賈然,徐錦
復(fù)旦大學(xué)附屬兒科醫(yī)院臨床檢驗(yàn)中心,上海 201102
·綜述·
Toll樣受體通路激活改善呼吸道合胞病毒疫苗誘導(dǎo)免疫應(yīng)答的研究進(jìn)展
賈然,徐錦
復(fù)旦大學(xué)附屬兒科醫(yī)院臨床檢驗(yàn)中心,上海 201102
呼吸道合胞病毒(RSV)是導(dǎo)致嬰幼兒嚴(yán)重下呼吸道感染的最重要病原體,但該病毒的滅活疫苗可引起RSV疫苗增強(qiáng)性疾?。≧VED)。RVED的機(jī)制目前仍不清楚。Toll樣受體(TLR)及其信號轉(zhuǎn)導(dǎo)對RSV的識別和宿主免疫的激發(fā)均有重要作用,其在RVED機(jī)制中的作用也日益受到關(guān)注。本文主要介紹TLR在抗RSV天然免疫和獲得性免疫中的角色及其信號通路激活狀態(tài)改變對RVED免疫格局的影響,提示RVED機(jī)制可能與TLR信號通路激活不足有關(guān),從而為RSV疫苗研制提供新的策略和方法。
呼吸道合胞病毒;疫苗增強(qiáng)性疾??;Toll樣受體
呼吸道合胞病毒(respiratory syncytial virus,RSV)屬副黏病毒科肺病毒屬,其基因組由編碼11種蛋白的單股負(fù)鏈RNA組成,其中黏附蛋白(attachment protein,G蛋白)和融合蛋白(fusion protein,F(xiàn)蛋白)是2種能激發(fā)機(jī)體產(chǎn)生保護(hù)性抗體的主要跨膜糖蛋白。20世紀(jì)60年代,該病毒從2名兒童的中耳分泌物中首次分離,被認(rèn)為是導(dǎo)致兒童(尤其是2歲以內(nèi)嬰兒)下呼吸道感染和住院治療的最重要病原體,其易感人群還包括老年人和重度免疫抑制人群[1]。然而,到目前為止仍沒有安全、有效的疫苗被批準(zhǔn)用于兒童RSV感染的預(yù)防。
20世紀(jì)60年代,人們首次在嬰幼兒中開展了甲醛溶液(福爾馬林)滅活RSV疫苗(formalininactivated RSV vaccine,F(xiàn)I-RSV)的臨床試驗(yàn)。80%的受試者在自然感染RSV后出現(xiàn)了比初次感染時(shí)更嚴(yán)重的肺炎,甚至有2名受試兒童死亡,疫苗研制失?。?]。這種接種滅活RSV疫苗導(dǎo)致的疾病比未接種疫苗者更嚴(yán)重,被稱為RSV疫苗增強(qiáng)性疾?。≧SV vaccine-enhanced disease,RVED)。幾十年來,科學(xué)家一直試圖解開RVED發(fā)生的秘密。初始對RVED機(jī)制的研究主要集中在體液免疫上,認(rèn)為FI-RSV免疫過程中抗原表位被破壞,不能激發(fā)機(jī)體產(chǎn)生有效的特異性抗體。但后來關(guān)于其他疫苗的動(dòng)物模型研究發(fā)現(xiàn)福爾馬林并不是導(dǎo)致RVED的根源,因此對其機(jī)制的研究逐漸轉(zhuǎn)移到細(xì)胞免疫上,認(rèn)為RSV疫苗誘導(dǎo)機(jī)體產(chǎn)生了一個(gè)重要免疫特征——Th2型免疫應(yīng)答優(yōu)勢[3]。這種免疫格局不僅不能有效清除RSV,還會(huì)促使各種炎性細(xì)胞、趨化因子聚集在肺部,加劇RSV感染后的免疫病理,從而導(dǎo)致RVED發(fā)生和發(fā)展。但滅活的RSV疫苗究竟以什么機(jī)制觸發(fā)了異常T細(xì)胞免疫應(yīng)答和免疫記憶的形成,仍不清楚,這也是目前RVED發(fā)生機(jī)制研究領(lǐng)域中的關(guān)鍵問題。
RSV感染人體后,首先被表達(dá)于氣道上皮細(xì)胞、纖維母細(xì)胞和抗原呈遞細(xì)胞(antigen presenting cell,APC)的模式識別受體(pattern recognition receptor,PRR)所識別,通過一系列級聯(lián)反應(yīng)導(dǎo)致機(jī)體核因子κB(nuclear factorκB,NF-κB)及干擾素(interferon,IFN)調(diào)節(jié)因子家族成員活化,繼而使相應(yīng)的促炎因子、趨化因子和抗病毒因子〔如腫瘤壞死因子α(tumor necrosis factorα,TNF-α)和IFN〕等表達(dá)上調(diào)[4]。在RSV感染初期,促炎因子、趨化因子的增多使呼吸道黏膜中中性粒細(xì)胞及嗜酸粒細(xì)胞等聚集和活化。中性粒細(xì)胞通過釋放相應(yīng)的酶來清除被感染的細(xì)胞,但同時(shí)也損害周圍健康組織[5];而嗜酸粒細(xì)胞則可能與RSV感染導(dǎo)致的氣道高反應(yīng)(airway hyperresponsiveness,AHR)有關(guān)[6]。IFN包括IFN-α、IFN-β、IFN-γ,作為重要的抗病毒因子,其不僅可通過細(xì)胞自分泌或旁分泌來誘導(dǎo)病毒感染細(xì)胞凋亡,避免病毒侵犯周圍細(xì)胞,還可從基因水平誘導(dǎo)產(chǎn)生特定產(chǎn)物來阻止病毒復(fù)制[6]。自然殺傷細(xì)胞(natural killer,NK細(xì)胞)和樹突細(xì)胞(dendritic cell,DC)也在RSV早期感染中起重要作用。NK細(xì)胞直接殺傷病毒感染細(xì)胞,其活化后還可分泌大量IFN-γ等細(xì)胞因子來激活DC和T細(xì)胞應(yīng)答,參與感染早期急性肺免疫損傷的發(fā)生[7];DC在感染早期作為天然免疫中的哨兵細(xì)胞來識別RSV,且是連接天然免疫與獲得性免疫的重要橋梁[8]。
TLR是PRR的一種,在病原體相關(guān)分子模式(pathogen-associated molecular pattern,PAMP)的識別中起哨兵分子的作用。TLR主要表達(dá)于包括DC、巨噬細(xì)胞及B細(xì)胞在內(nèi)的APC表面。目前發(fā)現(xiàn)的人類TLR有10種,根據(jù)結(jié)構(gòu)和功能分為5個(gè)亞家族:TLR2、TLR3、TLR4、TLR5和TLR9。其中TLR2亞家族包括TLR1、TLR2、TLR6和TLR10;TLR9亞家族包括TLR7、TLR8和TLR9;其他亞家族只有一個(gè)成員[9]。研究發(fā)現(xiàn),小鼠TLR4、TLR2/6和TLR7具有免疫刺激作用;TLR3激活要遲于其他TLR,且主要起下調(diào)免疫的作用[5]。對RSV識別比較重要的TLR有TLR4、TLR3、TLR2/6、TLR7/8等。
第1個(gè)被認(rèn)為與RSV識別相關(guān)的PRR是TLR4。RSV的F蛋白是最早鑒定能被TLR4識別的病毒蛋白,也是TLR2的配體。F蛋白通過與TLR4結(jié)合激發(fā)髓樣分化因子88(myeloid differentiation factor 88,MyD88)轉(zhuǎn)導(dǎo)途徑,進(jìn)而激活天然免疫。研究發(fā)現(xiàn),F(xiàn)蛋白可通過與TLR4和CD14結(jié)合而促進(jìn)外周血單個(gè)核細(xì)胞(peripheral blood mononuclear cell,PBMC)產(chǎn)生不平衡的細(xì)胞因子分泌,導(dǎo)致T細(xì)胞免疫不協(xié)調(diào)[10]。細(xì)胞內(nèi)表達(dá)的TLR3對RSV的初始識別也很重要,它可識別RSV復(fù)制時(shí)產(chǎn)生的雙鏈RNA(double-stranded RNA,dsRNA)。有研究發(fā)現(xiàn),TLR3與RSV感染導(dǎo)致的氣道杯狀細(xì)胞增生及黏液分泌過量有關(guān)[11]。TLR7、TLR8和TLR9位于細(xì)胞內(nèi),TLR7和TLR8識別細(xì)胞內(nèi)單鏈RNA(single-stranded RNA,ssRNA),與RSV感染后氣道黏液分泌過多有關(guān),TLR7還與RSV感染后的免疫病理相關(guān)[12]。而TLR9識別外源DNA,包括合成的CpG寡脫氧核苷酸[13]。TLR2通常與TLR1或TLR6以異二聚體形式位于免疫細(xì)胞表面,識別外源侵入者。研究發(fā)現(xiàn),TLR2和TLR6在RSV識別中起一定作用,但其是否直接與RSV作用并不清楚。TLR2和TLR6異二聚體促進(jìn)RSV感染后抗病毒免疫的激發(fā),且TLR4信號可調(diào)節(jié)TLR2信號[14]。因此,TLR作為天然免疫中識別外源侵入者的哨兵分子,對RSV早期識別和宿主免疫激發(fā)具有重要作用。
對于體液免疫,TLR信號通路的調(diào)節(jié)途徑至少有2條。一條是TLR信號促進(jìn)DC成熟和Th細(xì)胞活化,繼而通過Th細(xì)胞與B細(xì)胞間的CD40-CD40L結(jié)合而激活B細(xì)胞應(yīng)答;另一條是表達(dá)于B細(xì)胞表面的TLR直接調(diào)控B細(xì)胞應(yīng)答及抗體產(chǎn)生。TLR信號轉(zhuǎn)導(dǎo)途徑主要有2條,一條是MyD88依賴途徑,它是大多數(shù)TLR所共用的下游信號分子途徑;另一條是β干擾素TIR結(jié)構(gòu)域銜接蛋白(TIR-domain-containing adaptor-inducing interferonβ,TRIF)依賴途徑。RSV某些抗原可阻塞TLR信號通路而導(dǎo)致免疫逃避[15]。Schnare等發(fā)現(xiàn),MyD88敲除小鼠感染病毒后不能有效激活Th細(xì)胞,其抗原特異性IgM、IgG均顯著減少[16],表明MyD88信號轉(zhuǎn)導(dǎo)對激活T細(xì)胞和B細(xì)胞免疫有重要作用。Koyama等發(fā)現(xiàn),TLR7對加強(qiáng)B細(xì)胞和CD4+T細(xì)胞應(yīng)答及CD8+T細(xì)胞的分化均有重要作用[17,18]。Schulz等發(fā)現(xiàn),缺乏TLR3的DC在吞噬病毒感染細(xì)胞后不能有效激發(fā)CD8+T細(xì)胞應(yīng)答,可能是TLR3的缺乏導(dǎo)致DC不能有效識別病毒感染細(xì)胞中的dsRNA,繼而阻礙DC成熟和主要組織相容性復(fù)合體(major histocompatibility complex,MHC)Ⅰ類分子的呈遞,而后者導(dǎo)致不能有效誘導(dǎo)CD8+T細(xì)胞應(yīng)答[19]。另外,也有不少研究發(fā)現(xiàn)不同種類的TLR激動(dòng)劑可激發(fā)Th1、Th17應(yīng)答和保護(hù)性抗體產(chǎn)生[20,21]。以上研究均表明,TLR在細(xì)胞免疫和體液免疫中起重要作用。
TLR的信號轉(zhuǎn)導(dǎo)對DC成熟,Th細(xì)胞、B細(xì)胞活化及保護(hù)性抗體的形成均具有重要作用,而研究發(fā)現(xiàn)上述指標(biāo)在RVED中均減低。Delgado等用活RSV感染野生型小鼠和MyD88+/-小鼠,發(fā)現(xiàn)后者產(chǎn)生的抗體親和力和特異性均顯著低于前者。蛋白免疫印跡結(jié)果顯示,與未滅活疫苗組相比,滅活疫苗組NF-κB抑制因子α(inhibitor of NF-κBα,IκB-α)明顯升高,進(jìn)一步表明TLR信號轉(zhuǎn)導(dǎo)受抑,驗(yàn)證了TLR信號轉(zhuǎn)導(dǎo)在保護(hù)性抗體生成中的重要作用。另外,將滅活疫苗輔以脂多糖(lipopolysaccharide,LPS)(TLR4激動(dòng)劑)、poly(I∶C)(TLR3激動(dòng)劑)和polyU(TLR7激動(dòng)劑),注入小鼠體內(nèi)后攻毒,發(fā)現(xiàn)TLR激動(dòng)劑組DC的成熟度、抗體的親和力和特異性、RSV的清除能力均比對照組顯著提高,且轉(zhuǎn)變?yōu)門h1型免疫應(yīng)答。另外,就激發(fā)保護(hù)性抗體而言,3種激動(dòng)劑的聯(lián)合使用比LPS單獨(dú)使用的效果更明顯[20]。
單磷脂酰A(monophosphoryl lipid A,MPLA)是一種LPS來源的TLR4激動(dòng)劑。Kamphuis等將MPLA包入RSV顆粒中作為疫苗,經(jīng)鼻接種小鼠,發(fā)現(xiàn)MPLA的加入不僅能有效誘導(dǎo)IgG生成及Th1優(yōu)勢型免疫,還能誘導(dǎo)局部分泌型IgA生成,加強(qiáng)黏膜免疫。他們認(rèn)為MPLA能產(chǎn)生這種功效的原因很可能是其與DC的TLR4相互作用[21]。純化的F蛋白(purified fusion protein,PFP)或G蛋白(PGP)及F/G嵌合蛋白等亞單位疫苗會(huì)誘導(dǎo)類似FI-RSV的RVED表現(xiàn),但不能產(chǎn)生針對RSV的保護(hù)性應(yīng)答[18,22,23]。然而,de Waal等發(fā)現(xiàn),將G蛋白130~230位氨基酸融合至鏈球菌白蛋白結(jié)合區(qū)(albumin-binding region,BB)形成一種亞單位疫苗BBG2Na,以MPLA為佐劑能有效避免RVED而誘導(dǎo)Th1型免疫反應(yīng)[24]。Blanco等將重組F蛋白輔以MPLA或細(xì)菌樣微粒(bacteriumlike particle,BLP)來免疫小鼠,發(fā)現(xiàn)可誘導(dǎo)產(chǎn)生強(qiáng)大的Th1優(yōu)勢型保護(hù)性應(yīng)答,且不會(huì)導(dǎo)致肺部組織病理學(xué)改變及細(xì)胞因子風(fēng)暴[25],從而在一定程度上避免RVED。Kamphuis等也有類似發(fā)現(xiàn)[26]。此種現(xiàn)象提示,MPLA和BLP作為疫苗佐劑可誘導(dǎo)Th1型應(yīng)答而避免RVED,這可能與其加強(qiáng)TLR4激活有關(guān)。
Nguyen等發(fā)現(xiàn),將TLR2配體(如酵母聚糖、Pam3CSK4等)或TLR9配體(CpG)包被在RSV顆粒中經(jīng)鼻接種入小鼠體內(nèi),可提高對RSV的清除能力,且能逆轉(zhuǎn)白細(xì)胞介素5(interleukin 5,IL-5)/IFN-γ比例,表現(xiàn)為Th1型免疫應(yīng)答,產(chǎn)生良好的黏膜免疫功效[27,28]。Garg等[29]將F蛋白與包含poly(I∶C)或CpG的三重佐劑載體(TriAdj)聯(lián)合,構(gòu)建出F/TriAdj疫苗,免疫后1年進(jìn)行攻毒,發(fā)現(xiàn)小鼠產(chǎn)生了穩(wěn)定的IgG和局部IgA分泌,且IgG的中和能力明顯提高。其中F/TriAdj-poly(I∶C)疫苗比F/TriAdj-CpG疫苗在提高IgG親和力和中和能力方面顯示出更強(qiáng)的功效,提示這種包含TLR3或TLR9激動(dòng)劑的F/TriAdj疫苗在小鼠體內(nèi)接種后至少保證1年內(nèi)有效。
核苷酸結(jié)合寡聚化結(jié)構(gòu)域蛋白2(nucleotidebinding oligomerization domain-containing protein2,NOD2)是一種細(xì)胞內(nèi)PRR。Shafique等將CpG和L18-MDP(NOD2激動(dòng)劑)聯(lián)合使用來輔佐滅活疫苗,發(fā)現(xiàn)其能在體外顯著激活A(yù)PC系統(tǒng)的NF-κB分泌,激活力度隨著CpG濃度升高而增強(qiáng),在體內(nèi)也能有效扭轉(zhuǎn)偏倚的免疫應(yīng)答,而不會(huì)誘導(dǎo)RVED[30]。Johnson等發(fā)現(xiàn),接種FI-RSV時(shí)輔以CpG可顯著減少嗜酸性粒細(xì)胞浸潤,減輕全身性疾病情況,加用TLR7/8激動(dòng)劑可協(xié)同CpG達(dá)到更佳免疫效果,但用FI-RSV單獨(dú)輔以TLR7/8激動(dòng)劑時(shí)并不能產(chǎn)生保護(hù)性免疫[31,32]。
這些研究表明,TLR2、TLR3、TLR4、TLR9激動(dòng)劑可作為疫苗佐劑來誘導(dǎo)Th1型保護(hù)性免疫應(yīng)答,從而比較全面地抑制RVED,而TLR7/8激動(dòng)劑只有與其他TLR激動(dòng)劑合用時(shí)才會(huì)有加強(qiáng)免疫的效果。
RVED的形成涉及天然免疫和獲得性免疫的整體失衡。作為激發(fā)和聯(lián)系天然免疫與獲得性免疫反應(yīng)的紐帶,TLR在RVED發(fā)生過程中起重要作用。通過加強(qiáng)刺激TLR及其信號通路,可有效預(yù)防RVED,這也為疫苗研制提供了新的思路和方向。
[1] Segovia J,Sabbah A,Mgbemena V,Tsai SY,Chang TH,Berton MT,MorrisIR,Allen IC,Ting JP,Bose S.TLR2/MyD88/NF-kappaB pathway,reactive oxygen species,potassium efflux activates NLRP3/ASC inflammasome during respiratory syncytial virus infection[J].PLoS One,2012,7(1):e29695.
[2] Anderson LJ.Respiratory syncytial virus vaccine development[J].Semin Immunol,2013,25(2):160-171.
[3] Collins PL,Melero JA.Progress in understanding and controlling respiratory syncytial virus:still crazy after all these years[J].Virus Res,2011,162(1-2):80-99.
[4] Marr N,Turvey SE,Grandvaux N.Pathogen recognition receptor crosstalk in respiratory syncytial virus sensing:a host and cell type perspective[J].Trends Microbiol,2013,21(11):568-574.
[5] Lambert L,Sagfors AM,Openshaw PJ,Culley FJ.Immunity to RSV in early-life[J].Front Immunol,2014,5:466.
[6] Matsumotoa K,Inoue H.Viral infections in asthma and COPD[J].Front Microbiol,2013,4:293.
[7] Dulek DE,Newcomb DC.STAT4 deficiency fails to induce lung Th2 or Th17 immunity following primary or secondary respiratory syncytial virus(RSV)challenge but enhances the lung RSV-specific CD8+T cell immune response to secondary challenge[J].J Virol,2014,88(17):9655-9672.
[8] Kim TH,Lee HK.Differential roles of lung dendritic cell subsets against respiratory virus infection[J].Immune Netw,2014,14(3):128-137.
[9] Skevaki C,Pararas M,Kostelidou K,Tsakris A,Routsias JG.Single nucleotide polymorphisms of Toll-like receptors and susceptibility to infectious diseases[J].Clin Exp Immunol,2015,180(2):165-177.
[10] Kurt-Jones EA,Popova L,Kwinn L,Haynes LM,Jones LP,Tripp RA,Walsh EE,F(xiàn)reeman MW,Golenbock DT,Anderson LJ,F(xiàn)inberg RW.Pattern recognition receptors TLR4 and CD14 mediate response to respiratory syncytial virus[J].Nat Immunol,2000,1(5):398-401.
[11] Rudd BD,Smit JJ,F(xiàn)lavell RA,Alexopoulou L,Schaller MA,Gruber A,Berlin AA,Lukacs NW.Deletion of TLR3 alters the pulmonary immune environment and mucus production during respiratory syncytial virus infection[J].J Immunol,2006,176(3):1937-1942.
[12] Lukacs NW,Smit JJ,Mukherjee S,Morris SB,Nunez G,Lindell DM.Respiratory virus-induced TLR7 activation controls IL-17-associated increased mucus via IL-23 regulation[J].J Immunol,2010,185(4):2231-2239.
[13] Schlender J,Hornung V,F(xiàn)inke S,Günthner-Biller M,Marozin S,Brzózka K,Moghim S,Endres S,Hartmann G,Conzelmann KK.Inhibition of Toll-like receptor 7-and 9-mediated alpha/beta interferon production in human plasmacytoid dendritic cells by respiratory syncytial virus and measles virus[J].J Virol,2005,79(9):5507-5515.
[14] Murawski MR,Bowen GN,Cerny AM,Anderson LJ,Haynes LM,Tripp RA,Kurt-Jones EA,F(xiàn)inberg RW.Respiratory syncytial virus activates innate immunity through Toll-like receptor 2[J].J Virol,2009,83(3):1492-1500.
[15] Klein Klouwenberg P,Tan L,Werkman W,van Bleek GM,Coenjaerts F.The role of Toll-like receptors in regulating the immune response against respiratory syncytial virus[J].Crit Rev Immunol,2009,29(6):531-550.
[16] Schnare M,Barton GM,Holt AC,Takeda K,Akira S,Medzhitov R.Toll-like receptors control activation of adaptive immune responses[J].Nat Immunol,2001,2(10):947-950.
[17] Koyama S,Ishii KJ,Kumar H,Tanimoto T,Coban C,Uematsu S,Kawai T,Akira S.Differential role of TLR-and RLR-signaling in the immune responses to influenza A virus infection and vaccination[J].J Immunol,2007,179(7):4711-4720.
[18] Jung A,Kato H,Kumagai Y,Kumar H,Kawai T,Takeuchi O,Akira S.Lymphocytoid choriomeningitis virus activates plasmacytoid dendritic cells and induces a cytotoxic T-cell response via MyD88[J].J Virol,2008,82(1):196-206.
[19] Schulz O,Diebold SS,Chen M,N?slund TI,Nolte MA,Alexopoulou L,Azuma YT,F(xiàn)lavell RA,Liljestr?m P,Reis e Sousa C.Toll-like receptor 3 promotes cross-priming to virus-infected cells[J].Nature,2005,433(7028):887-892.
[20] Delgado MF,Coviello S,Monsalvo AC,Melendi GA,Hernandez JZ,Batalle JP,Diaz L,Trento A,Chang HY,Mitzner W,Ravetch J,Melero JA,Irusta PM,Polack FP.Lack of antibody affinity maturation due to poor Toll-like receptor stimulation leads to enhanced respiratory syncytial virus disease[J].Nat Med,2009,15(1):34-41.
[21] Kamphuis T,Shafique M,Meijerhof T,Stegmann T,Wilschut J,de Haan A.Efficacy and safety of an intranasal virosomal respiratory syncytial virus vaccine adjuvanted with monophosphoryl lipid A in mice and cotton rats[J].Vaccine,2013,31(17):2169-2176.
[22] Olson MR,Varga SM.Pulmonary immunity and immunopathology:lessons from respiratory syncytial virus[J].Expert Rev Vaccines,2008,7(8):1239-1255.
[23] Castilow EM,Legge KL,Varga SM.Cutting edge:Eosinophils do not contribute to respiratory syncytial virus vaccine-enhanced disease[J].J Immunol,2008,181(10):6692-6696.
[24] de Waal L,Power UF,Yüksel S,van Amerongen G,Nguyen TN,Niesters HG,de Swart RL,Osterhaus AD.Evaluation of BBG2Na in infant macaques:specific immune responses after vaccination and RSV challenge[J].Vaccine,2004,22(8):915-922.
[25] Blanco JC,Boukhvalova MS,Pletneva LM,Shirey KA,Vogel SN.A recombinant anchorless respiratory syncytial virus(RSV)fusion(F)protein/monophosphoryl lipid A(MPL)vaccine protects against RSV-induced replication and lung pathology[J].Vaccine,2014,32(13):1495-1500.
[26] Kamphuis T,Stegmann T,Meijerhof T,Wilschut J,de Haan A.A virosomal respiratory syncytial virus vaccine adjuvanted with monophosphoryl lipid A provides protection against viral challenge without priming for enhanced disease in cotton rats[J].Influenza Other Respir Viruses,2013,7(6):1227-1236.
[27] Nguyen DT,de Witte L,Ludlow M,Yüksel S,Wiesmüller KH,Geijtenbeek TB,Osterhaus AD,de Swart RL.The synthetic bacterial lipopeptide Pam3CSK4 modulates respiratory syncytial virus infection independent of TLR activation[J].PLoS Pathog,2010,6(8):e1001049.
[28] Shafique M,Meijerhof T,Wilschut J,de Haan A.Evaluation of an intranasal virosomal vaccine against respiratory syncytial virus in mice:effect of TLR2 and NOD2 ligands on induction of systemic and mucosal immune responses[J].PLoS One,2013,8(4):e61287.
[29] Garg R,Latimer L,Gerdts V,Potter A,van Drunen Littel-van den Hurk S.Vaccination with the RSV fusion protein formulated with a combination adjuvant induces longlasting protective immunity[J].J Gen Virol,2014,95(Pt 5):1043-1054.
[30] Shafique M,Wilschut J,de Haan A.Induction of mucosal and systemic immunity against respiratory syncytial virus by inactivated virus supplemented with TLR9 and NOD2ligands[J].Vaccine,2012,30(3):597-606.
[31] Johnson TR,Rao S,Seder RA,Chen M,Graham BS.TLR9 agonist,but not TLR7/8,functions as an adjuvant to diminish FI-RSV vaccine-enhanced disease,while either agonist used as therapy during primary RSV infection increases disease severity[J].Vaccine,2009,27(23):3045-3052.
[32] Garlapati S,Garg R,Brownlie R,Latimer L,Simko E,Hancock RE.Enhanced immune responses and protection by vaccination with respiratory syncytial virus fusion protein formulated with CpG oligodeoxynucleotide and innate defense regulator peptide in polyphosphazene microparticles[J].Vaccine,2012,30(35):5206-5214.
Toll-like receptor-associated mechanism in respiratory syncytial virus vaccine-enhanced disease
JIA Ran,XU Jin
Clinical Laboratory Centre,Children’s Hospital of Fudan University,Shanghai 201102,China
Respiratory syncytial virus(RSV)is the most important pathogen responsible for children’s severe lower respiratory tract infection worldwide.However,no vaccine has been licensed to prevent RSV infection as the inactivated RSV vaccine could enhance disease severity.The exact mechanism of RSV vaccine-enhanced disease(RVED)remains unclear.Since Toll-like receptors(TLRs)and their signal pathways play crucial roles in both innate and adaptive immunity,TLR-associated RVED mechanism has been proposed and is attracting more and more attentions of researchers.In this review,we summarized the main progress on the roles of TLRs in anti-RSV immunity and their signal pathways in affecting the immune status of mice with RVED,which may enlighten the vaccine design and development.
Respiratory syncytial virus;Vaccine-enhanced disease;Toll-like receptor
.XU Jin,E-mail:jinxu_125@163.com
2014-12-03)
國家自然科學(xué)基金(81273204)
徐錦