李景龍, 袁永澤, 李丹丹, 楊雪婷, 耿 輝, 熊 麗, 劉德立
(華中師范大學(xué) 生命科學(xué)學(xué)院, 武漢 430079)
?
假單胞菌HS-D36偏苯三酚1, 2-雙加氧酶克隆表達(dá)與催化特性研究
李景龍, 袁永澤, 李丹丹, 楊雪婷, 耿 輝, 熊 麗, 劉德立*
(華中師范大學(xué) 生命科學(xué)學(xué)院, 武漢 430079)
由pnpC編碼的偏苯三酚1,2-雙加氧酶(Hydroxyquinol 1,2-dioxygenase,PnpC)是微生物分解硝基芳香族類環(huán)境污染物的關(guān)鍵酶.本研究從對硝基苯酚(p-nitrophenol,PNP)降解菌HS-D38(Pseudomonassp.)中克隆pnpC基因,利用E.coliBL21(DE3)高效表達(dá)重組PnpC,通過親和色譜純化并分析其催化特性.實(shí)驗(yàn)結(jié)果表明:HS-D36的pnpC開放閱讀框長度為873 bp,編碼290個(gè)氨基酸,酶蛋白相對分子量33 KD;20℃、異丙基硫代-β-半乳糖苷(Isopropyl β-D-1-thiogalactopyranoside,IPTG)誘導(dǎo)可高效表達(dá)重組PnpC;重組酶經(jīng)Ni-NTA親和色譜一步分離可達(dá)到電泳純;純酶比活力9.3 U/mg,純化倍數(shù)37.2,活力收率23.8%;重組PnpC催化鄰苯二酚開環(huán)反應(yīng)的最適溫度45℃、最適pH 5.0;Lineweaver-Burk雙倒數(shù)作圖表明PnpC對鄰苯二酚降解的米氏常數(shù)(Km)為21.95 mol/L、最大反應(yīng)速度(Vmax)為2.68 mol/(min·mg);Fe3+、Cu2+、Fe2+和Zn2+對該酶具激活作用,Ni2+則顯示抑制效應(yīng).
對硝基苯酚; 偏苯三酚1, 2-雙加氧酶; 表達(dá)純化; 催化特性
對硝基苯酚(p-nitrophenol;PNP)廣泛用于化學(xué)合成農(nóng)藥、醫(yī)藥和染料.化工生產(chǎn)釋放以及有機(jī)磷農(nóng)藥(如甲基對硫磷)降解產(chǎn)生的PNP是環(huán)境污染的重要來源,嚴(yán)重危害公共健康[1].PNP是國際環(huán)保組織規(guī)定的優(yōu)先監(jiān)測的污染物之一,水體殘留上限為10 ng/L[2].PNP水溶性較強(qiáng),易擴(kuò)散且殘留期長,是環(huán)境修復(fù)的重要對象,在水環(huán)境修復(fù)領(lǐng)域尤為受關(guān)注[3].與傳統(tǒng)的化學(xué)降解比較,利用微生物代謝或關(guān)鍵酶降解PNP具有高效綠色、無二次污染等優(yōu)點(diǎn),是目前PNP環(huán)境修復(fù)研究中的熱點(diǎn)[4-5].
自然界存在多種具有PNP降解特性的微生物,包括Pseudomonassp.、Bacillussp.、Rhodococcussp.、Arthrobactersp.、Burkholdriasp、Moraxellasp.和Flavobacteriumsp.[6-8].PNP微生物降解主要通過苯二酚和苯三酚途徑:革蘭氏陰性菌以苯二酚途徑為主, 革蘭氏陽性菌多采用苯三酚途徑,但也有例外[8-10].細(xì)菌偏苯三酚1, 2-雙加氧酶(PnpC)是苯三酚途徑關(guān)鍵酶之一,它負(fù)責(zé)催化PNP脫硝基產(chǎn)物偏苯三酚的開環(huán)反應(yīng),這是芳香烴裂解為三羧酸循環(huán)前體進(jìn)入徹底氧化途徑的限速步驟[11-12].最近,細(xì)菌PNP降解操縱子克隆研究揭示革蘭氏陰性菌也有pnpC同源基因[13-14].其酶學(xué)功能還需要進(jìn)一步研究.
本研究從PNP高效降解菌HS-D36(實(shí)驗(yàn)室分離鑒定為銅綠假單胞菌[15])基因組中克隆了pnpC全長序列,表達(dá)并分離純化了重組PnpC蛋白,研究了其酶學(xué)特性.以此為基礎(chǔ)可以深入探討微生物降解PNP的生物化學(xué)機(jī)制.
1.1 菌株、質(zhì)粒與主要試劑
銅綠假單胞菌(Pseudomonasaeruginosa) HS-D36為本實(shí)驗(yàn)室分離保藏.E.coliDH5α與BL21(DE3)由本實(shí)驗(yàn)室保存.pMD18-T、pET28、限制性內(nèi)切酶NdeI、XhoI以及T4DNA連接酶購自Takara公司.氨芐青霉素、硫酸卡那霉素(Kana)、IPTG與DNA回收試劑盒為Takara公司產(chǎn)品.Ni-NTA親和色譜填料與色譜柱購自GE Healthcare公司.鄰苯二酚標(biāo)準(zhǔn)品為Sigma Aldrich產(chǎn)品.其它常規(guī)生化試劑均為分析純.
1.2 pnpC基因克隆與pET-pnpC的構(gòu)建
根據(jù)GenBank公布的pnpC基因序列設(shè)計(jì)引物.正、反向引物分別為5’-CGGCATATGACC-GATCATTACAAAG-3’和5’-TCGCTCGAG-TTATTCCGCCTCCATG-3’(劃線處依次為NdeI和XhoI酶切位點(diǎn)).以HS-D36基因組為模板,PCR擴(kuò)增pnpC基因.PCR程序設(shè)定:94℃預(yù)變性2 min;94℃變性50 s,50℃退火50 s,72℃延伸1 min,循環(huán)30次;72℃延伸10 min.純化PCR產(chǎn)物,插入到pMD18-T構(gòu)建重組質(zhì)粒 pMD-pnpC,并轉(zhuǎn)化E.coliDH5α, 酶切鑒定陽性克隆并測序.NdeI和XhoI雙酶切pMD-pnpC,并亞克隆到pET28構(gòu)建重組表達(dá)質(zhì)粒pET-pnpC,轉(zhuǎn)化E.coliBL21并篩選陽性克隆.
1.3 重組PnpC的誘導(dǎo)表達(dá)
過夜活化E.coliBL21/ pET-pnpC,轉(zhuǎn)接到新鮮LB培養(yǎng)基(含50 μg/mL Kana).恒溫?fù)u床37℃、150 r/min培養(yǎng)2~3 h,檢測菌液OD600.在對數(shù)期(OD600=0.6)加入1 mmol/L IPTG誘導(dǎo)目的蛋白,培養(yǎng)物于37℃繼續(xù)生長8 h或于20℃生長24 h.間隔取樣,10,000 g、10 min離心,收集菌體.SDS樣品緩沖液處理,沸水浴10 min,裂解菌體細(xì)胞,短時(shí)冰浴后離心(5,000 g、2 min)取上清液.SDS-PAGE分析重組PnpC表達(dá).
1.4 親和色譜純化重組PnpC
誘導(dǎo)培養(yǎng)物于20℃生長24 h后10,000 g、10 min離心集菌, 50 mmol/L PBS(pH 7.5)洗滌兩次.50 mmol/L PBS重懸,置冰浴中,間歇超聲破碎(0.5s/0.5s) 15 min.4℃、15000 g離心30 min,收集上清,即PnpC粗酶液,取5 mL用于親和色譜純化.Ni-NTA親和柱體積1 mL,以10 mL緩沖液(20 mmol/L PBS、300 mmol/L NaCl、10 mmol/L咪唑、pH 8.0)平衡色譜柱,粗酶上樣量5 mL,充分結(jié)合后以10 mL緩沖液(20 mmol/L PBS、300 mmol/L NaCl、60 mmol/L咪唑、pH 8.0)漂洗,最后用緩沖液(20 mmol/L PBS、300 mmol/L NaCl、150 mmol/L咪唑、pH 8.0)洗脫目的蛋白.根據(jù)Bradford法測定蛋白濃度[16].
1.5 重組PnpC活性測定
PnpC活性測定參照文獻(xiàn)[17].以鄰苯二酚標(biāo)準(zhǔn)品為底物,檢測單位時(shí)間內(nèi)產(chǎn)物順, 順-己二烯二酸的生成量(A260增加率).定義30℃、1分鐘催化產(chǎn)生1 μmol順, 順-己二烯二酸所需的酶量為1個(gè)酶活力單位.
1.6 重組PnpC催化特性分析
設(shè)定溫度梯度15、30、45、60和75℃,測定不同溫度下的PnpC活性.調(diào)節(jié)酶測活緩沖液pH為4.0、5.0、6.0、7.0、8.0、9.0、10.0、11.0和12.0,在上述梯度pH下分別測定PnpC活性.酶反應(yīng)系統(tǒng)中添加硫酸鎳、硫酸銅、氯化鋅、氯化錳、氯化亞鐵、氯化鐵或氯化鈷,控制Ni2+、Cu2+、Zn2+、Mn2+、Fe2+、Fe3+或Co2+終濃度為200 μM,檢測PnpC活性.設(shè)定鄰苯二酚在酶反應(yīng)體系中終濃度為1.0、1.3、1.7、2.5和5.0 μM,檢測反應(yīng)初速度,Lineweaver-Burk作圖分析Km和Vmax.
2.1 pnpC基因的克隆與表達(dá)
以HS-D36基因組為模板,PCR擴(kuò)增pnpC基因,在約870 bp處出現(xiàn)特異條帶(圖1A).PCR產(chǎn)物插入pMD18-T,轉(zhuǎn)化E.coliDH5α.提取質(zhì)粒,單酶切鑒定正確,雙酶切釋放約870 bp的目的條帶(圖1B、C).挑選陽性克隆,送公司測序.序列分析表明pnpC開放閱讀框873 bp,蛋白質(zhì)一級結(jié)構(gòu)290個(gè)氨基酸殘基,理論分子量約為33 KD.
(A)PCR 產(chǎn)物; (B)pMD-pnpC用內(nèi)切酶XhoI酶切檢測; (C)pMD-pnpC用.NdeI 和XhoI限制性內(nèi)切酶雙酶切檢測
pET-pnpC轉(zhuǎn)化E.coliBL21(DE3), IPTG誘導(dǎo),SDS-PAGE分析證明重組蛋白表達(dá)成功,特異條帶出現(xiàn)在約35 KD位置,符合HS-D36中PnpC-His6的理論分子量(圖2A).37℃誘導(dǎo)表達(dá)的PnpC主要為包涵體,上清中含量較低(圖2A).低溫誘導(dǎo)可抑制包涵體形成,提高可溶性表達(dá).如圖2B所示,20℃誘導(dǎo)表達(dá)的PnpC主要分布于上清液.
2.2 親和色譜分離純化重組PnpC
酶上清液經(jīng)Ni-NTA親和色譜分離純化獲得了電泳純PnpC(圖3).分離純化后,酶比活力達(dá)到每毫克蛋白9.3個(gè)活力單位,純化倍數(shù)約為37倍,活性回收率接近24%(表1).
(A)E.coli BL21/pET-pnpC在37℃下誘導(dǎo).M,標(biāo)準(zhǔn)蛋白標(biāo)記;1,不誘導(dǎo);2~3,誘導(dǎo)3~8 h;4~5,上清和沉淀;(B)E.coli BL21/pET-pnpC在20℃下誘導(dǎo).M,標(biāo)準(zhǔn)蛋白標(biāo)記;1~2,上層清液和沉淀.
M:標(biāo)準(zhǔn)蛋白質(zhì)標(biāo)記;1:粗酶液;2:60 mmol/L的咪唑洗脫液;3:150 mmol/L的咪唑洗脫液
表1 Ni-NTA親和色譜純化重組PnpC
2.3 重組PnpC的催化性質(zhì)
PnpC催化鄰苯二酚或偏苯三酚的鄰位開環(huán).偏苯三酚極易被氧化,水溶液中氧化產(chǎn)物干擾酶活性測定.本研究選用穩(wěn)定性較強(qiáng)的鄰苯二酚為底物研究重組PnpC的催化特性.該酶催化鄰苯二酚生成順, 順-己二烯二酸的最適溫度和最適pH分別為45℃和5.0(圖4).
圖4 溫度(A)和pH(B)對PnpC活性的影響Fig.4 Effect of temperature (A) and pH (B) on the activity of recombinant PnpC
如表2所示,F(xiàn)e(Ⅲ)、Fe(Ⅱ)、Cu(Ⅱ)、Zn(Ⅱ)和Co(Ⅱ)促進(jìn)酶活力,其中Fe(Ⅲ)、Fe(Ⅱ)和Cu(Ⅱ)是PnpC較強(qiáng)的激活劑.Ni(Ⅱ)則抑制酶活力.
表2 金屬離子對PnpC活力的影響
*對照:將沒有添加任何金屬離子的酶的活力定義為 100%.
酶動(dòng)力學(xué)實(shí)驗(yàn)在45℃、pH5.0條件下進(jìn)行.Lineweaver-Burk作圖顯示PnpC對鄰苯二酚的Km和Vmax分別為22.0 μM和2.7 μmol/(min·mg)(圖5).
圖5 重組PnpC的Lineweaver-Burk作圖Fig.5 Lineweaver-Burk analysis of recombinant PnpC
偏苯三酚1, 2-雙加氧酶是革蘭氏陽性菌苯三酚途徑降解PNP的關(guān)鍵酶,近年有證據(jù)表明pnpC功能基因也存在于革蘭氏陰性菌[18-19].目前已完成的革蘭氏陰性菌pnpC克隆包括假單胞菌屬4例和伯克氏菌屬1例[12-13,19-21].本研究克隆了革蘭氏陰性菌HS-D36(銅綠假單胞菌)pnpC(圖1).該基因與Pseudomonassp. WBC-3pnpC(GenBank注冊號EF577044)高度同源[5].兩者開放閱讀框雖然只有3個(gè)核苷酸差異,卻導(dǎo)致了酶蛋白氨基酸序列上的3個(gè)點(diǎn)突變(Q4H, E5Y和R33Q).運(yùn)用親和色譜純化,Pseudomonassp. WBC-3重組PnpC的活力收率僅為10%[11].本研究證明低溫(20℃)能顯著提高假單胞菌PnpC的可溶性表達(dá)(圖2);同時(shí),親和色譜純化的酶活力回收率升高到24%(表1).說明提高重組PnpC活性表達(dá)水平對于優(yōu)化酶制備技術(shù)具有重要的意義.
已有研究證明PnpC有2種催化機(jī)制,以Fe(Ⅲ)為輔酶的外二醇型(intradiol)雙加氧酶和以Fe(Ⅱ)為輔酶的內(nèi)二醇型(intradiol)雙加氧酶[22-23].本研究中,F(xiàn)e(Ⅲ)激活HS-D36 PnpC (表2),表明該酶具有外二醇型雙加氧酶特征.有趣的是,F(xiàn)e(Ⅱ)也是該酶的激活劑,不僅如此,Cu(Ⅱ)、Zn(Ⅱ)、Co(Ⅱ)等二價(jià)金屬離子均可促進(jìn)該酶活性,盡管程度有差異.說明該酶也可采用內(nèi)二醇型催化機(jī)制.銅綠假單胞菌PnpC特殊的輔酶依賴性可能與一級結(jié)構(gòu)上的氨基酸突變有關(guān),其詳細(xì)機(jī)制還有待驗(yàn)證.
我們已報(bào)道了HS-D36降解PNP包含非典型苯二酚途徑[24].本研究在克隆表達(dá)與分離純化HS-D36 PnpC基礎(chǔ)上提出革蘭氏陰性菌PnpC存在多種金屬輔酶依賴關(guān)系(表2).為深入探討非典型苯二酚途徑的酶學(xué)機(jī)制提供了參考.已有研究證明,革蘭氏陰性菌DLL-E4(臭假單胞菌)和WBC-3(施氏假單胞菌)降解PNP中都涉及部分苯三酚途徑以及PnpA、PnpG等關(guān)鍵酶基因[11,18].說明包括PnpC在內(nèi)的苯三酚雙加氧酶對于細(xì)菌PNP分解代謝具有重要意義,其酶學(xué)特性和作用機(jī)制還有待深入揭示.
[1] Padda R S, Wang C, Hughes J B, et al. Mutagenicity of nitroaromatic degradation compounds [J]. Environmental Toxicology & Chemistry, 2003, 22: 2293-2297.
[2] EPA (US Environmental Protection Agency). Ambient water quality for nitro-phenols[R].EPA-440580063, Washington, DC, USA, 1980.
[3] Letzel S, Goen T, Bader M, et al. Exposure to nitroaromatic explosives and health effects during disposal of military waste [J]. Occupational and Environmental Medicine, 2003, 60: 483-488.
[4] Kulkarni M, Chaudhari A. Biodegradation of p-nitrophenol bypseudomonasputida[J]. Bioresource Technology, 2006, 97: 982-988.
[5] Zhang W M, Zhang J J, Jiang X, et al. Transcriptional activation of multiple operons involved in para-nitrophenol degradation byPseudomonassp. Strain WBC-3.[J]. Appl Environ Microbiol, 2015, 81(1): 220-230.
[6] Bhushan B, Chauhan A, Samanta S K, et al. Kinetics of biodegradation of p-nitrophenol by different bacteria [J]. Biochemical and Biophysical Research Communications, 2006, 274: 626-630.
[7] Zhang S, Sun W, Xu L, et al. Identification of the para-nitrophenol catabolic pathway, and characterization of three enzymes involved in the hydroquinone pathway, inpseudomonassp. 1-7[J]. Bmc Microbiology, 2012, 12(9): 25-27.
[8] Vikram S, Pandey J, Kumar S, et al. Genes involved in degradation of para-nitrophenol are differentially arranged in form of non-contiguous gene clusters inBurkholderiasp. strain SJ98[J]. Plos One, 2013, 8(12): e84766. doi: 10.1371/journal.pone.0084766.
[9] Vikram S, Pandey J, Bhalla N, et al. Branching of the p-nitrophenol (PNP) degradation pathway inburkholderiasp. Strain SJ98: Evidences from genetic characterization of PNP gene cluster[J]. Amb Express, 2012, 2(1): 30.
[10] Min J, Zhang J J, Zhou N Y. The gene cluster for para-nitrophenol catabolism is responsible for 2-Chloro-4-Nitrophenol degradation inBurkholderiaspstrain SJ98[J]. Applied & Environmental Microbiology, 2014, 80(19): 6212-6222.
[11] Min W, Zhang J, Liu H, et al. para-Nitrophenol 4-monooxygenase and hydroxyquinol 1,2-dioxygenase catalyze sequential transformation of 4-nitrocatechol inPseudomonassp. strain WBC-3 [J]. Biodegradation, 2010, 21(6):915-921.
[12] Kwon D Y, Suma Y, Tiwari M, et al. Decomposition of aromatic hydrocarbon intermediates by recombinant hydroxyquinol 1,2-dioxygenase fromArthrobacterchlorophenolicusA6 and its structure characterization[J]. International Biodeterioration & Biodegradation, 2014, 95: 67-75.
[13] 孫 雯, 許 麗, 張雙宇, 等. 來源于假單胞菌4-硝基酚降解基因簇中的偏苯三酚1,2-雙加氧酶基因克隆和功能鑒定 [J]. 中國農(nóng)業(yè)科技導(dǎo)報(bào), 2009, 11(4) : 71-76.
[14] Kwon D Y, Suma Y, Tiwari M, et al. Decomposition of aromatic hydrocarbon intermediates by recombinant hydroxyquinol 1,2-dioxygenase fromArthrobacterchlorophenolicusA6 and its structure characterization[J]. International Biodeterioration & Biodegradation, 2014, 95: 67-75.
[15] Zheng Y L, Liu D L, Wang S, et al. Kinetics and mechanisms of p-nitrophenol biodegradation byPseudomonasaeruginosaHS-D38 [J]. Journal of Environmental Sciences, 2009, 21: 1194-1199.
[16] Bradford M M.A rapid and sencitive method for the quantification of protein utilizing the principle of protein-dye binding [J]. Analytical Biochemistry, 1976, 72(1): 248-254.
[17] Lynda L P, Gerben J Z. Cloning of a gene cluster involved in the catabolism of p-nitrophenol byarthrobactersp. strain JS443 and characterization of thep-nitrophenol monooxygenase [J]. Journal of Bacteriology, 2007, 189(21): 7563-7572.
[18] 沈文靜, 張 靜, 曹 慧, 等. 惡臭假單胞菌DLL-E4對硝基苯酚降解途徑關(guān)鍵基因pnpC的突變分析 [J]. 生態(tài)與農(nóng)村環(huán)境學(xué)報(bào), 2008, 24(4): 77-82.
[19] Shen W J, Liu W D, Zhang J, et al. Cloning and characterization of a gene cluster involved in the catabolism ofp-nitrophenol fromPseudomonasputidaDLL-E4 [J]. Bioresource Technology, 2010, 101: 7516-7522.
[20] 董小軍, 洪 青, 李 戀, 等. 對硝基苯酚降解菌Pseudomonassp. PDS-7 的降解特性及其降解相關(guān)基因的克隆 [J]. 微生物學(xué)報(bào), 2008, 48(11): 1486-1492.
[21] Archan C, Gunjan P, Narinder K S, et al.p-Nitrophenol degradation via 4-Nitrocatechol inBurkholderiasp. SJ98 and cloning of some of the lower pathway genes [J]. Environmental Science & Technology, 2010, 44: 3435-3441.
[22] Marta F, Jana S, Vasili M T, et al. Structure of the hydroxyquinol 1, 2-dioxygenase from nocardioides simplex 3E, a key enzyme involved in polychlorinated aromatics biodegradation [J]. Journal of Biological Chemistry, 2005, 280(2): 21144-21154.
[23] Guzik U, Hupert-Kocurek K, Salek K, et al. Influence of metal ions on bioremediation activity of protocatechuate 3,4-dioxygenase fromStenotrophomonasmaltophiliaKB2[J]. World Journal of Microbiology & Biotechnology, 2013, 29(2): 267-273.
[24] Zheng Y L, Liu D L, Xu H, et al. Biodegradation of p-nitrophenol byPseudomonasaeruginosaHS-D38 and analysis of metabolites with HPLC-ESI/MS [J].International Biodeterioration & Biodegradation, 2009, 63: 1125-1129.
Expression, purification, and characterization of the recombinant hydroxyquinol-1, 2-dioxygenase fromPseudomonassp. strain.
LI Jinglong, YUAN Yongze, LI Dandan, YANG Xueting, GENG Hui, XIONG Li, LIU Deli
(School of Life Science, Central China Normal University, Wuhan 430079)
Hydroxyquinol 1, 2-dioxygenase (PnpC), encoded bypnpCgene, is a key enzyme for bacteria to degrade a series of recalcitrant nitrophenol pollutants, such as p-nitrophenol (PNP). In the present work, apnpCgene from Pseudomonas sp. strain HS-D36 was cloned which was able to degrade PNP efficiently. The open reading frame of thepnpCcontains 873 nucleotides and codes for 290 amino acids (PnpC) with the molecular weight of 33 KD. The recombinant PnpC was highly expressed in E.coli BL21(DE3) as a histidine-tag fusion protein and purified to homogeneity by one step of Ni-NTA affinity chromatography. The specific activity of the purified protein reached at 9.3 U/mg. The optimum temperature and pH of the PnpC for catechol were 45℃ and pH 5.0, respectively. Lineweaver-Burk plot of the PnpC activity against catechol indicated thatKmwas 21.95 mol/L andVmaxwas 2.68 mol/(min·mg). In addition, the enzyme activity was activated by Fe3+, Fe2+, Cu2+, Zn2+, Mn2+, and Co2+, while inhibited by Ni2+.
p-nitrophenol; hydroxyquinol 1, 2-dioxygenase; expression and purification; catalytic property
2015-07-23.
國家自然科學(xué)基金項(xiàng)目(31371893,31071653,31101595).
1000-1190(2015)05-0758-05
Q814.1
A
*通訊聯(lián)系人. E-mail:deliliu2013@163.com.