俞黃琴,劉訓(xùn)高,沈 良
(杭州師范大學(xué)材料與化學(xué)化工學(xué)院,浙江 杭州310036)
由于催化反應(yīng)易操作及氫源易得的優(yōu)點,酮的不對稱轉(zhuǎn)移氫化已成為手性仲醇的一種高效合成方法[1-3].日本化學(xué)家野依良治的TsDPEN 是不對稱轉(zhuǎn)移氫化反應(yīng)中一個非常重要的配體,表現(xiàn)出了優(yōu)異的對映選擇性和催化活性[4-6].
近年來,手性氮雜配體備受關(guān)注,因為它們不僅價格便宜、合成簡單,而且比磷烷配體在空氣中更加穩(wěn)定[7].此外,可以通過結(jié)構(gòu)修飾來調(diào)控配體及其金屬配合物的空間效應(yīng)和電子效應(yīng)[8].手性氮雜配體已成功用作許多不對稱催化反應(yīng)的手性輔助劑,如不對稱烯丙基烷基化反應(yīng)[9-10]、不對稱硅氫化反應(yīng)[11-12]、不對稱硅腈化反應(yīng)[13-14]以及二烷基化反應(yīng)[15-16].然而,在用于潛手性酮的不對稱轉(zhuǎn)移氫化時,催化性能卻表現(xiàn)得并不令人滿意[17-18].本文報道4 個手性四氮配體的合成、表征及在異丙醇/KOH 體系中與[Ru(p-cymene)Cl2]2原位催化苯乙酮的不對稱氫轉(zhuǎn)移反應(yīng),獲得了較好的效果.
所使用試劑和原料如無特殊說明,均為購置無需進一步處理.柱層析硅膠(200~300目,青島海洋化工廠分廠),硅膠板(厚度:0.20~0.25 mm,青島海洋化工廠分廠).X-5熔點儀器(上海精細科學(xué)儀器有限公司)、薄層層析用紫外燈(254 nm)、旋光儀(Perkin Elmer 341)、紅外光譜儀(KBr壓片,Bruker Tensor 27)、核磁共振儀(TMS 內(nèi)標(biāo),Brucker公司,400 MHz)、質(zhì)譜儀(Agilent 5979)、氣相色譜儀(Shimadzu GC-2014)、高效液相色譜法(Elite P230,大賽璐CHIRALCEL OZ-H 柱).
如圖1,按文獻方法[19]合成(1S,2S)-(+)-N-對甲苯磺?;?1,2-二苯基乙二胺[(S,S)-TsDPEN].白色固體,熔點:123.2~126.9 ℃=+67.5°(c 0.4,CH2Cl2);Anal.Calcd.(%)for C21H22N2SO2:C,68.82;H,6.05;N,7.64%;Found(%):C,68.41;H,6.287;N,7.519%.Selected IR,ν(cm-1):3344.19,3286.73(N—H),3084.91,2863.55,1595.07,1492.11,1455.14(benzene C=C),1329.21(—SO2—),1154.95,1085.24,1055.13,810.85,768.70,699.07.1H NMR(CDCl3,400 MHz),δ(ppm):7.320,7.300[d,2H,J=8.0 Hz],7.164~7.128[m,10H],6.979,6.959[d,2H,J=8.0 Hz],4.399,4.386[d,2 H,J=5.2 Hz],4.166,4.153[d,2 H,J=5.2 Hz],2.318[s,3H,-CH3],EI-MSm/z:367[M+H]+,260,155,106,91,79,65,51.
圖1 C2對稱手性四氮配體(2a-d)的合成Fig.1 The synthesis of C2-symmetric chiral tetraaza ligands(2a-d)
1.2.1 (S,S,S,S)-(+)-N,N′-2[2-(對-甲苯磺酰基)氨基-1,2-二苯基乙基]乙二胺(2a)的制備
將(S,S)-TsDPEN(366.5 mg,1.0 mmol)和1,2-二溴乙烷(94.0 mg,0.5 mmol)置于一個密封玻璃容器中,加熱至130 ℃,反應(yīng)過夜.將粗產(chǎn)物溶于二氯甲烷(15 m L)中,并用20%NaOH 溶液(20 m L)洗滌.加入NaOH 溶液,沉淀出白色固體.該化合物用二氯甲烷(3×20 m L)萃取,Na2SO4干燥,蒸發(fā)溶劑得到粗產(chǎn)物.粗產(chǎn)物用硅膠柱層析(33%→67%v/v乙酸乙酯己烷)純化,得到產(chǎn)物為白色固體.m.p:167.5~169.2 ℃;=+15.97°(c 0.4,CH2Cl2);Anal.Calcd.(%)for C44H46N4S2O4:C,69.63;H,6.11;N,7.38%;Found(%):C,69.28;H,6.14;N,7.36%.Selected IR,υ(cm-1):3327.45,3030.49,2919.17,1598.86,1494.51,1452.05,1329.45,811.52,773.01,770.03,672.90.1H NMR(CDCl3,400 MHz),δ(ppm):7.453,7.433[d,4 H,J=8.0 Hz],7.149~6.978[m,20H],6.855,6.835[d,4 H,J=8.0 Hz],4.424,4.403[d,2H,J=8.4 Hz],3.751,3.730[d,2 H,J=8.4 Hz],2.616,2.596[d,2 H,J=8.0 Hz],2.333,2.313[d,2H,J=8.0 Hz],2.312[s,6H].EI-MSm/z:759[M+H]+,498,379,350,327,294,260,237,196,155.
1.2.2 (S,S,S,S)-(+)-N,N′-2[2-(對-甲苯磺酰基)氨基-1,2-二苯基乙基]丙二胺(2b)的制備
將(S,S)-TsDPEN(366.5 mg,1.0 mmol)和1,3-二溴丙烷(101.0 mg,0.5 mmol)置于一個密封玻璃容器中,加熱至130 ℃,反應(yīng)過夜.將粗產(chǎn)物溶于二氯甲烷(15 m L)中,并用20%NaOH 溶液(20 m L)洗滌.加入NaOH 溶液,沉淀出白色固體.該化合物用二氯甲烷(3×20 m L)萃取,Na2SO4干燥,旋轉(zhuǎn)蒸干得到粗產(chǎn)物.粗產(chǎn)物用硅膠柱層析(25%→50%v/v乙酸乙酯己烷)純化,得到產(chǎn)物為白色固體.m.p:75.2~76.8 ℃;=+18.63°(c 0.4,CH2Cl2);Anal.Calcd.(%)for C45H48N4S2O4:C,69.95;H,6.22;N,7.25%;Found(%):C,70.23;H,6.48;N,6.7%.Selected IR,υ(cm-1):3260.01,3029.81,2924.02,1599.23,1494.55,1454.77,1326.44,1158.68,1092.69,812.62,767.73,699.95,668.38.1H NMR(CDCl3,400 MHz),δ(ppm):7.435,7.415[d,4 H,J=8.0 Hz],7.073~6.844[m,20H],6.781,6.761[d,4 H,J=8.0 Hz],4.375,4.352[d,2H,J=7.2 Hz],3.824,3.812[d,2 H,J=4.8 Hz],2.696[m,2 H],2.561[m,2 H],2.253[s,6 H],1.667[m,2 H].EI-MSm/z:773[M+H]+,512,393,350,251,196,155.
1.2.3 (S,S,S,S)-(+)-N,N′-2[2-(對-甲苯磺?;┌被?1,2-二苯基乙基]-1,3-苯二甲胺(2c)的制備
(S,S)-TsDPEN(366.5 mg,1.0 mmol)和間-二溴甲基苯(132.0 mg,0.5 mmol)置于一個密封玻璃容器中,并加熱至130 ℃過夜.將粗產(chǎn)物溶于二氯甲烷(15 m L)中,并用20%NaOH 溶液(20 m L)洗滌.加入NaOH 溶液,沉淀出白色固體.該化合物用二氯甲烷(3×20 m L)萃取,Na2SO4干燥,蒸發(fā)溶劑得到粗產(chǎn)物.粗產(chǎn)物用硅膠柱色譜法(30%→60%v/v乙酸乙酯/己烷)純化,得到產(chǎn)物為白色固體.m.p:139.9~141.5 ℃;=+61.62°(c 0.4,CH2Cl2);Anal.Calcd.(%)for C50H50N4S2O4:C,71.94;H,5.99;N,6.71%;Found(%):C,71.39;H,6.081;N,6.464%.Selected IR,υ(cm-1):3248.73,3059.78,3027.73,2926.55,1736.29,1599.61,1492.76,1454.45,1333.33,1184.42,806.52,699.53,670.73.1H NMR(CDCl3,400 MHz),δ(ppm):7.391,7.370[d,4 H,J=8.4 Hz],7.158~7.143[m,8 H],7.048~7.003[m,8 H],6.976~6.942[m,8 H],6.861,6.840[d,4 H,J=8.4 Hz],4.341,4.321[d,2H,J=8.0 Hz],3.789,3.769[d,2H,J=8.0 Hz],3.665,3.632[d,2H,J=13.2 Hz],2.433,2.300[d,2H,J=13.2 Hz],2.283[s,6H].EI-MSm/z:574,379,313,290,260,235,209,155,130,105,65.1.2.4 (R,R,S,S,S,S)-1,3-二[4,5-二苯基-1-(對甲苯磺?;?2-咪唑烷]苯(2d)的制備
(S,S)-TsDPEN(366.5 mg,1.0 mmol),1,3-苯二甲醛(67 mg,0.5 mmol)和2-丙醇(8 m L)置于圓底燒瓶中.將反應(yīng)混合物加熱回流并攪拌直至溶液中出現(xiàn)白色固體,并通過過濾分離,用熱乙醇洗滌并真空干燥.乙醇中揮發(fā)析出白色晶體(R,R,S,S,S,S)-2d,適于用X 射線進行衍射.m.p:178.7~179.5℃;=+117.83°(c 0.4,CH2Cl2);Selected IR,υ(cm-1):3291.33,3027.58,2919.59,1598.64,1492.72,1449.35,347.82,1167.60,1091.72,1044.48,770.56,699.72.1H NMR(CDCl3,400 MHz),δ(ppm):8.333[s,1H],7.976~7.953[m,1H],7.868~7.887[m,2H],7.751,7.730[d,4 H,J=8.4 Hz],7.227~7.172[m,12H],6.981~6.971[m,8 H],6.895,6.874[d,4 H,J=8.4 Hz],4.584,4.565[d,2 H,J=7.6 Hz],4.214,4.195[d,2 H,J=7.6 Hz],2.389[s,6 H,-CH3].EI-MSm/z:416,377,284,260,207,179,155,91,65,50.
選取尺寸為0.49 mm×0.28 mm×0.17 mm 的單晶(2d),將其置于Rigaku RAXIS-RAPID射線衍射儀上,采用石墨單色化的MoKα射線(λ=0.71073?),在296(1)K,以ω掃描方式,在(2θ)max=54.8°的范圍內(nèi)收集到8049個獨立衍射點,其中可觀測衍射點[I>2σ(I)]4477個,這些數(shù)據(jù)用于結(jié)構(gòu)解析和修正.數(shù)據(jù)經(jīng)Lp和經(jīng)驗吸收校正.晶體結(jié)構(gòu)解析用SHELX 97程序[20],用直接法求得結(jié)構(gòu)參數(shù),經(jīng)全矩陣最小二乘法修正.所有非氫原子采用各向異性熱參數(shù)修正,氫原子理論加氫.各向異性的修正包括所有非氫原子收斂于一致的因子R=0.0518,Rw=0.1096,最終差值密度圖上最高峰為0.253 e·?-3.(R,R,S,S,S,S)-2d的晶體學(xué)數(shù)據(jù)見表1.
表1 (R,R,S,S,S,S)-2d的晶體學(xué)數(shù)據(jù)Tab.1 The crystallographic data of(R,R,S,S,S,S)-2d
將金屬前體[Ru(p-cymene)Cl2]2(0.02 mmol)和手性配體2a-2d(0.042 mmol)加入到新蒸餾的2-丙醇中,在氮氣保護下80℃攪拌2 h.加入氫氧化鉀的2-丙醇溶液,繼續(xù)攪拌3 h.然后加入苯乙酮(4 mmol),在給定溫度時間下進行(TCL監(jiān)測).反應(yīng)完成后,用氯化鈉的飽和水溶液洗滌,用HCl溶液(C=2 mmol/L)中和,用Et2O(3×10 m L)萃取.將有機相合并,用無水硫酸鈉干燥,過濾,減壓濃縮,并通過快速柱層析純化.用HPLC法測定對映體過量(ee),GC測定轉(zhuǎn)化率[21-22].催化反應(yīng)的轉(zhuǎn)化率和ee值數(shù)據(jù)列于表2.
表2 在異丙醇的KOH 體系中,用Ru(II)-配體(2a-d)原位催化苯乙酮不對稱氫轉(zhuǎn)移反應(yīng)的轉(zhuǎn)化率和ee值Tab.2 The conversations and ee values of Ru(II)-Ligand(2a-2d)catalysts for the asymmetric transfer hydrogenation of acetophenone by 2-propanol in the presence of KOH
反應(yīng)條件:催化劑,2.0×10-5mol;配體,4.4×10-5mol;苯乙酮,4.0×10-3mol;IPA,25 m L S/M/L/base(S=Substrate,M=Metal,L=Ligand,base=KOH).
采用氣相色譜法測定轉(zhuǎn)化率;S和R 構(gòu)型由高效液相色譜法確定.
圖1 (R,R,S,S,S,S)-2d的分子結(jié)構(gòu)Fig.1 Molecular structure of(R,R,S,S,S,S)-2d
如圖2所示,配體(R,R,S,S,S,S)-2d包含6個手性中心.在合成反應(yīng)中,形成2個咪唑環(huán)和2個R 構(gòu)型的手性中心.此外,TsDPEN 的S構(gòu)型在反應(yīng)中并沒有發(fā)生變化.
咪唑環(huán)的C9—C10和C30—C31鍵長分別為1.561(6)和1.548(6)?,明顯長于C—Cσ單鍵鍵長[1.498(6)~1.530(4)?].而咪唑環(huán)的C—N 鍵長為1.454(5)~1.512(5)?,S1—N1 和S2—N3的鍵長分別為1.629(3)和1.626(3)?.S—O 平均距離為1.427(4)?,最小的N—S—O 鍵角為105.6(2)°,最大N—S—O 鍵角為107.0(2)°,與文獻[23]中報道的N—S—O 鍵角比較接近.
2.2.1 配體對催化活性的影響
根據(jù)表2的實驗結(jié)果,催化產(chǎn)物1-苯乙醇的絕對構(gòu)型高度依賴于手性配體的構(gòu)型.在本實驗條件下,當(dāng)手性配體為(S)構(gòu)型對映體時,可以獲得(R)構(gòu)型的(R)-1-苯乙醇對映體.
手性配體2a-2d均表現(xiàn)出良好的催化活性(轉(zhuǎn)化率),但與配體2a-2c相比,2d顯示出明顯高的對映選擇性(ee值)(編號4,10,13,16).結(jié)合晶體結(jié)構(gòu),我們認為配體2d中兩個新生成的手性中心在對映體過量中發(fā)揮了重要作用,而配體2a-2c中C—C單鍵的存在減小了分子骨架的剛性,從而導(dǎo)致催化反應(yīng)對映選擇性的降低,這個結(jié)果與Noyori提出的金屬-配體-底物形成的六元環(huán)過渡態(tài)理論相一致[24].此外,配體2b比配體2a和2c表現(xiàn)出較高的對映體性(編號5,12),我們推測,活性中心間的距離可能會影響催化反應(yīng)的對映選擇性[25].
2.2.2 堿量對催化活性的影響
催化劑與堿的量比對不對稱氫轉(zhuǎn)移反應(yīng)的催化活性有非常重要的影響,同時堿量對對映選擇性也有重要的影響[26].對于2d配體,很少的堿量就能獲得較高的ee值和轉(zhuǎn)化率(編號16-18).對于配體2a-2c,轉(zhuǎn)化率隨著堿量的增加而緩慢下降,ee值在底物/金屬/配體/堿(S/M/L/Base)比為100∶1∶1.1∶25時給出了最好的結(jié)果(編號10-12,13-15).
2.2.3 溫度對催化活性的影響
根據(jù)表2數(shù)據(jù),反應(yīng)溫度從60 ℃到80 ℃時,轉(zhuǎn)化率和ee值分別明顯增加(編號1-3,7-9).溫度對催化反應(yīng)的研究結(jié)果表明,本催化體系中苯乙酮不對稱轉(zhuǎn)移氫化的合適溫度為80 ℃.
本文首次以C2對稱手性四氮配體(2a-d)和[RuCl2(p-cymene)]2為催化劑,原位催化苯乙酮的不對稱氫轉(zhuǎn)移.這些配體的制備簡單易行,在苯乙酮的不對稱氫化中表現(xiàn)出較好的催化活性,催化反應(yīng)的轉(zhuǎn)化率最高達98%,對映選擇性最高達60%.
[1]Furii A,Hashiguchi S,Uematsu N,etal.Ruthenium(II)-catalyzed asymmetric transfer hydrogenation of ketones using a formic acid-triethylamine mixture[J].J Am Chem Soc,1996,118(10):2521-2522.
[2]Murata K,Ikariya T.New chiral rhodium and iridium complexes with chiral diamine ligands for asymmetric transfer hydrogenation of aromatic ketones[J].J Org Chem,1999,64(8):2186-2187.
[3]Ikariya T,Blacker A J.Asymmetric transfer hydrogenation of ketones with bifunctional transition metal-based molecular catalysts[J].Acc Chem Res,2007,40(12):1300-1308.
[4]Hashiguchi S,F(xiàn)ujii A,Takehara J,etal.Asymmetric transfer hydrogenation of aromatic ketones catalyzed by chiral ruthenium(II)complexes[J].J Am Chem Soc,1995,117(28):7562-7563.
[5]Everaere K,Mortreux A,Bulliard M,etal.β-Amino alcohol(arene)ruthenium(II)-catalyzed asymmetric transfer hydrogenation of functionalized ketones-scope,isolation of the catalytic intermediates,and deactivation processes[J].Eur J Org Chem,2001,2001(2):275-291.
[6]Mikhailine A,Lough A J,Morris R H.Efficient asymmetric transfer hydrogenation of ketones catalyzed by an iron complex containing a P-N-N-P tetradentate ligand formed by template synthesis[J].J Am Chem Soc,2009,131(4):1394-1395.
[7]Fonseca M H,Konig B.Chiral tetraaza ligands in asymmetric catalysis:recent progress[J].Adv Synth Catal,2003,345(11):1173-1185.
[8]Haung H,Okuno T,Tsuda K,etal.Enantioselective hydrogenation of aromatic ketones catalyzed by Ru Complexes of Goodwin-Lionstype sp2N/sp3N hybrid ligands R-BINAN-R-Py[J].J Am Chem Soc,2006,128(27):8716-8717.
[9]Albano V G,Bandini M,Monari M,etal.Synthesis and crystallographic characterization of chiral bis-oxazoline-amides fine-tunable ligands for Pd-catalyzed asymmetric alkylations[J].J Org Chem,2006,71(17):6451-6458.
[10]Trost B M,Dogra K,Hachiya I,etal.Designed ligands as probes for the catalytic binding mode in Mo-catalyzed asymmetric allylic alkylation[J].Angew Chem Int Ed,2002,41(21):1929-1932.
[11]Nishiyama H,Yamaguchi S,Park S B,etal.New chiral bis(oxazolinyl)bipyridine ligand(bipymox):enantioselection in the asymmetric hydrosilylation of ketones[J].Tetrahedron:Asymmetry,1993,4(1):143-150.
[12]Lee S G,Lim C W,Song C E,etal.Synthesis of new 2-symmetric bioxazoles and application as chiral ligands in asymmetric hydrosilylation[J].Tetrahedron:Asymmetry,1997,8(17):2927-2932.
[13]Liu Y L,Liu X H,Xin J G,etal.Asymmetric cyanosilylation of aldehydes catalyzed by novel chiral tetraaza-titanium complexes[J].Synlet,2006,7:1085-1089.
[14]Xiong Y,Huang X,Gou S H,etal.Enantioselective cyanosilylation of ketones catalyzed by a nitrogen-containing bifunctional catalyst[J].Adv Synth Catal,2006,348(4/5):538-544.
[15]Dangel B D,Polt R.Catalysis by amino acid-derived tetracoordinate complexes:enantioselective addition of dialkylzincs to aliphatic and aromatic aldehydes[J].Org Lett,2000,2(19):3003-3006.
[16]Pastor I M,Adolfsson H.Novel highly modular C2-symmetric oxazoline ligands—application in titanium-catalyzed diethylzinc additions to aldehydes[J].Tetrahedron Lett,2002,43(9):1743-1746.
[17]Marson C M,Schwarz I.Amide catalysts with tetradentate ligands and the asymmetric transfer hydrogenation of carbonyl compounds[J].Tetrahedron Lett,2000,41(46):8999-9003.
[18]Shen W Y,Zhang H,Zhang H L,etal.Novel chiral tetraaza ligands:synthesis and application in asymmetric transfer hydrogenation of ketones[J].Tetrahedron:Asymmetry,2007,18(6):729-733.
[19]Xue D,Chen Y C,Cui X,etal.Transfer hydrogenation of activated C=C bonds catalyzed by ruthenium amido complexes:reaction scope,limitation,and enantioselectivity[J].J Org Chem,2005,70(9):3584-3591.
[20]Sheldrick G M.SHELXS-97,program for the solution of crystal structures[M].G?ttingen:University of G?ttingen,1997.
[21]He W,Liu P,Zhang B L,etal.Effcient iridium and rhodium-catalyzed asymmetric transfer hydrogenation using 9-amino(9-deoxy)cinchona alkaloids as chiral ligands[J].Appl Organometal Chem,2006,20(5):328-334.
[22]Shen Y S,Chen Q,Lou L L,etal.Asymmetric transfer hydrogenation of aromatic ketones catalyzed by SBA-15 supported Ir(I)complex under mild conditions[J].Cata Lett,2010,137(1):104-109.
[23]Pritchett S,Gantzel P,Walsh P J.Synthesis and structural study of titanium bis(sulfonamido)bis(amide)complexes[J].Organometallics,1999,18(5):823-831.
[24]Yamakawa M,Ito H,Noyori R.The metal-ligand bifunctional catalysis:a theoretical study on the ruthenium(II)-catalyzed hydrogen transfer between alcohols and carbonyl compounds[J].J Am Chem Soc,2000,122(7):1466-1478.
[25]Cortez N A,Aguirre G,Hake M P,etal.New heterogenized C2-symmetric bis(sulfonamide)cyclohexane-1,2-diamine-RhIIICp*complexes and their application in the asymmetric transfer hydrogenation(ATH)of ketones in water[J].Tetrahedron Lett,2009,50(19):2228-2231.
[26]Diez C,Nagel U.Chiral iridium(I)bis(NHC)complexes as catalysts for asymmetric transfer hydrogenation[J].Appl Organometal Chem,2010,24(7):509-516.