国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

海域天然氣水合物鉆探研究進(jìn)展及啟示:儲(chǔ)集層特征*

2015-03-21 05:31喬少華匡增桂梁金強(qiáng)吳能友
新能源進(jìn)展 2015年5期
關(guān)鍵詞:砂質(zhì)噴口細(xì)粒

喬少華,蘇 明,楊 睿,匡增桂,梁金強(qiáng),吳能友?

(1. 中國(guó)科學(xué)院天然氣水合物重點(diǎn)實(shí)驗(yàn)室,廣州 510640;2. 中國(guó)科學(xué)院廣州天然氣水合物研究中心,廣州 510640;3. 廣州海洋地質(zhì)調(diào)查局,廣州 510760)

海域天然氣水合物鉆探研究進(jìn)展及啟示:儲(chǔ)集層特征*

喬少華1,2,蘇 明1, 2,楊 睿1,2,匡增桂3,梁金強(qiáng)3,吳能友1,2?

(1. 中國(guó)科學(xué)院天然氣水合物重點(diǎn)實(shí)驗(yàn)室,廣州 510640;2. 中國(guó)科學(xué)院廣州天然氣水合物研究中心,廣州 510640;3. 廣州海洋地質(zhì)調(diào)查局,廣州 510760)

本文基于世界范圍內(nèi)天然氣水合物勘探的研究成果,系統(tǒng)回顧和總結(jié)了含水合物的沉積體類型,即水合物的儲(chǔ)集體。根據(jù)水合物的實(shí)際分布和產(chǎn)出特征,將水合物藏劃分為非滲透的細(xì)粒泥質(zhì)沉積物中浸染狀水合物、含裂隙的細(xì)粒泥質(zhì)沉積物中裂縫充填型水合物或結(jié)核結(jié)殼型水合物、流體噴口附近海底淺表層水合物、粗粒砂質(zhì)沉積物中孔隙充填型水合物四類。其中細(xì)粒沉積物孔隙度較小,滲透率較低,水合物飽和度低,開(kāi)采難度大;流體噴口附近淺表層水合物分布范圍十分局限,開(kāi)采風(fēng)險(xiǎn)大;裂縫充填型水合物的分布主要受活動(dòng)斷層或微裂隙的控制,其形成機(jī)制和原位資源量仍不清楚;粗粒沉積物孔隙度較大、滲透率較高、水合物以高飽和度的孔隙充填型為主,礦體展布集中、開(kāi)采難度較小。根據(jù)水合物原位資源量和開(kāi)采難度,它們分別自下而上位于水合物資源金字塔的底部到頂部。以水合物油氣系統(tǒng)思想為指導(dǎo),尋找砂體中的水合物藏是現(xiàn)在和將來(lái)水合物勘探的重要方向之一。

天然氣水合物;水合物資源金字塔;儲(chǔ)層特征;砂體;水合物開(kāi)采

0 前 言

技術(shù)的發(fā)展使得原先無(wú)法被開(kāi)采的非常規(guī)天然氣資源展現(xiàn)了新的曙光,如深水油氣(水深超過(guò)300 m)、煤層氣和頁(yè)巖氣等。近年來(lái)的數(shù)值模擬[1-2]和開(kāi)采試驗(yàn)[3-4]表明,天然氣水合物同樣可以提供具有經(jīng)濟(jì)價(jià)值的天然氣資源。水合物礦體展布的確定和產(chǎn)氣速率的提升是水合物的開(kāi)采利用需要解決的兩個(gè)關(guān)鍵問(wèn)題[5]。在水合物油氣系統(tǒng)中,合適的儲(chǔ)層是水合物富集成藏的關(guān)鍵因素之一[6]。因此,對(duì)水合物開(kāi)采利用而言,針對(duì)水合物儲(chǔ)層的研究顯得十分重要。

大洋鉆探計(jì)劃(Ocean Drilling Program, ODP)和綜合大洋鉆探計(jì)劃(Integrated Ocean Drilling Program, IODP)以水合物為目標(biāo)的不同航次(如ODP 164航次和204航次、IDOP311航次等),以及各個(gè)國(guó)家開(kāi)展的水合物專項(xiàng)研究計(jì)劃(如墨西哥灣聯(lián)合工業(yè)計(jì)劃JIP、日本南海海槽水合物計(jì)劃、印度國(guó)家水合物計(jì)劃NPGH和韓國(guó)郁龍盆地水合物計(jì)劃UBGH等),獲取了相當(dāng)可觀的地質(zhì)資料,并針對(duì)水合物的儲(chǔ)層進(jìn)行了大量研究。這些鉆探研究結(jié)果表明,水合物的儲(chǔ)層類型及產(chǎn)出特征主要可以分為粘土質(zhì)沉積物中低飽和度浸染狀充填型水合物[7]、流體噴口附近暴露于海底的塊狀水合物[8]、含裂隙的粘土質(zhì)沉積物中裂縫充填型水合物[9-10]、以及砂質(zhì)沉積物中孔隙充填型水合物[11-12]。不同類型的儲(chǔ)層中水合物的產(chǎn)出特征有著明顯差異。因此,系統(tǒng)地總結(jié)和歸納全球范圍內(nèi)水合物富集區(qū)的儲(chǔ)層特征,有利于我們對(duì)水合物成藏機(jī)制的理解和認(rèn)識(shí)。

1 水合物資源金字塔

由于缺少實(shí)際資料,二十世紀(jì)八十年代人們認(rèn)為在相對(duì)穩(wěn)定的溫度和壓力環(huán)境下,海底水合物穩(wěn)定帶內(nèi)的水合物可能是普遍存在的[13]?,F(xiàn)在人們發(fā)現(xiàn),由于橫向和縱向上孔隙水鹽度和熱流等因素的變化,水合物穩(wěn)定帶有著十分復(fù)雜的幾何形態(tài)。進(jìn)一步來(lái)講,穩(wěn)定帶內(nèi)水合物的產(chǎn)出既非連續(xù)也非隨機(jī),而是受控于水合物系統(tǒng)要素(溫度、壓力等)和含油氣系統(tǒng)要素(包括氣源、運(yùn)移通道和儲(chǔ)集空間等),即水合物含油氣系統(tǒng)[6]。不同地質(zhì)背景下的水合物有著完全不同的分布范圍和產(chǎn)出特征,為了更好地指導(dǎo)水合物的勘探和開(kāi)采,BOSWELL等[14]提出了“水合物資源金字塔”(the Gas Hydrates Resource Pyramid)模型。

水合物資源金字塔(圖1)顯示了各種類型水合物資源的相對(duì)規(guī)模和開(kāi)采難度,最具資源潛力的水合物類型位于金字塔頂端,開(kāi)采難度最大的水合物類型位于金字塔底部。從上至下,分別為砂質(zhì)沉積物中的水合物、含裂隙沉積物中的水合物、噴口附近的水合物,以及粘土質(zhì)沉積物中的水合物。水合物資源金字塔表明,盡管粘土質(zhì)沉積物中的水合物具有最大的原位天然氣資源量,但是由于其較低的滲透率而極具開(kāi)采難度;而含水合物的砂質(zhì)沉積物具有較好的孔滲性,且水合物多以孔隙充填的形式產(chǎn)出,富集程度高(飽和度高),因此最具開(kāi)采潛力[16]。為了更好地研究水合物的富集成藏規(guī)律,以及為將來(lái)的生產(chǎn)開(kāi)采服務(wù),從水合物儲(chǔ)層特征的角度來(lái)研究水合物顯得十分必要。

圖1 水合物資源金字塔(修改自[14-15])Fig. 1 The gas hydrate resource pyramid (modified from reference [14-15])

2 細(xì)粒沉積物中的水合物

遠(yuǎn)離陸地的深水背景下,海洋沉積物中通常缺少砂質(zhì)(粒徑為0.062 5~2 mm),主要以粘土(粒徑<0.004 mm)和粉砂(粒徑為0.004~0.062 5 mm)為主。海洋細(xì)粒沉積物(半遠(yuǎn)洋沉積物)的滲透率隨著深度的增加呈指數(shù)下降,從海底附近的10?12m2可迅速降低至140 mbsf的10?17m2左右[17]。一般認(rèn)為極低滲透率的細(xì)粒沉積物中流體以擴(kuò)散方式運(yùn)移為主,而對(duì)流作用并不明顯[18]。在以擴(kuò)散方式為主的水合物體系中,水合物具有“厚度小、飽和度低”的特點(diǎn)[19]。但由于隨著沉積物的堆積而產(chǎn)生的水合物分解再循環(huán),穩(wěn)定帶底界附近的水合物飽和度往往較高[20]。

細(xì)粒沉積物中的水合物以布萊克海臺(tái)最為典型。覆蓋于布萊克海臺(tái)的底流沉積物物性非常均一,主要為富超微化石的黏土,以及含量不等的蛋白石,粒徑小于0.001 mm的沉積物顆粒含量超過(guò)70%[22-23]。大部分水合物以低飽和度(<10%)的浸染狀產(chǎn)出,基本不影響沉積物的結(jié)構(gòu)(圖2a)。水合物分解造成了孔隙水鹽度異常低值區(qū),而這些低值區(qū)通常對(duì)應(yīng)著硅質(zhì)微體化石富集的層位[22]和沉積物顆粒相對(duì)較大的層位[23],這表明了巖性對(duì)水合物分布的控制作用。另一方面,有微裂隙或者斷層經(jīng)過(guò)的層位中有直徑為cm級(jí)的塊狀或脈狀水合物的產(chǎn)出(圖2b和圖2c),這說(shuō)明流體運(yùn)移通道可以造成水合物的局部富集[24]。

圖2 細(xì)粒沉積物中典型的水合物產(chǎn)出特征:(a)浸染狀水合物,又稱彌散狀水合物,通常肉眼不可見(jiàn),但可以通過(guò)紅外熱成像儀觀察到明顯的低溫異常,水合物分解后,沉積物可呈現(xiàn)湯狀或奶油狀;(b)脈狀充填型水合物[21];(c)塊狀水合物[7];脈狀和塊狀水合物一般發(fā)育在細(xì)粒沉積物中有斷層或者裂隙切穿的地方Fig. 2 Occurrences of hydrates in fine grained sediments: (a) disseminated hydrate, which is invisible to the naked eye, but can be detected by infrared thermal imager, mouss-like sediment surface possibly indicated degassing or hydrate decomposition; (b) vein filling hydrate; (c) massive hydrate; vein filling hydrates and massive hydrates occur in the intersection of faults or micro fractures in fine grain sediments

細(xì)粒沉積物中的水合物藏類似于MILKOVEE等[25]提出的“地層圈閉水合物藏”,世界上大部分水合物可能賦存于這種類型的儲(chǔ)集體中。細(xì)粒泥質(zhì)沉積物擁有較小的孔隙空間和較大的毛細(xì)壓力,不利于甲烷的運(yùn)移和水合物的成核[26],因此水合物通常以低飽和度的浸染狀產(chǎn)出,偶爾以塊狀形式出現(xiàn)。盡管細(xì)粒沉積物中水合物的原位儲(chǔ)量巨大,但現(xiàn)有的開(kāi)采工藝并不能對(duì)該類型的水合物藏進(jìn)行經(jīng)濟(jì)而有效的開(kāi)發(fā)利用。

3 含裂隙帶中的水合物

如果細(xì)粒富泥沉積物發(fā)育一些裂隙,也可以被認(rèn)為具有一定的可滲透性,水合物可充填于這些裂隙之中,形成裂縫充填型水合物藏。cm級(jí)的結(jié)核、結(jié)殼型水合物可以看作是一種特殊的裂縫充填型水合物。相比細(xì)粒沉積物中浸染狀的水合物,含裂隙帶中的水合物通常肉眼可見(jiàn)(圖3b和圖3c)。RUPPEL等[27]認(rèn)為裂隙的存在增大了沉積物的次級(jí)孔隙度和滲透率,并促進(jìn)了匯聚型流體流動(dòng)的形成,有利于水合物的形成。COOK等[28]認(rèn)為,當(dāng)孔隙水中甲烷濃度超過(guò)其溶解度時(shí),水合物會(huì)沿著沉積物的破裂面充填于孔隙之中。沉積物沿著平行于最大主應(yīng)力的方向(豎直方向)破裂,因此水合物通常呈直立充填狀(圖3e)。

世界范圍內(nèi)近年來(lái)的水合物勘探研究表明,裂縫充填型水合物比之前估計(jì)的更常見(jiàn),如水合物脊[29]、卡斯卡迪亞大陸邊緣[30]、印度K-G盆地[9],以及韓國(guó)郁龍盆地等[31]。除此之外,斷裂帶的砂體中也有可能存在規(guī)模不等的裂隙。例如斷層十分發(fā)育的墨西哥灣Green Canyon 955站位附近,裂縫充填型的水合物被列為一個(gè)重要的勘探目標(biāo)[32-33]。

氣煙囪構(gòu)造是郁龍盆地最主要的流體運(yùn)移通道之一,水合物充填于氣煙囪的裂隙之中[34]。流體的快速充注會(huì)加速水合物的形成,進(jìn)而在淺層形成“水合物帽”,在海底形成地形高地(圖3a)[35]。除裂縫充填型外,氣煙囪內(nèi)部還有大量結(jié)核結(jié)殼型水合物。與郁龍盆地小型裂隙不同,K-G盆地NGHP-01 -10站位揭示的水合物藏與大型的斷層體系密切相關(guān)。NGHP-01-10站位位于一組近南北向的斷裂和一組NE向的斷裂交匯處的向北一側(cè)(圖3d)。構(gòu)造變形使甲烷氣體能夠沿著沉積物變形、斷層和傾斜層向上運(yùn)移至海底,砂質(zhì)沉積物的缺乏使得水合物趨于富集于巖層的裂縫之中[36](圖3e和圖3f)。在眾多斷裂的相互影響下,多邊形斷層在該地區(qū)也十分發(fā)育,進(jìn)一步擴(kuò)大了裂縫充填型水合物的分布范圍。

如果裂隙是由水合物或者游離氣的超壓造成,水合物的分布范圍將會(huì)十分局限,如郁龍盆地氣煙囪;構(gòu)造活動(dòng)形成的斷裂是區(qū)域性的,水合物有可能大面積賦存,如K-G盆地NGHP-01-10站位附近。前者的資源潛力有限,而后者可能具有較高的開(kāi)采經(jīng)濟(jì)價(jià)值。因此,對(duì)裂隙充填型的水合物藏而言,裂縫形成機(jī)制和水合物聚集機(jī)制的研究將十分重要。

圖3 裂縫充填型水合物典型的產(chǎn)出背景和產(chǎn)出特征:(a)郁龍盆地氣煙囪及其內(nèi)部空白反射特征;(b)氣煙囪內(nèi)部低角度裂縫充填型水合物的X射線計(jì)算機(jī)斷層掃描圖;(c)氣煙囪內(nèi)部裂縫充填型水合物實(shí)物樣品;(d)K-G盆地NGHP-01-10站位附近兩組斷裂交匯處地震屬性(振幅)時(shí)間切片;(e)斷層交匯處鉆探樣品的三維X射線計(jì)算機(jī)斷層掃描圖(白色為水合物,藍(lán)色為冰);(f)NGHP-01-10站位裂縫充填型水合物實(shí)物樣品Fig. 3 Occurrences of fracture filling hydrates: (a) gas chimney and the blank zone in the Ulleung basin; (b) X-ray CT image of low angle fracture filling hydrate; (c) fracture-filling hydrate sample in gas chimney; (d) time slice of seismic attribute (amplitude) nearby the site NGHP-01-10 in the K-G basin; (e) 3-D X-ray CT images in the intersection of fault with hydrate highlighted in white and ice in blue; (f) fracture-filling hydrate sample in site NGHP-01-10

4 流體噴口附近的水合物

流體噴口中氣體以微氣泡或溶解相運(yùn)移,噴溢特征常具間歇性。噴口可能有一個(gè)流體運(yùn)移中心通道,或者豎直的多孔高滲透區(qū)域。海水/海底界面附近的快速冷卻作用使得水合物在海底表面沉積物中形成(圖4c)。流體噴口附近水合物通常與深部的裂縫充填型水合物系統(tǒng)相連通,這些裂縫最初可能是流體朝海底快速噴溢的通道,墨西哥灣GC955站位的重要目標(biāo)之一就是尋找下伏的裂縫充填型水合物[33]。此外,它們的出現(xiàn)通常伴隨著暴露于海底的丘狀體、碳酸鹽巖硬地、麻坑、泥火山以及化學(xué)合成生物群落等(圖4b)[37-39]。早期的墨西哥灣水合物研究中正是以這種淺表層水合物為研究重點(diǎn)[40-41]。

目前針對(duì)流體噴口的研究多集中在生物地球化學(xué)及其生態(tài)環(huán)境效應(yīng)方面,淺表層水合物形成機(jī)制仍不清楚。PECHER等[45]認(rèn)為水合物穩(wěn)定帶之下的游離氣有可能沿著由水合物包裹的通道運(yùn)移至淺表層,由于沒(méi)有足夠的自由水,氣相的甲烷并不會(huì)在運(yùn)移過(guò)程中結(jié)晶形成水合物。HO等[46]指出,以水為主要成分的流體噴口含有一定的熱量,會(huì)加熱噴口附近的沉積物,進(jìn)而導(dǎo)致穩(wěn)定帶的減薄,形成局部的穹窿狀BSR(圖4a)。然而,研究人員利用電導(dǎo)溫度深度傳感器和測(cè)溫探針獲取了新西蘭外海Hikurangi大陸邊緣的實(shí)際數(shù)據(jù),測(cè)試結(jié)果并不支持上述認(rèn)識(shí)[47]。這表明流體噴口附近淺表層水合物的形成機(jī)制可能遠(yuǎn)比預(yù)想中的復(fù)雜。

流體噴口附近的水合物以其埋藏淺的特點(diǎn),早期的水合物研究中實(shí)物樣品的鉆獲相對(duì)容易。然而,以油井為主的常規(guī)油氣開(kāi)采技術(shù)無(wú)法有效地開(kāi)采這類水合物藏。此外,由于海底表層生態(tài)系統(tǒng)的敏感性,其他開(kāi)采技術(shù)也十分受限。因此,流體噴口附近淺表層水合物藏的經(jīng)濟(jì)價(jià)值十分有限。

圖4 流體噴口附近相關(guān)的地質(zhì)特征:(a)墨西哥灣典型流體噴口地震剖面特征,可見(jiàn)突起于海底的丘狀體,同相軸有上拉特征[42];(b)日本Joetsu盆地水合物丘狀體多波束地形特征,丘狀體內(nèi)部發(fā)育一個(gè)可能因水合物分解而形成的負(fù)地形(麻坑)[43];(c)墨西哥灣Bush海山附近表層水合物實(shí)物(水深541 m),水合物分解產(chǎn)生了大量甲烷氣泡[44]Fig. 4 Geologic feature nearby the fluid venting: (a) seismic section crossing a venting in the GOM; a mound in seafloor and pull-up of events can be seen; (b) multibeam bathymetric map hydrate mound in the Joetsu basin, Japan; a pockmark can be seen in the mound; (c) massive hydrate exposed to the seafloor in the Bush hill, the GOM (water depth=541 m); methane bubbles escape when hydrates decompose

5 砂體中的水合物

水合物更趨于聚集在細(xì)粒沉積物的粗粒夾層中,是最常見(jiàn)的巖性對(duì)水合物分布控制的表現(xiàn)[23,48]。相對(duì)于細(xì)粒沉積物,粗粒沉積物有著更大的孔隙度、滲透率,更適合水合物的富集。日本南海海槽的實(shí)際鉆探資料表明,含水合物的砂質(zhì)沉積物孔隙度可達(dá)55%,而泥質(zhì)沉積物的孔隙度大多小于40%[49]。較大的孔隙空間擁有較小的毛細(xì)壓力,使得水合物可以以較高的飽和度聚集,如南海海槽PSW-1井和Mallik 5L-38井砂層中水合物的飽和度最高可達(dá)80%(圖5a)[50]。此外,含水合物的砂體橫向滲透率在0.00~0.1 md之間,而飽和水的砂體滲透率可在100~1 000 md之間[3]。因此,砂體是海域水合物最理想的儲(chǔ)集空間,位于水合物資源金字塔頂部。

2000年日本MITI南海海槽鉆井最早揭示了水合物在泥砂交互的沉積物中的分布特征。這個(gè)鉆井鉆遇的沉積物由厚度不等的細(xì)砂至中砂和粉砂/粘土互層組成(圖5b)。其中砂層厚度一般小于1 m,是濁積相中半深海未固結(jié)沉積物[51]。水合物富集在碎屑砂質(zhì)沉積物中,飽和度最高為80%,總厚度達(dá)12~14 m(圖5c)。南海海槽進(jìn)一步的研究計(jì)劃(Tokai-oki至Kumano-nada計(jì)劃)中,濁積砂體成為了勘探的重點(diǎn)目標(biāo),并取得了預(yù)期的結(jié)果[11]。

自此以后,根據(jù)水合物油氣系統(tǒng)的思想尋找砂體中的水合物成為了水合物勘探研究的重要任務(wù)之一,例如墨西哥灣JIP II航次、印度大陸邊緣NPGH01航次和韓國(guó)UBGH02航次。JIP II航次自西向東分別在墨西哥灣Alaminos Canyon 21區(qū)塊、Walker Ridge 313區(qū)塊和Green Canyon 955區(qū)塊設(shè)置了若干站位,以研究塊體搬運(yùn)沉積(Mass Transport Deposits, MTD)、盆底扇、濁積水道?天然堤復(fù)合體系,以及遠(yuǎn)端扇等環(huán)境中砂體對(duì)水合物的控制作用(圖6)[12]。JIP II航次鉆探結(jié)果揭示,砂層對(duì)水合物的分布起到了很好的控制作用,水合物可以在遠(yuǎn)離穩(wěn)定帶底界的砂層中聚集,飽和度達(dá)50%~90%[55]。

圖5 日本南海海槽以砂體為目標(biāo)的水合物站位地震剖面、巖芯和含水合物的砂質(zhì)沉積物實(shí)物樣品:(a)設(shè)定該站位的依據(jù)主要包括明顯的BSR、BSR之上的強(qiáng)反射及高速異常體、水道特征以及濁流沉積體[52];(b)南海海槽某保壓取芯的X射線CT掃描圖,粘土層、粉砂層和砂層清晰可見(jiàn)[53];(c)南海海槽某保壓取芯中含水合物的砂質(zhì)沉積物實(shí)物樣品,水合物以孔隙充填的形式賦存于砂質(zhì)沉積物的孔隙空間中[54]Fig. 5 Core, hydrate-bearing sand-dominated sediments sample, and seismic profiles crossing hydrate sites in the Nankai trough: (a) existence of BSR, strong seismic reflectors above BSR, relatively higher interval velocity and turbidite sequence are the four requirements for the hydrate sites[52]; (b) X-ray CT image of pressure core in the Nankai trough; clay layer, silt layer and sand layer can be distinguished clearly[53];(c) hydrate-bearing sand-dominated sediment sample in the Nankai trough, hydrate occur in the porespace in the sediments

圖6 墨西哥灣JIP II航次以各類砂體為目標(biāo)的站位:(a) AC21站位的目標(biāo)砂體為富砂MTD[12];(b)和(c)GC955站位和WR 313站位的目標(biāo)砂體為水道?天然堤復(fù)合體系中天然堤砂體,WR313站位含藍(lán)色層、橘色層和綠色層三套砂層[12,55]Fig. 6 Hydrate sites aiming at sand layers in JIP II leg in the GOM: (a) the target sand layer of site AC21 is sand-rich MTD; (b) and (c) the target sand layers of site GC955 and WR313 are channel-levee complex sand bodies; there are three sand layers in site WR313, which are yellow unit, orange unit and green unit[12,55]

印度大陸邊緣NGHP-01-15站位設(shè)置在了水道?天然堤復(fù)合體系之上,鉆遇了5~8 m厚的砂層(圖7a和圖7b)。這些砂質(zhì)沉積物可能是深部的水道充填或天然堤沉積物,其中水合物飽和度為20%~40%。韓國(guó)UBGH02航次大部分站位都以富砂濁積物為施鉆目標(biāo)。18個(gè)鉆井的鉆探結(jié)果顯示,水合物主要有兩種賦存形式:①砂質(zhì)沉積物中的孔隙充填型水合物;②泥質(zhì)沉積物中的裂縫充填型和結(jié)核結(jié)殼型、浸染狀水合物[31]。砂層中的水合物飽和度與砂質(zhì)含量呈正相關(guān),泥質(zhì)沉積物中這樣的關(guān)系并不明顯(圖7d)[56]。UBGH02航次的鉆探結(jié)果表明,盆地范圍內(nèi)大范圍分布砂質(zhì)濁流沉積體是郁龍盆地水合物最重要的儲(chǔ)集體。

如前所述,海洋沉積物中相對(duì)粗粒的砂層對(duì)水合物的分布起到了很好的控制作用。砂層中孔隙度較大、水合物飽和度高,水合物分解后沉積物滲透率較大,因此砂質(zhì)儲(chǔ)集體中的水合物藏是最理想的勘探和開(kāi)采目標(biāo)。然而由于水合物賦存的遠(yuǎn)洋深海背景,淺層的砂體并不常見(jiàn),高昂的深水勘探費(fèi)用是這類水合物藏需要面對(duì)的挑戰(zhàn)之一。

圖7 以濁積砂體為目標(biāo)的印度大陸邊緣NGHP-01-15站位和韓國(guó)郁龍盆地UBGH02-6站位:(a)NGHP-01-15站位設(shè)置在水道東側(cè)的天然堤之上,砂體出現(xiàn)深度為80 mbsf左右;(b)80 mbsf處的砂層特征[57];(c)UBGH02-6站位的目標(biāo)層位是淺部半遠(yuǎn)洋沉積層中的濁積砂層,該層沉積物是一套透鏡狀的碎屑流沉積[58];(d)沉積物中水合物的飽和度與砂質(zhì)顆粒含量呈明顯的正相關(guān)[31]Fig. 7 Site NGHP-01-15 and site UBGH02-6 aiming at turbidite sands in the margin of India and the Ulleung Basin: (a) site NGHP-01-15 is located on the levee of channel, and the sand layer occure in the depth of 80 mbsf; (b) sand layer in 80 mbsf[57]; (c) the target layer of UBGH02-6 is the turbidite sand section in the shallow hemipelagic sediments, which is composed of lenticular debris depositions[58]; (d) a nearly linear increase in gas hydrate saturation with increasing sand content in sandy sediment; whereras gas hydrate saturations within muddy sediments was independent of sand content[31]

6 結(jié)論與討論

根據(jù)水合物的產(chǎn)出特征可以將其分為細(xì)粒沉積物中的水合物、含裂隙帶中的水合物、流體噴口附近的水合物、砂體中的水合物四類。細(xì)粒沉積物中浸染狀水合物的原位儲(chǔ)量巨大,但水合物飽和度較低、沉積物滲透性較差;流體噴口附近的水合物分布范圍十分局限。與構(gòu)造活動(dòng)(斷層)相關(guān)的裂縫充填型水合物藏分布面積常具區(qū)域性。綜合考慮開(kāi)采工藝難度和生態(tài)環(huán)境效應(yīng),這三類水合物藏的開(kāi)采經(jīng)濟(jì)價(jià)值不高。

淺層海洋砂體具有較高的孔隙度和滲透率,是水合物最好的儲(chǔ)集體類型,水合物可以以高飽和度的孔隙充填形式賦存。砂體中的水合物藏具有最低的開(kāi)采難度和最優(yōu)的開(kāi)采潛力,常規(guī)的油氣開(kāi)采設(shè)備可適用于砂質(zhì)儲(chǔ)集體中的水合物藏,因此砂質(zhì)儲(chǔ)集體是最具有經(jīng)濟(jì)價(jià)值的水合物開(kāi)采目標(biāo),位于水合物資源金字塔頂部。因此,根據(jù)水合物油氣系統(tǒng)的思想,尋找這些富砂背景下的水合物藏是現(xiàn)在和未來(lái)水合物勘探的重要任務(wù)之一。

水合物所賦存的沉積體具有埋深淺、年代新、沉積環(huán)境復(fù)雜等特點(diǎn)。針對(duì)水合物的研究往往多集中在淺層沉積體,這需要綜合利用高精度二維/三維地震資料、淺剖資料和多波束海底地形資料。此外,深海環(huán)境中沿陸坡傾向的重力作用與沿陸坡走向的等深流作用常相互影響,深海懸浮沉積、重力流沉積物再搬運(yùn)及再沉積作用經(jīng)常發(fā)生,形成具有復(fù)雜成因的地形和構(gòu)造,進(jìn)一步影響水合物的分布。加強(qiáng)對(duì)淺層深水沉積體沉積學(xué)的研究,是我們進(jìn)一步認(rèn)識(shí)和掌握水合物成藏機(jī)制的重要途徑。

[1] MORIDIS G J, KOWALSKY M B, PRUESS K. TOUGH+Hydrate v1.0 User's Manual: A Code for the Simulation of System Behavior in Hydrate-Bearing Geologic Media[M]. Medium: ED; 2008.

[2] KURIHARA M, SATO A, OUCHI H, et al. prediction of gas productivity from eastern nankai trough methane-hydrate reservoirs[J]. SPE Reservoir Evaluation & Engineering, 2009(3): 477-499.

[3] DALLIMORE S R, COLLETT T S. Scientific Results from the Mallik 2002 Gas Hydrate Production Research Well Program, Mackenzie Delta, Northwest Territories, Canada[R]. Geological Survey of Canada. 2005, 140.

[4] DALLIMORE S R, WRIGHT J F, YAMAMOTO K. Appendix D: Update on Mallik, in ENERGY FROM GAS HYDRATES: ASSESSING THE OPPORTUNITIES & CHALLENGES FOR CANADA[R]. 2008. 196-200.

[5] BOSWELL R. Is Gas Hydrate Energy Within Reach?[J]. Science, 2009, 325(5943): 957-958.

[6] COLLETT T S, JOHNSON A H, KNAPP C C, et al. Natural gas hydrates: a review, in Natural gas hydrate-Energy resource potential and associated geologic hazards[M]. T.S. Collett, et al., Editors. 2009.

[7] PAULL C K, MATSUMOTO R. LEG 164 OVERVIEW. in Proceedings of the Ocean Drilling Program: Scientific results[R]. The Program. 2000.

[8] SASSEN R, JOYE S, SWEET S T, et al. Thermogenic gas hydrates and hydrocarbon gases in complex chemosynthetic communities, Gulf of Mexico continental slope[J]. Organic Geochemistry, 1999, 30(7): 485-497.

[9] REES E V L, PRIEST J A, CLAYTON C R I. The structure of methane gas hydrate bearing sediments from the Krishna-Godavari Basin as seen from Micro-CT scanning[J]. Marine and Petroleum Geology, 2011, 28(7): 1283-1293.

[10] LEE M W, COLLETT T S. Characteristics and interpretation of fracture-filled gas hydrate – An example from the Ulleung Basin, East Sea of Korea[J]. Marine and Petroleum Geology, 2013, 47: 168-181.

[11] NOGUCHI S, SHIMODA N, TAKANO O, et al. 3-D internal architecture of methane hydrate-bearing turbidite channels in the eastern Nankai Trough, Japan[J]. Marine and Petroleum Geology, 2011, 28(10): 1817-1828.

[12] BOSWELL R, FRYE M, SHELANDER D, et al. Architecture of gas-hydrate-bearing sands from Walker Ridge 313, Green Canyon 955, and Alaminos Canyon 21: Northern deepwater Gulf of Mexico[J]. Marine and Petroleum Geology, 2012, 34(1): 134-149.

[13] KVENVOLDEN K, BARNARD L. Hydrates of natural gas in continental margins[J]. Studies in continental margin geology, 1983, 34: 631-640.

[14] BOSWELL R, COLLETT T. The gas hydrates resource pyramid[J]. Fire In the Ice, 2006, 6(3): 5-7.

[15] COLLETT T S. Gas Hydrate Petroleum Systems in Marine and Arctic Permafrost Enivronments: in 29th Annual Gulf Coast Setion SEPM Foundation Bob F. Perkins Research Conference, Unconventional Energy Resources: Making the Unconventional Conventional[C]. Houston, Texas: the Gulf Coast Section SPEM Foudation. 2009.

[16] BOSWELL R, KLEINBERG R, COLLETT T, et al. Exploration priorities for marine gas hydrate resources[J]. Fire in the Ice: Methane hydrate newsletter, 2007(Spring/Summer issue): 11-13.

[17] SPINELLI G A, GIAMBALVO E R, FISHER A T, Sediment permeability, distribution, and influence on fluxes in oceanic basement, in Hydrogeology of the oceanic lithosphere[M]//E.E. Davis and H. Elderfield, Editors. Cambridge University Press. 2004, 151-188.

[18] HUYSMANS M, DASSARGUES A. Review of the use of Péclet numbers to determine the relative importance of advection and diffusion in low permeability environments[J]. Hydrogeology Journal, 2005, 13(5/6): 895-904.

[19] XU W, RUPPEL C. PREDICTING THE OCCURRENCE, distribution, and evolution of methane gas hydrate in porous marine sediments[J]. Journal of Geophysical Research, 1999, 104(B3): 5081-5095.

[20] PAULL C K, USSLE W, BOROWSKI W S. Sources of Biogenic Methane to Form Marine Gas Hydrates In Situ Production or Upward Migration?[J]. Annals of the New York Academy of Sciences, 1994, 715(1): 392-409.

[21] SHIPBOARD SCIENTIFIC PARTY. Site 994, in Proc. ODP, Init. Repts.[R]. 164, C.K. Paull, et al., Editors. College Station, TX (Ocean Drilling Program). 1996. 99-174.

[22] KRAEMER L M, OWEN R M, DICKENS G R. LITHOLOGY OF THE UPPER GAS HYDRATE ZONE, BLAKE OUTER RIDGE: A LINK BETWEEN DIATOMS, POROSITY, AND GAS HYDRATE[R]. in Proceedings of the Ocean Drilling Program: Scientific results. The Program. 1995.

[23] GINSBURG G, SOLOVIEV V, MATVEEVA T, et al. SEDIMENT GRAIN-SIZE CONTROL ON GAS HYDRATE PRESENCE, SITES 994, 995, AND 9971[R]. in Proceedings of the Ocean Drilling Program.Scientific results. 2000. Ocean Drilling Program.

[24] BOROWSKI W S. A review of methane and gas hydrates in the dynamic, stratified system of the Blake Ridge region, offshore southeastern North America[J]. CHEMICAL GEOLOGY, 2004, 205(3/4): 311-346.

[25] MILKOV A V, SASSEN R. Economic geology of offshore gas hydrate accumulations and provinces[J]. Marine and Petroleum Geology, 2002, 19(1): 1-11.

[26] TORRES M E, TRéHU A M, CESPEDES N, et al. Methane hydrate formation in turbidite sediments of northern Cascadia, IODP Expedition 311[J]. Earth and Planetary Science Letters, 2008, 271(1/4): 170-180.

[27] RUPPEL C, KINOSHITAB M. Fluid, methane, and energy flux in an active margin gas hydrate province, offshore Costa Rica[J]. Earth and Planetary Science Letters, 2000, 179(1): 153-165.

[28] COOK A E, GOLDBERG D. Extent of gas hydrate filled fracture planes: Implications for in situ methanogenesis and resource potential[J]. Geophysical Research Letters, 2008, 35(15): L15302.

[29] SUESS E, BOHRMANN G, RICKER D, et al. Properties and Fabric of Near-surface Methane Hydrates at Hydrate Ridge, Cascadia margin: in the 4th International Conference on Gas Hydrates[C]. 2002. Yokohama, Japan.

[30] RIEDEL M, COLLETT T, MALONE M, et al. Proceedings of the Integrated Ocean Drilling Program, Volume 311[R]. in Integrated Ocean Drilling Program Management International. Washington, D. C. 2006.

[31] RYU B-J, COLLETT T S, RIEDEL M, et al. Scientific results of the Second Gas Hydrate Drilling Expedition in the Ulleung Basin (UBGH2)[J]. Marine and Petroleum Geology, 2013, 47: 1-20.

[32] COOK A E, ANDERSON B I, RASMUS J, et al. Electrical anisotropy of gas hydrate-bearing sand reservoirs in the Gulf of Mexico[J]. Marine and Petroleum Geology, 2012, 34(1): 72-84.

[33] HUTCHINSON D R, SHELANDER D, DAI J, et al. Site selection for DOE/JIP gas hydrate drilling in the northern Gulf of Mexico[J]. 2008.

[34] PARK K P, BAHK J J, KWON Y, et al. Korean National Program Expedition Confirms Rich Gas Hydrate Deposits in the Ulleung Basin, East Sea[J]. Fire In the Ice, Methane Hydrate Newsletter, 2008, 8(2): 6-9.

[35] CHUN J H, RYU B J, SON B K, et al. Sediment mounds and other sedimentary features related to hydrate occurrences in a columnar seismic blanking zone of the Ulleung Basin, East Sea, Korea[J]. Marine and Petroleum Geology, 2011, 28(10): 1787-1800.

[36] DEWANGAN P, SRIRAM G, RAMPRASAD T, et al. Fault system and thermal regime in the vicinity of site NGHP-01-10, Krishna–Godavari basin, Bay of Bengal[J]. Marine and Petroleum Geology, 2011, 28(10): 1899-1914.

[37] MAX M D, JOHNSON A H, DILLON W P, Natural Gas Hydrate: A Diagenetic Economic Mineral Resource in Economic Geology of Natural Gas Hydrate (Coastal Systems and Continental Margins)[J]. Springer Netherlands: Dordrecht, The Netherland. 2006, 131-190.

[38] WESSELS M, BUSSMANN I, SCHLOEMER S, et al. Distribution, morphology, and formation of pockmarks in Lake Constance, Germany[J]. Limnology and Oceanography, 2010, 55(6): 2623-2633.

[39] MACDONALD I R, GUINASSO N L, SASSEN R, et al. Gas hydrate that breaches the sea floor on the continental slope of the Gulf of Mexico[J]. Geology, 1994, 22(8): 699-702.

[40] BROOKS J M, KENNICUTT M C, FAY R R, et al. Thermogenic gas hydrates in the gulf of Mexico[J]. Science (New York, N.Y.), 1984, 225(4660): 409-411.

[41] ROBERTS H H. High Resolution Surficial Geology of the Louisiana Middle-to-Upper Continental Slope[J]. Trans. Gulf Coast Assoc. Geol. Societies, 1995, 45: 503.

[42] WOOD W T, HART P E, HUTCHINSON D R, et al. Gas and gas hydrate distribution around seafloor seeps in Mississippi Canyon, Northern Gulf of Mexico, using multi-resolution seismic imagery[J]. Marine and Petroleum Geology, 2008, 25(9): 952-959.

[43] MATSUMOTO R, HIROMATSU M, SATO M. Fluid flowfand evolution of gas hydrate mounds of Joetsu basin, eastern margin of Japan Sea: constraints from high- resolution geophysical survey by AUV: in the 7th International Conference on gas hydrates(ICGH 2011)[C]. Edinburgh, Scotland, United Kindom. 2011.

[44] SASSEN R, MACDONALD I R, GUINASSO N L, et al. Bacterial methane oxidation in sea-floor gas hydrate: Significance to life in extreme environments[J]. Geology, 1998, 26(9): 851-854.

[45] PECHER I A, HENRYS S A, WOOD W T, et al. Focussed fluid flow on the Hikurangi Margin, New Zealand—Evidence from possible local upwarping of the base of gas hydrate stability[J]. Marine Geology, 2010, 272(1/4): 99-113.

[46] HO S, CARTWRIGHT J A AND IMBERT P. Vertical evolution of fluid venting structures in relation to gas flux, in the Neogene-Quaternary of the Lower Congo Basin, Offshore Angola[J]. Marine Geology, 2012, 332-334: 40-55.

[47] NAUDTS L, GREINERT J, POORT J, et al. Active venting sites on the gas-hydrate-bearing Hikurangi Margin, off New Zealand: Diffusive- versus bubble-released methane[J]. Marine Geology, 2010, 272(1/4): 233-250.

[48] BAHK J J, KIM D H, CHUN J H, et al. Gas hydrate occurrences and their relation to host sediment properties: Results from Second Ulleung Basin Gas Hydrate Drilling Expedition, East Sea[J]. Marine and Petroleum Geology, 2013, 47: 21-29.

[49] UCHIDA T, TSUJI T. Petrophysical properties of natural gas hydrates-bearing sands and their sedimentology in the Nankai Trough[J]. Resource Geology, 2004, 54(1): 79-87.

[50] UCHIDA T, WASEDA A, NAMIKAWA T. Methane accumulation and high concentration of gas hydrate in marine and terrestrial sandy sediments[J]. Natural Gas Hydrates—Energy Resource Potential and Associated Geologic Hazards, edited by T. Collett et al., AAPG Mem, 2009, 89: 401-413.

[51] AKIHISA B B K, TEZUKA K, SENOH O, et al. Well Log Evaluation Of Gas Hydrate Saturation In The Miti Nankai-Trough Well, Offshore South East Japan: in SPWLA 43rd Annual Logging Symposium[C]. 2002, Society of Petrophysicists and Well-Log Analysts: Oiso, Japan.

[52] MASUDA Y, YAMAMOTO K, TADAAKI S, et al. Japan’s Methane hydrate R&D program progresses to Phase 2[J]. Fire In The Ice, NETL Methane Hydrates R&D, 2009, 9(4): 1-6.

[53] YAMAMOTO H, KOJI, INADA, et al. Pressure CoreSampling in the Eastern Nankai Trough[J]. Fier in the ice, 2012, 12(2): 1-6.

[54] TSUJI Y, FUJII T, HAYASHI M, et al. Methane-hydrate occurrence and distribution in the eastern Nankai Trough, Japan: Findings of the Tokai-oki to Kumano-nada methane-hydrate drilling program[M]. in Natural gas hydrates—Energy resource potential and associated geologic hazards: AAPG Memoir 89, T. Collett, et al., Editors. 2009. 385-400.

[55] BOSWELL R, COLLETT T S, FRYE M, et al. Subsurface gas hydrates in the northern Gulf of Mexico[J]. Marine and Petroleum Geology, 2012, 34(1): 4-30.

[56] BAHK J J, KIM G Y, CHUN J H, et al. Characterization of gas hydrate reservoirs by integration of core and log data in the Ulleung Basin, East Sea[J]. Marine and Petroleum Geology, 2013, 47: 30-42.

[57] RIEDEL M, COLLETT T S, SHANKAR U. Documenting channel features associated with gas hydrates in the Krishna–Godavari Basin, offshore India[J]. Marine Geology, 2011, 279(1/4): 1-11.

[58] LEE S, BAHK J, KIM H, et al. Changes in the frequency, scale, and failing areas of latest Quaternary (<29.4 cal. ka B.P.) slope failures along the SW Ulleung Basin, East Sea (Japan Sea), inferred from depositional characters of densely dated turbidite successions[J]. Geo-Marine Letters, 2010, 30(2): 133-142.

The Progress and Revelations of Marine Gas Hydrate Explorations: Reservoir Characteristics

QIAO Shao-hua1,2, SU Ming1,2, YANG Rui1,2, KUANG Zeng-gui3, LIANG Jin-qiang3, WU Neng-you1,2
(1. Key Laboratory of Gas Hydrate, Chinese Academy of Sciences, Guangzhou 510640, China;2. Guangzhou Center for Gas Hydrate Research, Chinese Academy of Sciences, Guangzhou 510640, China;3. Guangzhou Marine Geological Survey, Guangzhou 510760, China)

The types of gas hydrate-bearing sediments were reviewed and summarized systematically based on the worldwide hydrate exploration results. Four different gas hydrate types or occurrences are known: (1) low-concentration, disseminated hydrate in mostly impermeable clays, (2) fracture filling hydrate in clay-dominated fractured sediments, (3) massive hydrate exposed on the seafloor around the venting, and (4) pore-filling hydrate in sand-dominated sediments. Fine grained muds and shales have low porosity, low permeability and low hydrate saturation, the prospects for economic recovery of natural gas from this highly disseminated hydrate are very poor with current technologies. Commercial recovery of hydrate from ventings is unlikely because of economic and technology hurdles and the probable destruction of sensitive sea-floor ecosystems. The distribution of fracture-filling hydrates is controlled by active faults and micro fractures, and the formation mechanism and in-place resources of this type of hydrate accumulation are still unknown. Coarse grained sediments have large porosity, high permeability, and the pore-filling hydrate have high saturation, which means sand reservoirs are conducive to existing well-based production technologies. These four types of hydrate accumulations are located in the resource pyramid from the bottom to the top. Search for hydrate in sand-dominated reservoirs using hydrate petroleum system as guiding ideology is one of the most important researching directions for hydrate exploration in the future.

gas hydrate; gas hydrate resource pyramid; reservoir characteristics; sand-dominated reservoir; hydrate production

TK01;TE1;P736

A

10.3969/j.issn.2095-560X.2015.05.007

2095-560X(2015)05-0357-10

2015-01-16

2015-08-28

國(guó)家自然科學(xué)青年基金項(xiàng)目(41202080);中國(guó)石油科技創(chuàng)新基金研究項(xiàng)目(2013D-5006-0105);油氣藏地質(zhì)及開(kāi)發(fā)工程國(guó)家重點(diǎn)實(shí)驗(yàn)室(成都理工大學(xué))開(kāi)放基金項(xiàng)目(PLC201407);中國(guó)科學(xué)院重點(diǎn)部署項(xiàng)目(KGZD-EW-301)

? 通信作者:吳能友,E-mail:wuny@ms.giec.ac.cn

喬少華(1988-),博士研究生,從事天然氣水合物成藏地質(zhì)條件分析等方面的科研工作。

吳能友(1965-),研究員,博士生導(dǎo)師,主要從事海洋天然氣水合物成藏機(jī)制和資源評(píng)價(jià)、海洋石油天然氣資源評(píng)價(jià)等方面的科研工作。

猜你喜歡
砂質(zhì)噴口細(xì)粒
不同成因砂質(zhì)黃土物理力學(xué)特性和濕陷性評(píng)價(jià)研究
噴口形狀對(duì)噴水推進(jìn)器性能的影響
飛參數(shù)據(jù)在某型飛機(jī)噴口工作監(jiān)控中的應(yīng)用
細(xì)粒級(jí)尾砂高濃度膠結(jié)充填試驗(yàn)研究與工業(yè)應(yīng)用
河北省砂質(zhì)岸線修復(fù)現(xiàn)狀及思考
基于砂質(zhì)海岸帶海水入侵模型試驗(yàn)分析研究
浙江杭州地鐵砂質(zhì)地層深基坑土壓力分析研究
白云凹陷SQ13.8層序細(xì)粒深水扇沉積模式
小蜘蛛
高速?zèng)_床噴口壓力及位置對(duì)工件出模影響分析
丰都县| 长泰县| 略阳县| 镇原县| 中卫市| 柳林县| 柘荣县| 益阳市| 盖州市| 贺兰县| 濮阳县| 崇州市| 哈密市| 汾阳市| 阜城县| 阿拉善左旗| 会泽县| 邮箱| 环江| 万全县| 阳曲县| 瓮安县| 柘城县| 扬中市| 甘孜| 长顺县| 泰安市| 化德县| 梅州市| 金山区| 奇台县| 沂南县| 沾益县| 雷州市| 屯门区| 凌海市| 孝感市| 琼结县| 旬邑县| 长寿区| 乐山市|