夏婷婷 鐘 良 戎 蘭 蔣曉蕓
正常情況下機(jī)體內(nèi)活性氧簇(ROS)的產(chǎn)生與抗氧化保護(hù)機(jī)制處于平衡狀態(tài),當(dāng)受到紫外線照射、吸煙、飲酒、服用非類固醇類抗炎藥(NSAID)、感染、缺血再灌注損傷和多種炎性反應(yīng)時(shí),ROS水平升高[1]。細(xì)胞內(nèi)ROS的產(chǎn)生有多種方式,因組織不同而異,其中最主要的是一種還原型輔酶Ⅱ(NADPH)氧化酶(NOX)復(fù)合體,該復(fù)合體為跨膜蛋白,廣泛存在于細(xì)胞膜、線粒體、過氧化物酶體和內(nèi)質(zhì)網(wǎng)中[2-3];此外,在線粒體內(nèi)膜的電子傳遞鏈中也有部分ROS產(chǎn)生,盡管大部分氧被線粒體內(nèi)細(xì)胞色素氧化酶完全還原為水,仍有少量氧不完全還原而生成ROS[4]。胃腸道是ROS的一個(gè)關(guān)鍵來源,盡管腸道上皮具有一層起保護(hù)作用的屏障,但是攝入的某些物質(zhì)和病原體均可刺激腸上皮細(xì)胞、多形核中性粒細(xì)胞(PMN)、巨噬細(xì)胞等分泌炎性因子和其他炎性介質(zhì)而發(fā)生炎性反應(yīng),這些炎性因子和炎性介質(zhì)可促進(jìn)氧化應(yīng)激的發(fā)生[1]。
炎癥性腸?。↖BD)包括克羅恩病(CD)和潰瘍性結(jié)腸炎(UC),是一種反復(fù)發(fā)作的慢性非特異性腸道炎性疾病,目前其病因和發(fā)病機(jī)制尚不明確,可能與腸道菌群失調(diào)、腸黏膜組織內(nèi)免疫調(diào)節(jié)紊亂、腸黏膜屏障受損、環(huán)境和易感基因等有關(guān)。近年來,腸黏膜組織對共生菌的異常免疫反應(yīng)成為IBD腸道炎性損傷機(jī)制的研究熱點(diǎn),而在免疫和炎性反應(yīng)通路中ROS發(fā)揮了重要的作用[5]。ROS產(chǎn)生和代謝的動(dòng)態(tài)平衡對于維持細(xì)胞和組織的正常功能是非常重要的,任何對這一平衡的破壞都可能導(dǎo)致氧化應(yīng)激并產(chǎn)生一系列的組織細(xì)胞損傷。隨著ROS在免疫調(diào)節(jié)中作用機(jī)制的研究進(jìn)展,越來越多的證據(jù)表明ROS誘導(dǎo)的氧化應(yīng)激是IBD發(fā)生發(fā)展中的一個(gè)重要因素。
IBD作為一種反復(fù)發(fā)作的慢性疾病,其機(jī)制一直是臨床研究的熱點(diǎn),通過建立多種動(dòng)物模型模擬IBD的發(fā)病過程,可獲得許多無法從人體得到的生物學(xué)信息,對于了解人類IBD發(fā)生發(fā)展的分子及細(xì)胞病理生理學(xué)機(jī)制具有指導(dǎo)意義。目前常用的實(shí)驗(yàn)動(dòng)物模型包括化學(xué)誘導(dǎo)性[如硫酸葡聚糖(DSS)、三硝基苯磺酸(TNBS)]結(jié)腸炎小鼠和自發(fā)腸道炎性反應(yīng)的基因工程鼠[白細(xì)胞介素-10(IL-10)敲除小鼠][6-7]。研究發(fā)現(xiàn),在IBD動(dòng)物模型的結(jié)腸黏膜中,ROS的產(chǎn)生增加,且表達(dá)水平與疾病的嚴(yán)重程度具有相關(guān)性[8-10];這一發(fā)現(xiàn)在IBD患者結(jié)腸黏膜內(nèi)也得到證實(shí),同時(shí)升高的還有某些氧化應(yīng)激的生物標(biāo)志物,如活性醛、F2-異前列腺素等脂質(zhì)過氧化產(chǎn)物以及某些蛋白修飾產(chǎn)物(蛋白羰基)等[11-12]。相反,在小鼠模型結(jié)腸黏膜內(nèi)的抗氧化劑谷胱甘肽和超氧化物歧化酶(SOD)的表達(dá)水平則下降[13];IBD患者血清及腸黏膜組織內(nèi)的抗氧化劑維生素C、維生素E以及谷胱甘肽、SOD等亦有此表現(xiàn)[14]。
除了直接觀察實(shí)驗(yàn)動(dòng)物和患者體內(nèi)ROS及抗氧化劑的水平外,曾有研究發(fā)現(xiàn)直接應(yīng)用具有氧化活性的過氧化亞硝酸鹽給健康小鼠灌腸可誘導(dǎo)小鼠結(jié)腸炎性反應(yīng)[15],進(jìn)一步說明ROS與腸道炎性損傷有著密切聯(lián)系。而對IBD模型小鼠應(yīng)用外源性抗氧化劑SOD后,發(fā)現(xiàn)腸道炎性反應(yīng)有所緩解[16-17],說明抗氧化劑對結(jié)腸黏膜具有保護(hù)作用。近兩年,有學(xué)者發(fā)現(xiàn)丹參乙酸鎂能緩解DSS誘導(dǎo)的小鼠腸道炎性反應(yīng)[18-19],而該藥作為有效的抗氧化劑已在缺血缺氧性心血管疾病中得到普遍應(yīng)用。外源性抗氧化劑對小鼠腸道的保護(hù)作用引起了國內(nèi)外的廣泛關(guān)注,雖然外源性抗氧化劑對人體的有效性尚待確定,但初步研究表明靜脈注射磷脂SOD可降低活動(dòng)性UC患者的疾病活動(dòng)指數(shù),用于緩解UC患者病情是安全有效的[20]。隨著轉(zhuǎn)基因技術(shù)的發(fā)展,通過控制內(nèi)生性抗氧化酶的表達(dá)來研究ROS與IBD的關(guān)系,比如人Cu/Zn-SOD基因的過表達(dá)和離體細(xì)胞外SOD同工酶基因轉(zhuǎn)入均可緩解DSS誘導(dǎo)的小鼠結(jié)腸炎[21-22],或用特異性抑制劑抑制內(nèi)生性抗氧化酶的合成[23],或靶向破壞小鼠Gpx1、Gpx2基因,可引起小鼠結(jié)腸炎性反應(yīng)的發(fā)生發(fā)展[24]。以上技術(shù)的應(yīng)用,為ROS參與IBD的發(fā)生發(fā)展提供了更為有力的證據(jù)。
雖然許多證據(jù)表明ROS在腸道炎性反應(yīng)中發(fā)揮重要作用,但具體的分子機(jī)制尚未完全闡明。腸道上皮作為機(jī)體與腸腔環(huán)境的界面,更容易受到來自外界病原體或有害物質(zhì)的損傷,正常情況下ROS作為一種“殺傷性武器”參與腸道上皮的自我防御,比如在固有免疫中首先發(fā)現(xiàn)ROS參與了吞噬細(xì)胞的呼吸爆發(fā)從而殺傷吞入的病原體[25],后又發(fā)現(xiàn)其與白細(xì)胞的遷移也有關(guān)[26]。而在病理狀態(tài)下,ROS產(chǎn)生與代謝的動(dòng)態(tài)平衡、氧化與抗氧化系統(tǒng)的穩(wěn)態(tài)均遭到破壞,致使氧化應(yīng)激損傷形成,有學(xué)者認(rèn)為ROS可能通過直接損傷和加重炎性反應(yīng)發(fā)揮作用[27]。已知體內(nèi)ROS的產(chǎn)生有多種方式,線粒體、內(nèi)質(zhì)網(wǎng)、過氧化物酶體、細(xì)胞核、細(xì)胞質(zhì)、甚至細(xì)胞外空隙都可以產(chǎn)生ROS[28-29],其中線粒體電子傳遞鏈?zhǔn)谴蠖鄶?shù)哺乳動(dòng)物細(xì)胞內(nèi)ROS的主要產(chǎn)生源[30],細(xì)胞質(zhì)內(nèi)還有可催化ROS產(chǎn)生的酶,如過氧化物酶、NOX、黃嘌呤氧化酶(XO)、脂氧合酶(LOX)、葡萄糖氧化酶、髓過氧化物酶(MPO)、一氧化氮合成酶和環(huán)氧合酶(COX)等[31-32]。但是結(jié)腸組織中的ROS主要來自于上皮細(xì)胞和吞噬性細(xì)胞的線粒體和NOX,其中結(jié)腸上皮細(xì)胞高表達(dá)NOX1[33],而 NOX2 則 主 要 表 達(dá) 于 吞 噬 性 細(xì)胞內(nèi)[34]。
在絕大多數(shù)真核細(xì)胞中,線粒體通過三羧酸循環(huán)和氧化磷酸化產(chǎn)生三磷酸腺苷(ATP)而提供能量,同時(shí)產(chǎn)生ROS,在正常線粒體呼吸鏈中,ROS的表達(dá)量處于低水平狀態(tài)。近年來研究發(fā)現(xiàn),ROS發(fā)揮作用時(shí)具有時(shí)空限制,一些亞細(xì)胞區(qū)室具有氧化性(如溶酶體和過氧化物酶體),而另一些具有還原性(如線粒體和細(xì)胞核),盡管線粒體具有還原性但仍易受到氧化損傷,可能與其區(qū)室內(nèi)大量裸露的硫醇集團(tuán)有關(guān)[35]。有研究認(rèn)為腸上皮細(xì)胞中線粒體功能受損會(huì)導(dǎo)致上皮屏障作用減弱,擾亂上皮細(xì)胞與腸道菌群間的正常關(guān)系,從而導(dǎo)致IBD的發(fā)生和反復(fù)發(fā)作[36];用線粒體靶向的抗氧化劑(MTA)處理模型小鼠時(shí),亦可發(fā)現(xiàn)結(jié)腸黏膜通透性降低[37],猜測可能與線粒體損傷后釋放ROS,造成細(xì)胞蛋白質(zhì)脂質(zhì)過氧化及上皮細(xì)胞程序性死亡有關(guān)。
此外,還有研究發(fā)現(xiàn)線粒體ROS可直接刺激促炎細(xì)胞因子的產(chǎn)生[38],或者通過激活炎性小體NLRP3引起炎性級聯(lián)放大效應(yīng)[39]。線粒體ROS與NLRP3的關(guān)系是目前研究的熱點(diǎn),其可能通過氧化線粒體 DNA[40]、介導(dǎo)線粒體自噬[41]、破壞溶酶體膜穩(wěn)定性[42]等機(jī)制參與NLRP3的激活,在這些機(jī)制中均存在Ca2+內(nèi)流,故有學(xué)者認(rèn)為介導(dǎo)Ca2+內(nèi)流的非選擇性陽離子通道TRPM2是將氧化應(yīng)激和NLRP3聯(lián)系起來的關(guān)鍵環(huán)節(jié)[43]。TRPM2是氧化應(yīng)激敏感的多功能離子通道,廣泛存在于各種細(xì)胞類型中,在細(xì)胞質(zhì)膜和細(xì)胞器膜上均有分布,除可能參與NLRP3的激活外,據(jù)報(bào)道在人U937單核細(xì)胞中,H2O2誘導(dǎo)的CXCL8也依賴于TRPM2介導(dǎo)的Ca2+內(nèi)流和后續(xù)的信號通路[44],NLRP3活化后可進(jìn)一步激活caspase-1,介導(dǎo)IL-1β和IL-18的產(chǎn)生。以上促炎因子和黏附分子可招募和活化各種炎性細(xì)胞向氧化應(yīng)激損傷處匯集,產(chǎn)生異常的免疫炎性反應(yīng),進(jìn)一步加重腸道黏膜損傷。
正常情況下NOX源性ROS的產(chǎn)生在時(shí)間和空間上被嚴(yán)格控制著,NOX是一種跨膜的黃素細(xì)胞色素蛋白復(fù)合體,胞內(nèi)段可將NADPH的一個(gè)電子轉(zhuǎn)移到輔因子FAD上,然后再傳遞給血紅簇,血紅簇可將這一個(gè)電子貢獻(xiàn)給膜外的O2形成O2-,調(diào)控這一過程的關(guān)鍵是載脂蛋白與黃素輔因子的裝配[45],多種生長因子、化學(xué)趨化因子、腫瘤壞死因子(TNF)、C5a和LTB4等配體與受體的反應(yīng)均可激活 NOX[46]。已知結(jié)腸上皮細(xì)胞內(nèi)高表達(dá)NOX1[47],且多項(xiàng)研究表明細(xì)菌產(chǎn)物和促炎因子如IL-18、干擾素-γ(IFN-γ)和 TNF-α可刺激體外培養(yǎng)的腸上皮細(xì)胞NADPH氧化酶的表達(dá)和ROS的增加[48-49]。IBD 時(shí),上皮細(xì)胞內(nèi) TNF-α濃度升高,NOX1的表達(dá)水平升高,ROS產(chǎn)生增加,應(yīng)用NOX1抑制劑后則可降低TNF-α等促炎因子的水平[50]。NOX1在離體培養(yǎng)的人腸上皮細(xì)胞系(Caco-2細(xì)胞)中也高表達(dá),用IL-1β處理該系細(xì)胞,可活化細(xì)胞內(nèi)NOX1,使ROS產(chǎn)生增加,進(jìn)而激活細(xì)胞內(nèi)信號通路導(dǎo)致核因子-κB(NF-κB)活化、炎性酶系過表達(dá)和促炎介質(zhì)釋放,抑制NOX1活性后可在腸道水平調(diào)節(jié)炎性反應(yīng)進(jìn)程,阻止IL-1β誘導(dǎo)的上皮通透性增加[51]。
NOX2主要表達(dá)于吞噬性細(xì)胞表面,如巨噬細(xì)胞、單核細(xì)胞、中性粒細(xì)胞等,NOX2的活化是這些細(xì)胞吞噬作用下游事件中的關(guān)鍵,在殺傷吞噬體內(nèi)病原體的過程中發(fā)揮主要作用[52-53],NOX2在吞噬體表面裝配后,通過轉(zhuǎn)移細(xì)胞質(zhì)NADPH的電子至吞噬體內(nèi)產(chǎn)生具有殺傷效應(yīng)的ROS,吞噬體內(nèi)NOX2源性ROS可通過直接殺傷微生物、調(diào)節(jié)pH和K+離子水平、激活信號轉(zhuǎn)導(dǎo)級聯(lián)反應(yīng)、改變基因表達(dá)等多種途徑產(chǎn)生效應(yīng)[54]。此外,NOX2源性ROS還參與了中性粒細(xì)胞的遷移和促炎因子IL-1β的釋放[26,55]。
綜上所述,線粒體長時(shí)間暴露于氧化呼吸鏈可生成ROS,且由于區(qū)室內(nèi)含大量裸露的硫醇集團(tuán)、缺乏保護(hù)機(jī)制等原因更易于受到氧化應(yīng)激損傷,腸道上皮細(xì)胞同時(shí)還要應(yīng)對來自外界的各種氧化應(yīng)激,線粒體負(fù)荷相較于其他組織更重,上皮內(nèi)線粒體損傷后,參與各種生理活動(dòng)的ATP產(chǎn)生受到影響,導(dǎo)致上皮屏障功能紊亂,腸道共生菌及其產(chǎn)物侵入增多,上皮基質(zhì)內(nèi)吞噬細(xì)胞負(fù)荷增加,吞噬體及細(xì)胞內(nèi)ROS過量產(chǎn)生致代謝失衡,造成吞噬細(xì)胞及上皮細(xì)胞直接損傷的同時(shí),釋放大量促炎介質(zhì)和趨化因子,從而引起腸道內(nèi)異常的免疫炎性反應(yīng)。因此,IBD腸道損傷的形成與ROS的產(chǎn)生密切相關(guān)。
1 Bhattacharyya A,Chattopadhyay R,Mitra S,et al.Oxidative stress:an essential factor in the pathogenesis of gastrointestinal mucosal diseases.Physiol Rev,2014,94:329-354.
2 Muller F.The nature and mechanism of superoxide production by the electron transport chain:Its relevance to aging.J Am Aging Assoc,2000,23:227-253.
3 Han D,Williams E,Cadenas E.Mitochondrial respiratory chain-dependent generation of superoxide anion and its release into the intermembrane space.Biochem J,2001,353:411-416.
4 Boveris A,Chance B.The mitochondrial generation of hydrogen peroxide.General properties and effect of hyperbaric oxygen.Biochem J,1973,134:707-716.
5 Yang Y,Bazhin AV,Werner J,et al.Reactive oxygen species in the immune system.Int Rev Immunol,2013,32:249-270.
6 Mizoguchi A,Mizoguchi E.Animal models of IBD:linkage to human disease.Curr Opin Pharmacol,2010,10:578-587.
7 Byrne FR,Viney JL.Mouse models of inflammatory bowel disease.Curr Opin Drug Discov Devel,2006,9:207-217.
8 Tanida S,Mizoshita T,Mizushima T,et al.Involvement of oxidative stress and mucosal addressin cell adhesion molecule-1(MAdCAM-1)in inflammatory bowel disease.J Clin Biochem Nutr,2011,48:112-116.
9 Pravda J.Radical induction theory of ulcerative colitis.World J Gastroenterol,2005,11:2371-2384.
10 Pavlick KP,Laroux FS,F(xiàn)useler J,et al.Role of reactive metabolites of oxygen and nitrogen in inflammatory bowel disease.Free Radic Biol Med,2002,33:311-322.
11 Hatsugai M,Kurokawa MS,Kouro T,et al.Protein profiles of peripheral blood mononuclear cells are useful for differential diagnosis of ulcerative colitis and Crohn′s disease. J Gastroenterol,2010,45:488-500.
12 Cracowski JL,Bonaz B,Bessard G,et al.Increased urinary F2-isoprostanes in patients with Crohn′s disease. Am J Gastroenterol,2002,97:99-103.
13 Isman CA, Yegen BC, Alican I. Methimazole-induced hypothyroidism in rats ameliorates oxidative injury in experimental colitis.J Endocrinol,2003,177:471-476.
14 Alzoghaibi MA.Concepts of oxidative stress and antioxidant defense in Crohn′s disease.World J Gastroenterol,2013,19:6540.
15 Rachmilewitz D,Stamler JS,Karmeli F,et al.Peroxynitriteinduced rat colitis--a new model of colonic inflammation.Gastroenterology,1993,105:1681-1688.
16 Ishihara T,Tanaka K,Tasaka Y,et al.Therapeutic effect of lecithinized superoxide dismutase against colitis.J Pharmacol Exp Ther,2009,328:152-164.
17 Segui J,Gironella M,Sans M,et al.Superoxide dismutase ameliorates TNBS-induced colitis by reducing oxidative stress,adhesion molecule expression,and leukocyte recruitment into the inflamed intestine.J Leukoc Biol,2004,76:537-544.
18 Jiang X,Jiang Y,Sun D,et al.Protective effect of magnesium lithospermate B against dextran sodiumsulfate induced ulcerative colitis in mice.Environ Toxicol Pharmacol,2013,36:97-102.19 Qu J,Ren X,Hou RY,et al.The protective effect of magnesium lithospermate B against glucose-induced intracellular oxidative damage.Biochem Biophys Res Commun,2011,411:32-39.
20 Suzuki Y,Matsumoto T,Okamoto S,et al.A lecithinized superoxide dismutase (PC-SOD)improves ulcerative colitis.Colorectal Dis,2008,10:931-934.
21 Oku T,Iyama S,Sato T,et al.Amelioration of murine dextran sulfate sodium-induced colitis by ex vivo extracellular superoxide dismutase gene transfer.Inflamm Bowel Dis,2006,12:630-640.
22 Kruidenier L,van Meeteren ME,Kuiper I,et al.Attenuated mild colonic inflammation and improved survival from severe DSS-colitis of transgenic Cu/Zn-SOD mice.Free Radic Biol Med,2003,34:753-765.
23 Martensson J,Jain A,Meister A.Glutathione is required for intestinal function.Proc Natl Acad Sci U S A,1990,87:1715-1719.
24 Esworthy RS,Aranda R,Martin MG,et al.Mice with combined disruption of Gpx1 and Gpx2 genes have colitis.Am J Physiol Gastrointest Liver Physiol,2001,281:G848-G855.
25 Babior BM.The respiratory burst of phagocytes.J Clin Invest,1984,73:599-601.
26 Yoo SK,Starnes TW,Deng Q,et al.Lyn is a redox sensor that mediates leukocyte wound attraction in vivo.Nature,2011,480:109-112.
27 Zhu H,Li YR.Oxidative stress and redox signaling mechanisms of inflammatory bowel disease:updated experimental and clinical evidence.Exp Biol Med,2012,237:474-480.
28 Balaban RS,Nemoto S,F(xiàn)inkel T.Mitochondria,oxidants,and aging.Cell,2005,120:483-495.
29 Pritchard KJ,Ackerman AW,Gross ER,et al.Heat shock protein 90 mediates the balance of nitric oxide and superoxide anion from endothelial nitric-oxide synthase.J Biol Chem,2001,276:17621-17624.
30 Poyton RO,Castello PR,Ball KA,et al.Mitochondria and hypoxic signaling:a new view.Ann N Y Acad Sci,2009,1177:48-56.
31 Kulkarni AC,Kuppusamy P,Parinandi N.Oxygen,the lead actor in the pathophysiologic drama:enactment of the trinity of normoxia,hypoxia,and hyperoxia in disease and therapy.Antioxid Redox Signal,2007,9:1717-1730.
32 Swindle EJ,Metcalfe DD.The role of reactive oxygen species and nitric oxide in mast cell-dependent inflammatory processes.Immunol Rev,2007,217:186-205.
33 Szanto I,Rubbia-Brandt L,Kiss P,et al.Expression of NOX1,a superoxide-generating NADPH oxidase,in colon cancer and inflammatory bowel disease.J Pathol,2005,207:164-176.
34 Sumimoto H,Miyano K,Takeya R.Molecular composition and regulation of the Nox family NAD(P)H oxidases.Biochem Biophys Res Commun,2005,338:677-686.
35 Kaludercic N,Deshwal S,Di Lisa F.Reactive oxygen species and redox compartmentalization.Front Physiol,2014,5:285.36 Schoultz I,Soderholm JD,McKay DM.Is metabolic stress a common denominator in inflammatory bowel disease?Inflamm Bowel Dis,2011,17:2008-2018.
37 Wang A,Keita AV,Phan V,et al.Targeting mitochondriaderived reactive oxygen species to reduce epithelial barrier dysfunction and colitis.Am J Pathol,2014,184:2516-2527.
38 Li X,F(xiàn)ang P,Mai J,et al.Targeting mitochondrial reactive oxygen species as novel therapy for inflammatory diseases and cancers.J Hematol Oncol,2013,6:19.
39 Lawlor KE,Vince JE.Ambiguities in NLRP3 inflammasome regulation:is there a role for mitochondria?Biochim Biophys Acta,2014,1840:1433-1440.
40 Shimada K,Crother TR,Karlin J,et al.Oxidized mitochondrial DNA activates the NLRP3 inflammasome during apoptosis.Immunity,2012,36:401-414.
41 Lupfer C,Thomas PG,Anand PK,et al.Receptor interacting protein kinase 2-mediated mitophagy regulates inflammasome activation during virus infection.Nat Immunol,2013,14:480-488.
42 Heid ME,Keyel PA,Kamga C,et al.Mitochondrial reactive oxygen species induces NLRP3-dependent lysosomal damage and inflammasome activation.J Immunol,2013,191:5230-5238.
43 Zhong Z,Zhai Y,Liang S,et al.TRPM2links oxidative stress to NLRP3 inflammasome activation.Nat Commun,2013,4:1611.
44 茹筱晨,姚曉強(qiáng).TRPM2:氧化應(yīng)激敏感的多功能離子通道.生理學(xué)報(bào),2014,66:7-15.
45 Yazdanpanah B,Wiegmann K,Tchikov V,et al.Riboflavin kinase couples TNF receptor 1 to NADPH oxidase.Nature,2009,460:1159-1163.
46 Nathan C,Cunningham-Bussel A.Beyond oxidative stress:an immunologist's guide to reactive oxygen species.Nature Reviews Immunology,2013,13:349-361.
47 Bokoch GM,Knaus UG.NADPH oxidases:not just for leukocytes anymore!Trends Biochem Sci,2003,28:502-508.
48 O'Leary DP,Bhatt L,Woolley JF,et al.TLR-4 signalling accelerates colon cancer cell adhesion via NF-kappaB mediated transcriptional up-regulation of Nox-1.PLoS One,2012,7:e44176.
49 Rokutan K,Kawahara T,Kuwano Y,et al.Nox enzymes and oxidative stress in the immunopathology of the gastrointestinal tract.Semin Immunopathol,2008,30:315-327.
50 Ramonaite R,Skieceviciene J,Juzenas S,et al.Protective action of NADPH oxidase inhibitors and role of NADPH oxidase in pathogenesis of colon inflammation in mice.World J Gastroenterol,2014,20:12533-12541.
51 Tesoriere L,Attanzio A,Allegra M,et al.Indicaxanthin inhibits NADPH oxidase (NOX)-1 activation and NF-κB-dependent release of inflammatory mediators and prevents the increase of epithelial permeability in IL-1β-exposed Caco-2 cells.Br J Nutr,2014,111:415-423.
52 Rada B,Hably C,Meczner A,et al.Role of Nox2 in elimination of microorganisms.Semin Immunopathol,2008,30:237-253.
53 Nauseef WM.How human neutrophils kill and degrade microbes:an integrated view.Immunol Rev,2007,219:88-102.
54 Huang J,Canadien V,Lam GY,et al. Activation of antibacterial autophagy by NADPH oxidases.Proc Natl Acad Sci U S A,2009,106:6226-6231.
55 Gabelloni ML,Sabbione F,Jancic C,et al.NADPH oxidase derived reactive oxygen species are involved in human neutrophil IL-1βsecretion but not in inflammasome activation.Eur J Immunol,2013,43:3324-3335.