 2015年3期
關(guān)鍵詞:歷期玉米螟成蟲

趙 磊, 楊群芳, 解海翠, 王振營, 何康來,*

1 四川農(nóng)業(yè)大學(xué), 成都 611130 2 中國農(nóng)業(yè)科學(xué)院植物保護研究所, 植物病蟲害生物學(xué)國家重點實驗室, 北京 100193

大氣CO2濃度升高對亞洲玉米螟生長發(fā)育及繁殖的影響

趙 磊1,2, 楊群芳1, 解海翠2, 王振營2, 何康來2,*

1 四川農(nóng)業(yè)大學(xué), 成都 611130 2 中國農(nóng)業(yè)科學(xué)院植物保護研究所, 植物病蟲害生物學(xué)國家重點實驗室, 北京 100193

大氣CO2濃度升高影響寄主植物的營養(yǎng)而間接影響節(jié)肢動物外,還直接影響許多昆蟲的生長發(fā)育和繁殖。為探討大氣CO2濃度升高對亞洲玉米螟Ostriniafurnacalis(Guenée)生長發(fā)育和繁殖的影響,在CDCC- 1型密閉式動態(tài)CO2氣室內(nèi)研究了當(dāng)前大氣CO2濃度375 μl/L及大氣CO2濃度分別升高0.5倍和1倍,即達(dá)到550 μL/L和750 μL/L條件下人工飼料飼養(yǎng)亞洲玉米螟實驗種群生命表及其營養(yǎng)效應(yīng)指標(biāo)。結(jié)果表明,大氣CO2濃度分別升高到550μL/L和750 μL/L時,亞洲玉米螟幼蟲成活率分別降低3.0%和8.9%;幼蟲、蛹和成蟲體重則沒有顯著差異;在750 μL/L CO2濃度下幼蟲和蛹?xì)v期分別顯著延長13.1%和25.8%。雖然單雌產(chǎn)卵量和凈增值率(R0)在大氣高CO2濃度下有增加趨勢,但未達(dá)到顯著性差異。與當(dāng)前大氣CO2濃度相比,高CO2濃度下玉米螟的取食量分別增加9.1%和34.0%,排糞量分別增加42.3%和42.0%。

亞洲玉米螟 ;大氣二氧化碳;直接影響;生命表

大氣CO2濃度升高對昆蟲的影響及其對這一變化的響應(yīng)是全球氣候變化領(lǐng)域研究的熱點問題之一。一方面,CO2是植物光合作用的主要原料之一,其濃度升高對植物生長及生理特性產(chǎn)生顯著影響[1- 2],如光合效率提高,促進(jìn)植物生長,葉片中C/N升高,次生代謝及化學(xué)防御物質(zhì)發(fā)生改變,影響植食性昆蟲食物的質(zhì)量,進(jìn)而影響植食性昆蟲的生長發(fā)育和繁殖等[3- 4]。另一方面,大氣中高濃度CO2直接影響昆蟲的呼吸和生理代謝以及某些與化學(xué)通訊相關(guān)的行為改變[5- 8]。高CO2濃度(750 μL/L)環(huán)境中生長的棉鈴蟲Helicoverpaarmigera(Hbn.) 幼蟲體內(nèi)營養(yǎng)物質(zhì)顯著下降,取食量、排糞量明顯增加,生長發(fā)育延緩,體重減輕,內(nèi)稟增長力和成活率下降[9]。禾谷縊管蚜在高濃度CO2直接影響下成蚜的繁殖力增強,生長速率明顯加快[10],而麥長管蚜Sitobionavenae(F.) 體內(nèi)乙酰膽堿酯酶活性與蚜蟲對報警信息素的響應(yīng)呈顯著負(fù)相關(guān),同時超氧化物歧化酶和乙酰膽堿酯酶活性提高[11]。顯然,不同種類的昆蟲對大氣CO2濃度升高的響應(yīng)各異。

亞洲玉米螟Ostriniafurnacalis(Guenée)是玉米上的主要害蟲,常年造成玉米減產(chǎn)10%左右,且嚴(yán)重危害頻發(fā),導(dǎo)致玉米損失30%以上甚至絕收[12]。有關(guān)大氣CO2濃度升高對玉米螟生長發(fā)育的直接影響還未見報道。本文研究了高CO2濃度下亞洲玉米螟實驗種群的生長發(fā)育,測定其個體營養(yǎng)效應(yīng)指標(biāo),旨在明確高CO2濃度下對玉米螟生長發(fā)育及繁殖的影響,為未來CO2濃度升高的環(huán)境下更深入了解亞洲玉米螟發(fā)生的生態(tài)學(xué)機制及其測報、綜合治理等提供依據(jù)。

1 材料與方法

1.1 供試?yán)ハx

實驗所用亞洲玉米螟為采自山東夏津玉米田卵塊,孵化后在室內(nèi)(28±1)℃,80% RH,光照周期L∶D =16h∶8 h條件下用人工飼料飼養(yǎng)3代,建立室內(nèi)種群。飼養(yǎng)技術(shù)及人工飼料參照新7號飼料配方及飼養(yǎng)方法[13]。

1.2 試驗方法

1.2.1 試驗處理

不同CO2濃度試驗在密閉式動態(tài)CO2人工氣候箱(CDCC- 1型,寧波賽福PRX- 450D-CO2)內(nèi)進(jìn)行。試驗設(shè)置3個CO2濃度處理,即375 μL/L(當(dāng)前大氣CO2濃度)、(550±50) μL/L和(750±50) μL/L(模擬大氣CO2濃度分別升高0.5倍和1.0倍)。人工氣候箱內(nèi)溫度:白天(28±1)℃,夜間(27±1)℃;濕度75%—85%;光照周期L∶D=16h∶8h(L, 6:00—22:00; D, 22:00—6:00)。亞洲玉米螟幼蟲飼養(yǎng)容器為直徑9 cm的塑料培養(yǎng)皿,上蓋有直徑4 cm 圓孔,并以70目不銹鋼紗網(wǎng)封閉圓孔。

1.2.2 亞洲玉米螟種群生命表參數(shù)及死亡率測定

將亞洲玉米螟初孵幼蟲接入配好的人工飼料[13],遂即放入不同CO2濃度人工氣候箱。每個CO2濃度處理中,用培養(yǎng)皿單頭飼養(yǎng)60頭,重復(fù)3次。每天定時更換人工飼料并記錄亞洲玉米螟的齡期和死亡數(shù)?;己髮⒂贾糜谙鄳?yīng)CO2濃度人工氣候箱中(溫度(25±1) ℃;RH 85%—90%;光照周期L∶D=16h∶8 h),每天觀察各CO2濃度下成蟲的羽化情況,將當(dāng)天羽化的成蟲按1∶1配對置于養(yǎng)蟲籠(11 cm× 8 cm× 8 cm)中,并給與3%的蔗糖水喂養(yǎng)。每天定時更換產(chǎn)卵紙并記錄產(chǎn)卵量。根據(jù)飼養(yǎng)數(shù)據(jù)資料,計算亞洲玉米螟在不同CO2濃度下的實驗種群生命表參數(shù)[14- 16](表1)。

1.2.3 亞洲玉米螟生長發(fā)育測定

將亞洲玉米螟初孵幼蟲接入配好的人工飼料上,遂即放入不同CO2濃度人工氣候箱。每個CO2濃度處理中,用培養(yǎng)皿單頭飼養(yǎng)20頭幼蟲,重復(fù)3次,共在9個人工氣候箱進(jìn)行。每天觀察記錄幼蟲的發(fā)育進(jìn)度參數(shù),即幼蟲發(fā)育歷期(幼蟲孵化當(dāng)天至化蛹前的天數(shù))、幼蟲體重(化蛹前最大體重);蛹?xì)v期(化蛹當(dāng)天到羽化前的天數(shù))、蛹重(化蛹后第2天稱量蛹重);成蟲歷期(羽化后到成蟲死亡的天數(shù))、成蟲體重(羽化當(dāng)天取食或飲水前的體重)。同時記錄各發(fā)育階段及每天玉米螟的存活數(shù)。

1.2.4 亞洲玉米螟幼蟲營養(yǎng)效應(yīng)測定

在測定不同CO2濃度下亞洲玉米螟幼蟲生長發(fā)育狀況的同時,每天9:00定時更換人工飼料,并稱量新鮮及取食后飼料的重量,收集幼蟲每天排出的糞便和取食剩余飼料,用烘箱烘干(80 ℃,72 h)至恒重并稱量干重。參照Waldbauer[17]氏昆蟲食物消耗利用率方法,根據(jù)幼蟲期取食量和排糞量計算近似消化率(AD)、毛轉(zhuǎn)化率(ECI)、凈轉(zhuǎn)化率(ECD)、相對消耗率(PCR)、相對生長率(PGR)、平均相對生長速率(MRGR)(表2)。

表1 種群生命表參數(shù)計算公式

Table 1 Formulations for calculating population features from life table

種群參數(shù)Populationparameters計算公式*Formulationsforestimationofparameters凈增殖率R0NetreproductiverateR0=Σlxmx平均世代周期TMeangenerationtimeT=Σxlxmx/Σlxmx內(nèi)稟增長力rmInnaterateofincreaserm=lnR0/T周限增長率λFiniteincreaserateλ=erm種群加倍時間tDoublepopulationtimet=ln2/rm

*x為時間間隔(d);lx為在x時期開始時的存活率;mx為在x時期間平均每雌產(chǎn)雌數(shù)

表2 營養(yǎng)效應(yīng)指標(biāo)計算公式Table 2 The calculations for index of food utilization

**Q為幼蟲期取食量(mg);F為幼蟲期排糞量(mg);W1為初孵幼蟲體重(mg),W2為幼蟲最終體重(mg);P為幼蟲每天平均重量;t1為幼蟲歷期(d)

1.2.5 數(shù)據(jù)處理

各處理間差異顯著性采用方差分析,平均數(shù)比較采用LSD測驗。數(shù)據(jù)分析前,先進(jìn)行適當(dāng)?shù)臄?shù)據(jù)轉(zhuǎn)換(百分?jǐn)?shù)進(jìn)行反正弦轉(zhuǎn)換,發(fā)育歷期進(jìn)行自然對數(shù)轉(zhuǎn)換),以滿足方差分析要求。統(tǒng)計分析計算應(yīng)用SAS9.0軟件進(jìn)行。

2 結(jié)果分析

2.1 大氣CO2濃度對亞洲玉米螟種群生命表參數(shù)及死亡率的影響

大氣CO2濃度分別升高0.5倍和1.0倍處理下成蟲的單雌產(chǎn)卵量分別為191.5粒和227.1粒,比對照177.4粒增加了7.9%和28.1%,但各濃度間并無顯著差異(df=2,113;F=1.06;P=0.3483)。根據(jù)不同CO2濃度下亞洲玉米螟的實驗種群生命表計算出各主要生命參數(shù)(表3),雖然在大氣高CO2濃度(750 μL/L)處理下凈增值率比對照上升10.2%,但各處理間差異不顯著。由于平均世代周期顯著延長5.3%和11.7%,而使內(nèi)稟增長力和周限增長率顯著降低,種群加倍天數(shù)顯著延長9.1%。

表3 不同大氣CO2濃度下亞洲玉米螟種群生命參數(shù)Table 3 Population features calculated from life tables of Asian corn borer reared under different levels of atmospheric CO2

R0: df=2,110,F=0.61,P=0.5456;T: df=2,109,F=12.21,P<0.0001;rm: df=2,109,F=4.07,P=0.0197;λ: df=2,109,F=4.13,P=0.0187;t: df=2,109,F=3.19,P=0.0449; *同列數(shù)字后字母不同者表示處理間差異顯著(LSD,P<0.05)

圖1 不同大氣CO2濃度下亞洲玉米螟累計死亡率 Fig.1 The cumulative mortality of Ostrinia furnacalis under different levels of atmospheric CO21齡:df=2,6, F=131.41, P<0.0001; 2齡:df=2,6, F=72.25, P<0.0001; 3齡:df=2,6, F=31.62, P=0.0007; 4齡:df=2,6, F=15.39, P=0.0043; 5齡:df=2,6, F=15.61, P=0.0042; 蛹:df=2,6, F=21.81, P=0.0018

根據(jù)亞洲玉米螟在各個發(fā)育階段的死亡數(shù),繪制了不同大氣CO2濃度下的累計死亡率曲線(圖1)。高CO2濃度環(huán)境下亞洲玉米螟各齡期的累計死亡率均顯著高于當(dāng)前大氣CO2濃度。此外,大氣CO2濃度升高對亞洲玉米螟死亡率的影響因其所處蟲態(tài)不同而異。高CO2濃度750 μL/L濃度環(huán)境下3齡以前幼蟲死亡率顯著高于當(dāng)前大氣CO2濃度;3齡至蛹期各處理幼蟲死亡率變化不大。說明亞洲玉米螟在3齡以后對高濃度CO2的耐受能力增強。

2.2 大氣CO2濃度對亞洲玉米螟生長發(fā)育的影響

2.2.1 發(fā)育歷期

隨大氣CO2濃度的增加,亞洲玉米螟幼蟲、蛹和成蟲的發(fā)育歷期都有延緩趨勢(表4)。與當(dāng)前大氣CO2濃相比,在550 μL/L大氣CO2濃度下飼養(yǎng)亞洲玉米螟,其幼蟲和蛹?xì)v期分別延長10.3%和7.6%,但沒有顯著差異,而當(dāng)大氣CO2濃度升高1.0倍時,幼蟲和蛹?xì)v期分別顯著延長了13.1%和25.7%,而成蟲壽命與對照差異不顯著。這說明大氣CO2濃度升高對亞洲玉米螟幼蟲和蛹的發(fā)育速度有抑制作用。

2.2.2 個體體重

隨大氣CO2濃度的增加,亞洲玉米螟幼蟲、蛹和成蟲的體重有下降的趨勢(表5)。雖然在大氣CO2濃度分別升高0.5倍和1.0倍下飼養(yǎng)的亞洲玉米螟與在當(dāng)前大氣CO2濃度相比,幼蟲體重分別降低5.8%和7.5%,蛹重分別降低3.7%和4.8%,成蟲體重分別降低6.7%和1.7%,但均差異不顯著。然而,種群的幼蟲平均相對生長率顯著低于對照(df= 2,82;F= 4.22,P= 0.0187)(表6)。

表4 不同大氣CO2濃度下亞洲玉米螟幼蟲、蛹和成蟲的發(fā)育歷期

Table 4 Durations of larva, pupa, and adult development stages ofOstriniafurnacalisreared under different levels of atmospheric CO2

CO2濃度(μL/L)CO2concentration發(fā)育歷期Developmenttime/d幼蟲Larva蛹Pupa成蟲Adult37514.5±0.2b6.6±0.1b7.4±0.255016.0±0.5ab7.1±0.2b7.2±0.175016.4±0.8a8.3±0.3a7.5±0.2

幼蟲期: df= 2,147,F= 3.35,P= 0.0411; 蛹期: df=2, 143,F= 20.80,P<0.0001; 成蟲期: df= 2,141,F= 0.93,P= 0.3996; 同列數(shù)字后字母不同者表示經(jīng)LSD測驗差異顯著(P<0.05)

表5 不同大氣CO2濃度下亞洲玉米螟幼蟲、蛹和成蟲體重

Table 5 Larva, pupa, and adult weights ofOstriniafurnacalisreared under different levels of atmospheric CO2

CO2濃度(μL/L)CO2concentration個體體重Bodyweight/mg幼蟲Larva蛹Pupa成蟲Adult37579.2±2.559.8±2.138.0±1.955074.6±2.257.5±1.935.5±1.475073.2±2.156.9±1.737.4±1.2

幼蟲: df=2,153,F(xiàn)= 1.78,P= 0.1721; 蛹: df=2,148,F=0.59,P= 0.5538; 成蟲: df= 2,146,F= 0.75,P= 0.4764

2.3 高CO2濃度對亞洲玉米螟幼蟲營養(yǎng)效應(yīng)

與當(dāng)前大氣CO2濃度相比,當(dāng)大氣CO2濃度分別升高0.5倍和1.0倍時,亞洲玉米螟幼蟲的取食量和排糞量都顯著增加,取食量分別增加9.1%和34.0%,排糞量分別增加42.3%和42.0%(表6)。但對食物的近似消化率、毛轉(zhuǎn)化率、凈轉(zhuǎn)化率及相對消耗率、相對生長率與對照比較并無顯著差異。

表6 不同大氣CO2濃度下亞洲玉米螟幼蟲的營養(yǎng)效應(yīng)Table 6 The consumption and utilization of food by Ostrinia furnacalis under different levels of atmospheric CO2

取食量: df= 1, 57,F= 5.42,P= 0.0234; 排糞量: df= 2, 82,F=17.31,P<0.0001; AD: df=2, 82,F= 1.31,P= 0.2784; ECI: df=2, 82,F= 1.08,P= 0.3458; ECD: df= 2, 75,F= 1.27,P= 0.2932; RCR: df= 2, 82,F= 0.23,P= 0.7949; RGR: df= 2, 82,F= 0.90,P= 0.4071; *同列數(shù)字后字母不同者表示經(jīng)LSD測驗差異顯著(P<0.05);

AD: Approximate digestibility,ECI: Efficiency of conversion of ingested food,ECD: Efficiency of conversion of digested food,RCR: Relative consumption rate,RGR: Relative growth rate,MRGR: Mean relative growth rate

3 討論

目前研究大氣CO2濃度升高對于昆蟲的影響多數(shù)測試幼蟲取食在設(shè)定未來大氣CO2濃度升高0.5倍或1倍(通常約500—700 μL/L)環(huán)境下生長的寄主植物組織時的生長、發(fā)育和繁殖以及存活率的改變[18- 21],這必然受到寄主植物因大氣CO2濃度升高而產(chǎn)生的營養(yǎng)代謝和次生防御代謝變化而引起其作為昆蟲食物質(zhì)量的改變的影響,且由于研究者所采用的昆蟲種類及寄主植物的不同,其結(jié)果往往各異。如大氣高CO2濃度下生長的棉鈴對棉鈴蟲的適合度下降[22];蛺蝶幼蟲Junoniacoenia取食大氣高CO2濃度下長葉車前Plantagolanceolata的死亡率增加[23];麥長管蚜在大氣高CO2濃度影響下產(chǎn)卵期提前,繁殖力顯著提高[24];對5種蚜蟲及其寄主在大氣高CO2濃度的研究表明,Acyrthosiphonpisum(Harris)在ViciafabaL.上的種群下降,Myzuspersicae(Sulzer)在SolanumdulcamaraL.上的種群上升,而AphisneriiBoyer de Fonscolombe在AsclepiassyriacaL.、AphisoenotheraeOestlund 在OenotherabiennisL.和Aulacorthumsolani(Kaltenbach)在NicotianasylvestrisSpeg. & Comes上的種群沒有變化[25]。以室外大氣CO2濃度升高(700 μL/L)條件下種植的甜菜BetavulgarisL.在相同CO2濃度培養(yǎng)箱中飼喂甜菜夜蛾Spodopteraexigua(Hbn.) 幼蟲,其存活率顯著高于在當(dāng)前大氣CO2濃度(350 μL/L)培養(yǎng)箱中的飼喂處理[26];而當(dāng)幼蟲在大氣高CO2濃度且高肥條件下生長的棉苗上取食,其存活率比對照下降50%,雌蟲存活率是雄蟲的2倍[27];將粉紋夜蛾Thichoplusiani(Hbn.)初孵幼蟲接于生長在大氣高CO2濃度條件下的菜豆Phaseoluslunata上取食,其存活率與正常大氣環(huán)境下沒有顯著差異[28];用人工飼料在高CO2濃度下飼養(yǎng)棉鈴蟲,存活率沒有影響[7]。然而,本研究結(jié)果顯示,大氣CO2濃度升高條件下取食人工飼料的亞洲玉米螟幼蟲的存活率下降。此外,大齡幼蟲對CO2的適應(yīng)性要高于低齡幼蟲。這可能與不同齡期幼蟲的生活習(xí)性和棲息的微生態(tài)環(huán)境有關(guān),即大齡幼蟲尤其是4—5齡幼蟲蛀莖危害[29],蛀孔內(nèi)為相對密閉的環(huán)境,其CO2濃度應(yīng)該高于外界大氣CO2濃度。由此可見,大氣CO2濃度升高對植食性昆蟲生存率的影響因種類、不同發(fā)育時期及其寄主植物的不同而異。

CO2亦是昆蟲的呼吸代謝產(chǎn)物,環(huán)境中高濃度CO2會直接影響昆蟲的呼吸和生理代謝,對昆蟲生長發(fā)育的各個階段可能產(chǎn)生影響,不同昆蟲及處理方式所產(chǎn)生的影響亦各異。短時間高濃度CO2處理可使Blatellagermanica幼蟲發(fā)育歷期延長[30];與CO2處理可使Achetadomesticus蟲體重減輕相比,短暫的大氣高濃度CO2處理對其生長和體重幾乎沒有不利影響[31- 32];與當(dāng)前大氣相比,CO2濃度升高1倍下棉鈴蟲幼蟲發(fā)育歷期延長,體重沒有顯著影響[9]。甜菜夜蛾幼蟲在大氣高CO2濃度且高肥條件下生長的棉苗上取食,其發(fā)育歷期延長,體重顯著下降[27]。將粉紋夜蛾幼蟲在生長于大氣高CO2濃度條件下的菜豆上取食,其蛹重比正常大氣環(huán)境下顯著降低28]。本研究顯示隨大氣CO2濃度升高亞洲玉米螟幼蟲期和蛹期延長,而成蟲壽命與對照差異不顯著;各蟲態(tài)蟲體重差異不顯著,但幼蟲平均相對生長率顯著降低。

短時間反復(fù)CO2處理或麻醉對于昆蟲繁殖力的影響已有多方面的研究報道,如延緩或阻礙交尾[33- 35]、降低雌蟲受精頻率或雄蟲授精能力[36]、抑制卵巢管中卵母細(xì)胞的發(fā)育[37]、雌蟲所產(chǎn)卵的雌雄比降低[38]等。一些昆蟲在高CO2濃度處理0.5—1 h可使產(chǎn)卵量和孵化率降低,若反復(fù)處理甚或麻醉影響顯著提高[39- 42]。模擬當(dāng)前大氣CO2濃度升高1倍條件下飼養(yǎng)的棉鈴蟲單雌產(chǎn)卵量增加7.9%[9]。本研究顯示隨大氣CO2濃度升高亞洲玉米螟的產(chǎn)卵量有增加趨勢,世代周期顯著延長,內(nèi)稟增長力顯著下降。說明未來CO2濃度升高可能不利于亞洲玉米螟種群發(fā)展。

高CO2濃度對昆蟲的影響具有長期的、多世代的作用,在長期的影響下存在著很大的不可知性[43],需要連續(xù)多代的持久觀察研究。Awmack和Docherty等研究顯示,高CO2處理一個世代,昆蟲的歷期幾乎沒有變化,而連續(xù)處理多個世代后,其生長發(fā)育受到極大的影響[44- 45];Brooks研究連續(xù)3個世代的葉甲Gasrophysauiridula對高濃度CO2(600 μL/L)的響應(yīng)顯示第二代雌蟲的產(chǎn)卵量比第一代少30%[46];而Yin 等 研究在高CO2濃度下以人工飼料飼養(yǎng)連續(xù)3個世代的棉鈴蟲,結(jié)果顯示CO2對其世代影響不明顯[47]。而本實驗進(jìn)僅研究了高CO2濃度(550,750 μL/L)下,亞洲玉米螟一個世代的生長發(fā)育、繁殖及種群生命表對未來高CO2濃度的響應(yīng),對亞洲玉米螟連續(xù)多個世代是否對高CO2濃度存在同樣或更大的響應(yīng)還有待進(jìn)一步研究。

致謝:感謝美國農(nóng)業(yè)部農(nóng)業(yè)研究處作物遺傳育種研究室昆蟲專家(USDA-ARS,Crop Genetics and Breeding Research Unit)、喬治亞大學(xué)教授Xinzhi Ni博士修改英文摘要。

[1] Dijkstra P, Hymus G, Colavito D, Vieglais D A, Cundari C M, Johnson D P, Hungate B A, Hinkle C R, Drake B G. Elevated atmospheric CO2stimulates aboveground biomass in a fire-regenerated scrub-oak ecosystem. Global Change Biology, 2002, 8(1): 90- 103.

[2] 馬祥慶, 劉愛琴, 邵文, 康國慶. 大氣CO2增加對森林生態(tài)系統(tǒng)影響研究綜述. 福建林學(xué)院學(xué)報, 1996, 16(2): 177- 182.

[3] Lindroth R L, Kinney K K, Platz C L. Responses of deciduous trees to elevated atmospheric CO2: productivity, phytochemistry, and insect performance. Ecology, 1993, 74(3): 763- 777.

[4] Bazzaz F A. The response of natural ecosystems to the rising global CO2levels. Annual Review of Ecology and Systematic, 1990, 21: 167- 196.

[5] Stange G, Wong C. Moth response to climate. Nature, 1993, 365(6448): 699- 700.

[6] Stange G. Effects of changes in atmospheric carbon dioxide on the location of hosts by the moth,Cactoblastiscactorum. Oecologia, 1997, 110(4): 539- 545.

[7] 鄧永學(xué), 趙志模, 李隆術(shù). 高濃度CO2氣調(diào)防治谷蠹及雜擬谷盜的研究. 糧食儲藏, 2002, 31(1): 43- 56.

[8] Nicolas G, Sillans D. Immediate and latent effects of carbon dioxide on insects. Annual Review of Entomology, 1989, 34: 97- 116.

[9] 吳剛, 陳法軍, 戈峰. CO2濃度升高對棉鈴蟲生長發(fā)育和繁殖的直接影響. 生態(tài)學(xué)報, 2006, 26(6): 1732- 1738.

[10] Xing G M, Zhang J, Liu J, Zhang X Y, Wang G X, Wang Y F. Impacts of atmospheric CO2concentrations and soil water on the population dynamics, fecundity and development of the bird cherry-oat aphid. Entomology, 2003, 31(5): 499- 514.

[11] Sun Y C, Su J W, Ge F. Elevated CO2reduces the response ofSitobionavenae(Homoptera: Aphididae) to alarm pheromone. Agriculture, Ecosystems & Environment, 2010, 135(1/2): 140- 147.

[12] 王振營, 魯新, 何康來, 周大榮. 我國研究亞洲玉米螟歷史、現(xiàn)狀與展望. 沈陽農(nóng)業(yè)大學(xué)學(xué)報, 2000, 31(5): 402- 412.

[13] 周大榮, 王玉英, 劉寶蘭, 劇正理. 玉米螟人工大量繁殖研究: I. 一種半人工飼料及其改進(jìn). 植物保護學(xué)報, 1980, 7(2): 113- 122.

[14] Laing J E. Life history and life table ofTetranychusurticaeKoch. Acarologia, 1969, 11(1): 32- 42.

[15] Carey J R. Applied Demography for Biologists: with Special Emphasis on Insects. Oxford: Oxford University Press, 1993.

[16] 張孝義. 昆蟲生態(tài)及預(yù)測預(yù)報. 北京: 中國農(nóng)業(yè)出版社, 2002.

[17] Waldbauer G P. The consumption and utilization of food by insects. Advance Insect Physiology, 1968, 5: 229- 288.

[18] Coviella C E, Trumble J T. Effects of elevated atmospheric carbon dioxide on insect-plant interactions. Conservation Biology, 1999, 13(4): 700- 712.

[19] Hunter M D. Effects of elevated atmospheric carbon dioxide on insect-plant interactions. Agricultural and Forest Entomology, 2001, 3(3): 153- 159.

[20] Whittaker J B. Impacts and responses at population level of herbivorous insects to elevated CO2. European Journal of Entomology, 1999, 96(2): 149- 156.

[21] Zavala J A, Nabity P D, DeLucia E H. An emerging understanding of mechanisms governing insect herbivory under elevated CO2. Annual Review of Entomology, 2013, 58: 79- 97.

[22] Chen F J, Wu G, Parajulee M N, Ge F. Long-term impacts of elevated CO2and transgenic Bt cotton on performance and feeding of three generations of cotton bollworm. Entomologia Experimentalis et Applicata, 2007, 124(1): 27- 35.

[23] Fajer E D, Bowers M D, Bazzza F A. The effects of enriched carbon dioxide atmospheres on the Buckeye butterfly,Junoniacoenia. Ecology, 1991, 72(2): 751- 754.

[24] Awmack S, Harrington R, Leather S R, Lawton J H. The impacts of elevated CO2on aphid-plant interactions. Aspects Applied Biology, 1996, 45: 317- 322.

[25] Hughes L, Bazza F A. Effects of elevated CO2on five plant-aphid interactions. Entomologia Experimentalis et Applicata, 2001, 99(1): 87- 96.

[26] Caulfield F, Bunce J A. Elevated atmospheric carbon dioxide concentration affects interactions betweenSpodopteraexigua(Lepidoptera: Noctuidae) larvae and two host plant species outdoors. Environmental Entomology, 1994, 23(4): 999- 1005.

[27] Akey D H, Kimball B A. Growth and development of the beet armyworm on cotton grown in an enriched carbon dioxide atmosphere. Southwestern Entomologist, 1989, 14(3): 255- 260.

[28] Osbrink W L A, Trumble J T, Wagner R E. Host suitability ofPhaseoluslunataforTrichoplusiani(Lepidoptera: Noctuidae) in controlled carbon dioxide atmospheres. Environmental Entomology, 1987, 16(3): 639- 644.

[29] 周大榮, 何康來, 王振營, 葉志華, 文麗萍, 高云霞, 宋彥英. 亞洲玉米螟綜合防治技術(shù). 北京: 金盾出版社, 1995.

[30] Brooks M A. Growth-retarding effect of carbon dioxide anesthesia on the German cockroach. Journal of Insect Physiology, 1957, 1(1): 76- 84.

[31] Edwards L J, Patton R L. Effects of carbon dioxide anesthesia on the house cricket,Achetadomesticus(Orthoptera: Gryllidae). Annals of the Entomological Society of America, 1965, 58(6): 828- 832.

[32] Woodring J P, Clifford C W, Roe R M, Beckman B R. Effects of CO2and anoxia on feeding, growth, metabolism, water balance, and blood composition in larval female house crickets,Achetadomesticus. Journal of Insect Physiology, 1978, 24(6/7): 499- 509.

[33] Kumar H, Saxena K N. Mating behavior of the cotton leafhopper,Empoascadevastans, in relation to its age, ovarian development, diurnal cycle, and CO2treatment. Annals of Entomological Society of America, 1978, 71(1): 108- 110.

[34] Lum P T M. Effect of carbon dioxide anesthesia at eclosion upon mating efficiency of malePlodiainterpunctella(Lepidoptera: Pyralidae). Journal of Stored Products Research, 1974, 10(1): 69- 71.

[35] Whisenant B R, Brady U E. Effects of anesthesia on the subsequent mating behavior ofPlodiainterpunctellamales. Journal of the Georgia Entomology, 1967, 2(1): 27- 30.

[36] Moloo S K, Kutuza S B. Effects of carbon dioxide anaesthetic onGlossina. Acta Tropica, 1975, 32(2): 159- 165.

[37] Press J W, Flaherty B R, Arbogast R T. O?cyte maturation inTriboliumcastaneumafter repetitive sublethal carbon dioxide exposures. Annals of the Entomological Society of America, 1973, 66(2): 480- 481.

[38] Hodkowa M, Fuzeau-Braesch S. Effet du gaz carbonique sur la reproduction dePyrrhocorisapterussous deux régimes lumineux: inhibition de la reproduction en jours longs. Comptes Rendus de I′Académie des Sciences, 1988, 306(3): 121- 124.

[39] Aliniazee M T, Lindgren D L. Egg hatch ofTriboliumconfusumandTriboliumcastaneumcoleoptera: tenebrionidae in different carbon dioxide and nitrogen atmospheres. Annals of the Entomological Society of America, 1970, 63(4): 1010- 1012.

[40] Barrer P M, Jay E G. Laboratory observations on the ability ofEphestiacautella(Walker) (Lepidoptera: Phycitidae) to locate, and to oviposit in response to a source of grain odour. Journal of Stored Products Research, 1980, 16(1): 1- 7.

[41] Lum P T M, Flaherty B R. Effect of carbon dioxide on production and hatchability of eggs ofPlodiainterpunctella(Lepidoptera: Phycitidae). Annals of the Entomological Society of America, 1972, 65(4): 976- 977.

[42] Press J W, Flaherty B R. Hatchability ofPlodiainterpunctellaeggs exposed to a carbon dioxide atmosphere: relationship of egg age to exposure time. Journal of the Georgia Entomological Society, 1973, 8(3): 210- 213.

[43] Lawton J H. The response of insects to environmental change // Harrington R, Stork N E, eds. Insects in Changing Environment: Symposium of the Royal Entomological Society. London: Academic Press, 1995: 3- 26.

[44] Awmack C S, Harrington R, Leather S R. Host plant effects on the performance of the aphidAulacorthumsolani(Kalt.) (Homoptera: Aphiididae) at ambient and elevated CO2. Global Change Biology, 1997, 3(6): 545- 549.

[45] Docherty M W, Hurst F A, Whittaker D K. Responses of tree sap-feeding herbivores to elevated CO2. Global Change Biology, 1997, 3(1): 51- 59.

[46] Brooks G L, Whittaker J B. Responses of multiple generations ofGastrophysaviridula, feeding onRumexobtusifolius, to elevated CO2. Global Change Biology, 1998, 4(1): 63- 75.

[47] Yin J, Sun Y C, Wu G, Ge F. Effects of elevated CO2associated with maize on multiple generations of the cotton bollworm,Helicoverpaarmigera. Entomologia Experimentalis et Applicata, 2010, 136(1): 12- 20.

Direct effects of the elevated atmospheric carbon dioxide levels on the growth,development and reproduction ofOstriniafurnacalis(Guenée)

ZHAO Lei1,2, YANG Qunfang1, XIE Haicui2, WANG Zhenying2, HE Kanglai2,*

1SichuanAgriculturalUniversity,Chengdu611130,China2StateKeyLaboratoryforBiologyofPlantDiseasesandInsectPests,InstituteofPlantProtect,ChineseAcademyofAgriculturalSciences,Beijing100193,China

The level of atmospheric CO2has risen from 280μL/L to 360μL/L following the industrial revolution, engendering a critical shift in global biogeochemical cycles. This level of CO2is anticipated to double by the end of this century. By altering the chemical composition of foliage, the increase in atmospheric CO2levels may fundamentally alter the relationships between insect herbivores and their host plants. In addition to the elevated CO2levels affecting arthropods indirectly by altering chemical components of the host plants, many insects and arthropods respond directly to the increase in atmospheric CO2level. The Asian corn borer,Ostriniafurnacalis(Guenée) (Lepidoptera: Crambidae), is a key pest of maize production and causes 10%—30% yield losses of in most maze production areas in China. The response ofO.furnacalisto elevated CO2levels will affect the population dynamics and its damage to the maize plants. Direct effects of enriched atmospheric CO2levels on growth, development and fecundity of the Asian corn borer,O.furnacalis, were assessed the insects have been reared on the artificial diet. The effects were examined in the closed-dynamic CO2chamber (CDCC- 1) under either ambient (375 μL/L) and elevated CO2levels (i.e., 550 μL/L and 750 μL/L, respectively). When compared with ambient CO2level, the survival rates of the larvae were decreased by 3.0% and 8.9% under the two elevated CO2levels, respectively. In addition, the mortality was higher during the first and second instars reared under elevated CO2(750 μL/L) than ambient (375 μL/L). However, there were no significant differences among the mortalities of the third and later instar larvae reared either under ambient or the elevated CO2levels (550 μL/L and 750 μL/L). There were no significant differences in the larval, pupal, and adult weight among the ambient and the two elevated CO2treatments. However, the durations of larval and pupal development were significantly prolonged respectively by 13.1% and 25.8% at 750 μL/L level of elevated CO2when compared with the ambient CO2level, which led to the longer generation time. The mean generation time (T) significantly prolonged by 5.3% and 11.7%, respectively under the two elevated CO2level treatments. Therefore, the innate rate of increase (rm) and finite increase rate (λ) were significantly decreased, which led to the double population time (t) prolonged 9.1%. Although the number of eggs oviposited per female and the net reproductive rate (R0) increased under the treatments with the elevated CO2levels when compared with the ambient CO2level, the difference was not statistically significant among the three CO2treatments. When compared with the ambient CO2level, the larvae consumed significantly more artificial diet (9.1% and 34.0%) and or excreted significantly more frass (42.3% and 42.0%) under the two elevated CO2treatments, 550 μL/L and 750 μL/L, respectively. The results from this study indicate that the exposure to elevated CO2: a) significantly increase larval and pupal development time ofO.furnacalis, which result in the significantly decrease of the innate rate of increase (rm) for the population; b) increase larval mortality, but the third and latter instar larvae were more tolerant to the elevated CO2than the younger ones; and c) significantly increase food consumption, which may have led to more serious insect damage to the host plants in nature under elevated CO2levels than ambient CO2level.

Ostriniafurnacalis; atmospheric carbon dioxide; direct effect; life table

國家973項目《氣候變化介導(dǎo)的農(nóng)業(yè)災(zāi)變時空演化規(guī)律研究》(2010CB951503)

2013- 04- 17;

日期:2014- 04- 03

10.5846/stxb201304170732

*通訊作者Corresponding author.E-mail: klhe@ippcaas.cn

趙磊, 楊群芳, 解海翠, 王振營, 何康來.大氣CO2濃度升高對亞洲玉米螟生長發(fā)育及繁殖的影響.生態(tài)學(xué)報,2015,35(3):885- 891.

Zhao L, Yang Q F, Xie H C, Wang Z Y, He K L.Direct effects of the elevated atmospheric carbon dioxide levels on the growth, development and reproduction ofOstriniafurnacalis(Guenée).Acta Ecologica Sinica,2015,35(3):885- 891.

猜你喜歡
歷期玉米螟成蟲
13個新選水稻不育系播始?xì)v期配合力分析
二代玉米螟防治方法
二代玉米螟發(fā)生趨勢預(yù)報
栗山天牛成蟲取食、交配和產(chǎn)卵行為
柿樹害蟲枯葉夜蛾防治效果試驗研究
天牛,就在樹上趴著
湖南省2016年審定通過的水稻新品種(下)
中國稻米(2017年2期)2017-04-28 08:00:06
湖南省2015年審定通過的水稻新品種(4)
中國稻米(2016年2期)2016-06-29 09:53:29
臨河地區(qū)玉米螟的發(fā)生與綜合防治措施
茶尺蠖的飼養(yǎng)溫度和發(fā)育歷期
中國茶葉(2016年7期)2016-01-18 00:34:28
定南县| 博兴县| 肇州县| 东明县| 寿宁县| 光泽县| 红河县| 会昌县| 随州市| 石家庄市| 腾冲县| 无为县| 岳阳市| 广西| 永康市| 肥城市| 九龙坡区| 迭部县| 横山县| 徐汇区| 上饶市| 长治县| 英吉沙县| 轮台县| 昭觉县| 洛阳市| 长汀县| 德令哈市| 永仁县| 鹰潭市| 泾阳县| 龙口市| 南投县| 万载县| 正宁县| 内黄县| 马龙县| 横山县| 南投市| 迁安市| 岱山县|