徐翊軒, 戰(zhàn)文斌, 邢 婧
(中國(guó)海洋大學(xué)教育部海水養(yǎng)殖重點(diǎn)實(shí)驗(yàn)室,山東 青島 266003)
?
溫度與脂多糖對(duì)櫛孔扇貝血細(xì)胞吞噬活力的影響?
徐翊軒, 戰(zhàn)文斌, 邢 婧??
(中國(guó)海洋大學(xué)教育部海水養(yǎng)殖重點(diǎn)實(shí)驗(yàn)室,山東 青島 266003)
貝類無(wú)特異性免疫系統(tǒng),細(xì)胞吞噬是其免疫防御的重要方式之一。在5、10、15、20和25℃養(yǎng)殖條件下,給櫛孔扇貝(Chlamysfarreri)分別注射熒光微球、脂多糖和熒光微球混合液。在注射后的0, 6, 12, 18, 24, 30, 36, 42和48h抽取血細(xì)胞,用熒光標(biāo)記血細(xì)胞以觀察其對(duì)微球的吞噬狀態(tài),用流式細(xì)胞術(shù)測(cè)定血細(xì)胞對(duì)微球的吞噬率。結(jié)果表明,在5個(gè)養(yǎng)殖溫度下,2個(gè)處理組均自6h后扇貝血細(xì)胞內(nèi)即出現(xiàn)吞噬的微球,之后吞噬率逐漸上升,直到18~24h達(dá)到最高峰,隨后逐漸下降。5、10、15、20和25℃條件下,注射熒光微球組血細(xì)胞最大吞噬率分別為8.66%±0.26%、14.00%±0.22%、16.97%±0.55%、25.62%±0.88%和8.97%±0.25%,注射脂多糖和熒光微球混合液組分別血細(xì)胞最大吞噬率為9.75%±0.48%、17.49%± 0.43%、23.13%±0.57%、34.16%±0.97%和10.42%±0.45%。20℃組的兩處理組血細(xì)胞吞噬率顯著高于其他溫度組,其次是15和10℃組,最低是5和25℃組,并且20、15℃組的最大吞噬率出現(xiàn)在18h,其他組均在24h。各養(yǎng)殖溫度組中,脂多糖和熒光微球混合液組血細(xì)胞吞噬率均高于熒光微球組。研究表明:櫛孔扇貝血細(xì)胞的吞噬活力受水溫影響顯著,脂多糖能夠顯著增強(qiáng)扇貝血細(xì)胞的吞噬活力。
櫛孔扇貝; 血細(xì)胞; 吞噬活力; 溫度; 脂多糖
貝類血細(xì)胞是其免疫防御的主要組成部分,血細(xì)胞通過(guò)吞噬、包囊、胞吐及活性氧產(chǎn)生等完成細(xì)胞免疫,還通過(guò)分泌和釋放各種免疫因子參與體液免疫[1-2]。血細(xì)胞的吞噬作用是細(xì)胞免疫的主要方式,吞噬過(guò)程主要包括趨化作用、識(shí)別接觸、內(nèi)化和消化4個(gè)階段[3],最后清除異物。血細(xì)胞吞噬過(guò)程涉及多種因子與細(xì)胞類型,因此在某種程度上能夠反應(yīng)出機(jī)體生理等健康狀況[4-5]。眾多研究發(fā)現(xiàn),環(huán)境因子[6-8]、外源刺激[9-10]和病源感染等[11-13]均會(huì)引起貝類血細(xì)胞吞噬活性的變化。水溫是影響貝類免疫防御的重要環(huán)境因子,研究發(fā)現(xiàn),過(guò)高的水溫是櫛孔扇貝(Chlamysfarreri)大規(guī)模死亡的主要原因之一[14-15],水溫的驟然改變會(huì)引起貝類血細(xì)胞吞噬率、活性氧產(chǎn)量及酶活性等的變化[15-17]。脂多糖是革蘭氏陰性細(xì)菌外膜的組成部分,被稱為固有免疫的重要激活劑之一,具有免疫調(diào)節(jié)作用[18-19],有研究發(fā)現(xiàn)其在激活血細(xì)胞增殖[20]、活化酶原[21]、增強(qiáng)細(xì)胞吞噬活性[22]等方面效果顯著。在雙殼類中, 針對(duì)血細(xì)胞的吞噬作用已開(kāi)展大量研究,目前多應(yīng)用顯微鏡觀察計(jì)數(shù)法、光密度法及流式細(xì)胞術(shù)研究吞噬活性[23]。直接計(jì)數(shù)法比較直觀,但測(cè)定樣品量有限,計(jì)算誤差較大;流式細(xì)胞儀方法測(cè)定血細(xì)胞數(shù)較多,但細(xì)胞本身自發(fā)熒光干擾等因素不能確定吞噬的準(zhǔn)確性。熒光微球是高分子微球,顆粒度均一、穩(wěn)定性好,應(yīng)用于細(xì)胞吞噬率的檢測(cè)具有熒光強(qiáng)度均一、易于觀察、誤差小等優(yōu)點(diǎn),在生物醫(yī)學(xué)領(lǐng)域中示蹤目標(biāo)細(xì)胞、免疫標(biāo)記、藥物載體選擇等方面應(yīng)用廣泛[24],結(jié)合流式細(xì)胞術(shù)檢測(cè)細(xì)胞吞噬率具有準(zhǔn)確、靈敏、直觀等優(yōu)點(diǎn)。因此,采用熒光微球吞噬、流式細(xì)胞儀測(cè)定方法能夠直觀、準(zhǔn)確、快速的測(cè)定血細(xì)胞的吞噬率此方法是目前優(yōu)選的細(xì)胞吞噬測(cè)定方法。
櫛孔扇貝是中國(guó)北方主要的養(yǎng)殖貝類,前期研究發(fā)現(xiàn)水溫突變對(duì)扇貝血細(xì)胞數(shù)量的變化影響顯著,甘露糖刺激能顯著激活血細(xì)胞內(nèi)6種內(nèi)源酶的活力[13]。本文在此基礎(chǔ)上研究櫛孔扇貝在5、10、15、20和25℃養(yǎng)殖水溫下,分別注射熒光微球、脂多糖和熒光微球混合液,觀察血細(xì)胞吞噬狀態(tài),測(cè)定血細(xì)胞吞噬率,研究水溫和脂多糖對(duì)血細(xì)胞吞噬活力的影響,以期為櫛孔扇貝血細(xì)胞吞噬作用的研究提供數(shù)據(jù)。
1.1 實(shí)驗(yàn)動(dòng)物及熒光微球和脂多糖的注射實(shí)驗(yàn)
櫛孔扇貝(Chlamysfarreri)(殼長(zhǎng)(7.0±0.3)cm)采自青島八號(hào)碼頭扇貝養(yǎng)殖場(chǎng),于水溫17℃下暫養(yǎng)。將暫養(yǎng)扇貝隨機(jī)分成5組,分別養(yǎng)殖于水溫為5、10、15、20和25℃的容器中。一周后,將每個(gè)水溫的扇貝隨機(jī)分成3組,每組100只。第一組于閉殼肌注射100μL濃度為109particles/mL的熒光微球(Fluorescent microparticles,F(xiàn)M,Polysciences, 美國(guó);直徑為1μm,微球標(biāo)記藻紅蛋白)磷酸鹽緩沖液(PBS,8g NaCl,0.2g KCl,2.9g Na2HPO4,0.2g KH2PO4,5.58g EDTA,加蒸餾水至1L,pH=7.2);第二組注射100μL脂多糖(Lipopolysaccharide,LPS,Sigma, 德國(guó))和FM的PBS混合液,LPS和FM的終濃度分別為1.0mg/mL和109particles/mL;第三組注射100μL的PBS。分別于處理后0、6、12、18、24、30、36、42和48h,在各養(yǎng)殖溫度下的各實(shí)驗(yàn)組隨機(jī)取扇貝10只,抽取血淋巴,用于觀察血細(xì)胞的吞噬狀態(tài)和測(cè)定血細(xì)胞的吞噬率。
1.2 血細(xì)胞懸液制備
以裝有預(yù)冷抗凝劑(PBSE:8g NaCl,0.2g KCl,2.9g Na2HPO4,0.2g KH2PO4,5.58g EDTA,加蒸餾水至1L,pH=7.2)的無(wú)菌注射器以1∶1比例從取樣扇貝閉殼肌血竇中抽取血淋巴;之后400g 4℃離心10min,以PBS重懸血細(xì)胞沉淀,再離心洗滌2次;最后用PBS重懸,調(diào)整濃度約為107cells/mL,即為血細(xì)胞懸液,用于細(xì)胞標(biāo)記熒光觀察血細(xì)胞吞噬狀態(tài)和流式細(xì)胞術(shù)檢測(cè)血細(xì)胞吞噬率。
1.3 細(xì)胞熒光標(biāo)記及血細(xì)胞吞噬狀態(tài)觀察
血細(xì)胞懸液1mL中加異硫氰酸熒光素(Fluoresceine isothiocyanate,F(xiàn)ITC)的細(xì)胞標(biāo)記溶液(Life technologies, 美國(guó))5μL,于37℃孵育5min,將血細(xì)胞懸液滴在潔凈的載玻片上,室溫濕盒中沉降45min后,棄去懸液,以無(wú)熒光的甘油封片,在熒光顯微鏡下觀察血細(xì)胞的吞噬狀態(tài)。每組樣品重復(fù)測(cè)定3次。
1.4 流式細(xì)胞術(shù)
血細(xì)胞懸液經(jīng)300目篩絹過(guò)濾,用流式細(xì)胞儀(Becton Dickinson,法國(guó))測(cè)定血細(xì)胞的吞噬率。流式細(xì)胞儀正散射光(FS)、側(cè)散射光(SS)和熒光強(qiáng)度(FL)分別表明的是血細(xì)胞的大小、胞質(zhì)顆粒度和熒光強(qiáng)度,結(jié)果應(yīng)用WinMDI 2.9軟件分析血細(xì)胞的吞噬率,以PBS組的熒光強(qiáng)度為血細(xì)胞吞噬率的陰性對(duì)照。血細(xì)胞吞噬率=含熒光微球的血細(xì)胞/測(cè)量血細(xì)胞的總數(shù)×100%,本實(shí)驗(yàn)重復(fù)3次。
1.5 數(shù)據(jù)分析
流式細(xì)胞儀測(cè)定的數(shù)據(jù)用Origin 8.0軟件處理并作圖,用One-way ANOVA統(tǒng)計(jì)分析實(shí)驗(yàn)組與對(duì)照組間的差異,P<0.05表示差異顯著。
2.1 細(xì)胞熒光標(biāo)記及血細(xì)胞吞噬狀態(tài)觀察
熒光顯微鏡下,所有血細(xì)胞均標(biāo)記上了FITC,整個(gè)血細(xì)胞呈現(xiàn)薄薄的綠色熒光,F(xiàn)M呈現(xiàn)出紅色熒光。發(fā)生吞噬的血細(xì)胞,可觀察到在綠色熒光的細(xì)胞內(nèi)出現(xiàn)紅色熒光顆粒,有的細(xì)胞中微球顆粒較多,紅色熒光亮度較強(qiáng),與綠色熒光疊加呈現(xiàn)亮黃色。相同視野下的微分干涉相差顯微鏡觀察,可見(jiàn)血細(xì)胞內(nèi)細(xì)胞核界限清晰,細(xì)胞質(zhì)中有的有顆粒,有的無(wú)顆粒,吞噬的微球呈現(xiàn)出不透光的顆粒(見(jiàn)圖1)。隨著處理時(shí)間延長(zhǎng),血細(xì)胞的吞噬率逐漸增加,隨后緩慢下降,直至實(shí)驗(yàn)結(jié)束。PBS對(duì)照組僅觀察到標(biāo)記上綠色熒光的血細(xì)胞。
(A:熒光顯微鏡觀察結(jié)果;B:相同視野下微分干涉相差顯微鏡觀察結(jié)果。箭頭指示吞噬熒光微球的血細(xì)胞。A: Fluorescence microscopic assay. B: differential interference contrast microscopic assay at the same field of view. The arrows indicate haemocytes phagocytosing fluorescent microparticles.)
圖1 養(yǎng)殖水溫為15℃下注射脂多糖和熒光微球
混合液18h后扇貝血細(xì)胞吞噬狀態(tài)的熒光觀察結(jié)果
Fig.1 Flurescence microscope observation of fluorescent microparticles phagocytosed by haemocytes at 15 ℃
2.2 流式細(xì)胞術(shù)
養(yǎng)殖水溫為5℃時(shí),兩處理組扇貝血細(xì)胞吞噬率均呈現(xiàn)出首先快速上升,至24h達(dá)到最高,之后逐漸下降,至實(shí)驗(yàn)結(jié)束(見(jiàn)圖2),其中,LPS和FM混合液組血細(xì)胞的吞噬率自12h(3.58% ± 0.33%)開(kāi)始顯著高于FM組(3.12% ± 0.28%)(P<0.05)(見(jiàn)圖2A),直至24h到達(dá)最高(9.75% ± 0.48%),仍顯著高于FM組(8.66% ± 0.26%)(P<0.05)(見(jiàn)圖2B),整個(gè)實(shí)驗(yàn)過(guò)程中,注射LPS和FM混合液組在12、18、24、36和42h的血細(xì)胞吞噬率均顯著高于FM組(P<0.05)。PBS組的陰性對(duì)照值一直變化不顯著,平均為0.43% ± 0.11%。
養(yǎng)殖水溫為10℃時(shí),2處理組扇貝血細(xì)胞吞噬率也呈現(xiàn)出首先快速上升,至24h達(dá)到最高,之后逐漸下降,至實(shí)驗(yàn)結(jié)束(見(jiàn)圖3),其中,注射LPS和FM混合液組血細(xì)胞的吞噬率自6h(5.68% ± 0.33%)顯著高于FM組(3.42% ± 0.20%)(P<0.05)(見(jiàn)圖3A),至24h
(A:扇貝血細(xì)胞吞噬率的變化圖。B:注射24h后血細(xì)胞吞噬率的流式細(xì)胞術(shù)檢測(cè)結(jié)果圖。小寫(xiě)字母(a, b, c, d, e, f, g, h, i)表示同一處理下不同時(shí)間點(diǎn)之間的顯著性差異(P<0.05)?!?”表示LPS+FM組與FM組間差異顯著(P<0.05)。A. Variation of haemocyte phagocytosis activity; B. Histogram plot of flow cytometry for phagocytosis activity haemocyte at 24 h. Values with different lower-case superscripts (a, b, c, d, e, f, g, h, i) indicate significant differences (P<0.05) among different time point within the same treatment. Asterisks “*” indicate significant difference (P<0.05) between the LPS+FM group and FM group at the same time.)
圖2 流式細(xì)胞術(shù)檢測(cè)養(yǎng)殖水溫為5℃時(shí)注射熒光微球(FM)、注射脂多糖和熒光微球混合液(LPS+FM)后扇貝血細(xì)胞吞噬率的變化
Fig.2 Variation of haemocyte phagocytosis activity after mixture of Lipopolysaccharide (LPS) and fluorescent microparticles (FM) or FM injection in scallopsChlamysfarreriat 5 ℃ detection by Flow cytometry
(A:扇貝血細(xì)胞吞噬率的變化圖;B:注射24h后血細(xì)胞吞噬率的流式細(xì)胞術(shù)檢測(cè)結(jié)果圖。小寫(xiě)字母(a, b, c, d, e, f, g, h, i)表示同一處理下不同時(shí)間點(diǎn)之間的顯著性差異(P<0.05)?!?”表示LPS+FM組與FM組間差異顯著(P<0.05)。A. Variation of haemocyte phagocytosis activity; B. Histogram plot of flow cytometry for phagocytosis activity haemocyte at 24 h. Values with different lower-case superscripts (a, b, c, d, e, f, g, h, i) indicate significant differences (P<0.05) among different time point within the same treatment. Asterisks “*” indicate significant difference (P<0.05) between the LPS+FM group and FM group at the same time.)
圖3 流式細(xì)胞術(shù)檢測(cè)養(yǎng)殖水溫為10℃時(shí)注射熒光微球(FM)、注射脂多糖和熒光微球混合液(LPS+FM)后扇貝血細(xì)胞吞噬率的變化
Fig.3 Variation of haemocyte phagocytosis activity after mixture of Lipopolysaccharide (LPS) and fluorescent microparticles (FM) or FM injection in scallopsChlamysfarreriat 10 ℃ detection by Flow cytometry
達(dá)到最高,為(17.49% ± 0.48%),仍顯著高于FM組(14.00% ± 0.22%)(P<0.05)(見(jiàn)圖3B),整個(gè)實(shí)驗(yàn)過(guò)程中,注射LPS和FM混合液組在 6、18、24、30和48h的血細(xì)胞吞噬率均顯著高于FM組(P<0.05)。PBS組的陰性對(duì)照值一直變化不顯著,平均為0.23% ± 0.07%。
養(yǎng)殖水溫為15℃時(shí),兩處理組扇貝血細(xì)胞吞噬率也呈現(xiàn)出首先快速上升,至18h達(dá)到最高,之后逐漸下降,至實(shí)驗(yàn)結(jié)束(見(jiàn)圖4),其中,注射LPS和FM混合液組血細(xì)胞的吞噬率自6h(6.54 %± 0.21%)顯著高于FM組(4.47% ± 0.29%)(P<0.05)(見(jiàn)圖4A),18h達(dá)到最高,為23.13%±0.57%,仍顯著高于FM組(16.97%±0.55%)(P<0.05)(見(jiàn)圖4B),整個(gè)實(shí)驗(yàn)過(guò)程中,注射LPS和FM混合液組血細(xì)胞的吞噬率在6~24h均顯著高于FM組(P<0.05)。PBS組的陰性對(duì)照值一直變化不顯著,平均為0.19 %± 0.08%。
(A:扇貝血細(xì)胞吞噬率的變化圖;B:注射18h后血細(xì)胞吞噬率的流式細(xì)胞術(shù)檢測(cè)結(jié)果圖。小寫(xiě)字母(a, b, c, d, e, f, g, h, i)表示同一處理下不同時(shí)間點(diǎn)之間的顯著性差異(P<0.05)。“*”表示LPS+FM組與FM組間差異顯著(P<0.05)。A. Variation of haemocyte phagocytosis activity; B. Histogram plot of flow cytometry for phagocytosis activity haemocyte at 18 h. Values with different lower-case superscripts (a, b, c, d, e, f, g, h, i) indicate significant differences (P<0.05) among different time point within the same treatment. Asterisks “*” indicate significant difference (P<0.05) between the LPS+FM group and FM group at the same time.)
圖4 流式細(xì)胞術(shù)檢測(cè)養(yǎng)殖水溫為15℃時(shí)注射熒光微球(FM)、注射脂多糖和熒光微球混合液(LPS+FM)后扇貝血細(xì)胞吞噬率的變化
Fig.4 Variation of haemocyte phagocytosis activity after mixture of Lipopolysaccharide (LPS) and fluorescent microparticles (FM)
or FM injection in scallopsChlamysfarreriat 15 ℃ detection by Flow cytometry
養(yǎng)殖水溫為20℃時(shí),2處理組扇貝血細(xì)胞吞噬率也呈現(xiàn)出首先快速上升,至18h達(dá)到最高,之后逐漸下降,至實(shí)驗(yàn)結(jié)束(見(jiàn)圖5),其中,注射LPS和FM混合液組血細(xì)胞的吞噬率自6h(12.58% ± 0.26%)顯著高于FM組(11.41%±0.34%)(P<0.05)(見(jiàn)圖5A),18h達(dá)到最高,為34.16%±0.97%,仍顯著高于FM組(25.06%±0.97%)(P<0.05)(見(jiàn)圖5B),整個(gè)實(shí)驗(yàn)過(guò)程中,注射LPS和FM混合液組血細(xì)胞吞噬率在6~48h的均顯著高于FM組(P<0.05)。PBS組的陰性對(duì)照值一直變化不顯著,平均為0.13% ± 0.06%。
養(yǎng)殖水溫為25℃時(shí),2處理組扇貝血細(xì)胞吞噬率也呈現(xiàn)出首先快速上升,至24h達(dá)到最高,之后逐漸下降,至實(shí)驗(yàn)結(jié)束(見(jiàn)圖6),其中,注射LPS和FM混合液組血細(xì)胞的吞噬率自18h(6.65% ± 0.42%)顯著高于FM組(5.57% ± 0.40%)(P<0.05)(見(jiàn)圖6A),至24h達(dá)到最高為10.42%±0.45%,仍顯著高于FM組(8.97%±0.45%)(P<0.05)(見(jiàn)圖6B),整個(gè)實(shí)驗(yàn)過(guò)程中,注射LPS和FM混合液組血細(xì)胞吞噬率僅在18、24和42h顯著高于FM組(P<0.05)。PBS組的陰性對(duì)照值一直變化不顯著,平均為0.44% ± 0.11%。
各養(yǎng)殖溫度組血細(xì)胞吞噬率的結(jié)果表明,20℃組血細(xì)胞吞噬率顯著高于其他溫度組,其次是15℃組、10℃組,5和25℃組血細(xì)胞吞噬率最低,這兩溫度組血細(xì)胞吞噬率差異不顯著(P<0.05),并且15、20℃溫度組吞噬率最大值出現(xiàn)時(shí)間為18h,其他組均為24h。此外,各溫度組中,LPS和FM混合液組血細(xì)胞最大吞噬率均顯著高于FM組(P<0.05)(見(jiàn)表1)。
(A:扇貝血細(xì)胞吞噬率的變化圖;B:注射18h后血細(xì)胞吞噬率的流式細(xì)胞術(shù)檢測(cè)結(jié)果圖。小寫(xiě)字母(a, b, c, d, e, f, g, h, i)表示同一處理下不同時(shí)間點(diǎn)之間的顯著性差異(P<0.05)?!?”表示LPS+FM組與FM組間差異顯著(P<0.05)。A. Variation of haemocyte phagocytosis activity; B. Histogram plot of flow cytometry for phagocytosis activity haemocyte at 18 h. Values with different lower-case superscripts (a, b, c, d, e, f, g, h, i) indicate significant differences (P<0.05) among different time point within the same treatment. Asterisks “*” indicate significant difference (P<0.05) between the LPS+FM group and FM group at the same time.)
圖5 流式細(xì)胞術(shù)檢測(cè)養(yǎng)殖水溫為20℃時(shí)注射熒光微球(FM)、注射脂多糖和熒光微球混合液(LPS+FM)后扇貝血細(xì)胞吞噬率的變化
Fig.5 Variation of haemocyte phagocytosis activity after mixture of Lipopolysaccharide (LPS) and fluorescent microparticles (FM) or FM injection in scallopsChlamysfarreriat 20 ℃ detection by Flow cytometry
(A:扇貝血細(xì)胞吞噬率的變化圖;B:注射24h后血細(xì)胞吞噬率的流式細(xì)胞術(shù)檢測(cè)結(jié)果圖。小寫(xiě)字母(a, b, c, d, e, f, g, h, i)表示同一處理下不同時(shí)間點(diǎn)之間的顯著性差異(P<0.05)?!?”表示LPS+FM組與FM組間差異顯著(P<0.05)。A. Variation of haemocyte phagocytosis activity; B. Histogram plot of flow cytometry for phagocytosis activity haemocyte at 18 h. Values with different lower-case superscripts (a, b, c, d, e, f, g, h, i) indicate significant differences (P<0.05) among different time point within the same treatment. Asterisks “*” indicate significant difference (P<0.05) between the LPS+FM group and FM group at the same time.)
圖6 流式細(xì)胞術(shù)檢測(cè)養(yǎng)殖水溫為25℃時(shí)注射熒光微球(FM)、注射脂多糖和熒光微球混合液(LPS+FM)后扇貝血細(xì)胞吞噬率的變化Fig.6 Variation of haemocyte phagocytosis activity after mixture of Lipopolysaccharide (LPS) and fluorescent microparticles(FM) or FM injection in scallops Chlamys farreri at 25 ℃ detection by Flow cytometry
注:AD:激活持續(xù)時(shí)間;TPE:峰值出現(xiàn)時(shí)間;AE:激活幅度= 峰值-對(duì)照平均值;FM:熒光微球;LPS:脂多糖。表中大寫(xiě)字母(A,B,C,D,E)表示同一處理不同溫度間的差異顯著性(P<0.05);小寫(xiě)字母(a,b)表示同一溫度峰值間的差異顯著性(P<0.05)。
Note:AD: Activation Duration; TPE: Time of Peak Emergence; AE:Activation Extent= Peak value-control value;FM:Flurenscent Microparticle; LPS:Lipopolysaccharide.Values with different capitalised superscripts (A, B, C, D, E) indicate significant differences (P<0.05) between the two temperatures within the same treatment; Values with different lower-case superscripts (a, b) indicate significant differences (P<0.05) among the two treatments within the same temperature.
論文在觀察血細(xì)胞吞噬時(shí)應(yīng)用含F(xiàn)ITC的細(xì)胞標(biāo)記液標(biāo)記血細(xì)胞,F(xiàn)ITC呈綠色熒光,藻紅蛋白熒光素呈紅色熒光,2種熒光染料的最大吸收波長(zhǎng)均在495nm左右,在熒光顯微鏡下能夠同時(shí)觀察到綠色熒光和紅色熒光,再加上同一視野下微分相差的觀察,能夠清楚的觀察到血細(xì)胞的形態(tài)以及血細(xì)胞對(duì)熒光微球的吞噬狀況。另外,由于血細(xì)胞本身有自發(fā)熒光現(xiàn)象,在吞噬率較低的時(shí)候有可能血細(xì)胞自發(fā)熒光值會(huì)高于吞噬的熒光微球的熒光值,因此,以PBS注射組為對(duì)照,將其設(shè)為吞噬率的陰性值,能夠保證血細(xì)胞吞噬熒光微球的吞噬率更加準(zhǔn)確。吞噬作用是貝類清除侵入機(jī)體的外源異物主要方式,包括趨化、接觸、內(nèi)吞和消化4個(gè)步驟。微生物入侵后, 血細(xì)胞通過(guò)與體液因子的共同作用移動(dòng)到微生物入侵處, 之后血細(xì)胞通過(guò)細(xì)胞質(zhì)的變形包裹入侵微生物, 將其形成吞噬體隨之進(jìn)入細(xì)胞內(nèi)部。細(xì)胞完成對(duì)入侵物的內(nèi)吞, 通過(guò)2種方式清除異物, 一是溶解, 通過(guò)溶酶體中的溶酶體酶等降解并消化,另一種方式是利用吞噬作用中產(chǎn)生的大量活性氧, 殺傷入侵的微生物[25]。本研究中注射的熒光微球是乳膠顆粒,血細(xì)胞在識(shí)別及吞噬后不能通過(guò)酶類水解或者活性氧自由基的方式消化微球,其可能的途徑可能有2種,一種血細(xì)胞在識(shí)別微球并進(jìn)行包裹內(nèi)吞之后,細(xì)胞內(nèi)的酶類對(duì)微球無(wú)法分解和消化,隨著微球越來(lái)越多血細(xì)胞吞噬率的增加,微球在血細(xì)胞內(nèi)的不斷堆積,血細(xì)胞未能及時(shí)消化影響了血細(xì)胞酶源酶類的正常功能,導(dǎo)致血細(xì)胞溶解[3],所以血細(xì)胞吞噬率在某些檢測(cè)階段有些下降也可能是有部分血細(xì)胞數(shù)量減少的原因;另一種少量的微球被識(shí)別吞噬后,血細(xì)胞無(wú)法識(shí)別和消化,血細(xì)胞內(nèi)某些因子的參與排異,最終排出細(xì)胞外,詳細(xì)的機(jī)制還需深入開(kāi)展。從熒光顯微鏡觀察的結(jié)果發(fā)現(xiàn),吞噬熒光微球的血細(xì)胞有顆粒細(xì)胞也有透明細(xì)胞,有的研究認(rèn)為透明細(xì)胞是吞噬能力很強(qiáng)的細(xì)胞,這類細(xì)胞能夠活化酚氧化酶原系統(tǒng)組分并激活的吞噬能力[4]。還有的認(rèn)為顆粒細(xì)胞通過(guò)釋放顆粒中的溶酶體酶參與吞噬并消除異物[2],也是吞噬作用的積極參與細(xì)胞。本實(shí)驗(yàn)的研究結(jié)果發(fā)現(xiàn)二種類型的血細(xì)胞均有不同程度的吞噬,也可能是因?yàn)槎咄ㄟ^(guò)不同途徑進(jìn)行吞噬的結(jié)果。
本結(jié)果發(fā)現(xiàn),注射LPS后,扇貝血細(xì)胞吞噬活力顯著增強(qiáng)。LPS是位于革蘭氏陰性菌細(xì)胞壁外膜的一種由類脂和多糖鏈組成的物質(zhì),具有與相應(yīng)細(xì)胞結(jié)合以及免疫活性。在免疫活性方面,LPS能夠通過(guò)感染后誘導(dǎo)巨噬細(xì)胞激活、產(chǎn)生大量細(xì)胞因子并激活細(xì)胞因子的活性[26]。添加LPS可促進(jìn)血細(xì)胞變形并增強(qiáng)活動(dòng)能力, 同時(shí)增強(qiáng)吞噬活力或溶菌酶的活力[27],以及增強(qiáng)巨噬細(xì)胞吞噬功能和活性氧的產(chǎn)生[28-29]。脂多糖本身具有很強(qiáng)的抗原性和毒性,有些研究表明,注射脂多糖能夠引起血細(xì)胞大量減少[19-20],可能是因?yàn)檩^高濃度的脂多糖引起的毒性作用導(dǎo)致的,因此適當(dāng)?shù)臐舛仁茄芯棵庖哒{(diào)節(jié)作用的關(guān)鍵。本研究的預(yù)實(shí)驗(yàn)發(fā)現(xiàn),當(dāng)LPS濃度≥3.0 mg/mL 時(shí),各溫度組的部分扇貝開(kāi)始出現(xiàn)一些抑制生長(zhǎng)等癥狀,并有的出現(xiàn)死亡;當(dāng)其濃度≤2.0mg/mL 時(shí),各溫度組的扇貝均無(wú)異常反應(yīng)。因此,選擇1.0 mg/mL這個(gè)濃度被選作為合適濃度做為增強(qiáng)血細(xì)胞吞噬率的研究。關(guān)于高濃度的LPS反而產(chǎn)生免疫抑制的原因可能是濃度過(guò)高容易短時(shí)間內(nèi)過(guò)度刺激免疫系統(tǒng),導(dǎo)致機(jī)體免疫細(xì)胞及因子無(wú)防御反應(yīng)和能力[30-31]。因此本文雖得出LPS提高了扇貝血細(xì)胞的吞噬率,并且激活的時(shí)間多在12~42h之間,建議在生產(chǎn)實(shí)踐添加多糖時(shí)應(yīng)該注意選擇適當(dāng)?shù)膭┝亢屯段箷r(shí)段。
本研究結(jié)果表明,水溫影響扇貝血細(xì)胞的吞噬率顯著,15或20℃養(yǎng)殖溫度處理組血細(xì)胞吞噬活性的激活程度、激活持續(xù)時(shí)間、吞噬率最大值出現(xiàn)時(shí)間均高于、長(zhǎng)于并早于其他溫度養(yǎng)殖組。這個(gè)結(jié)果的原因可能是與相對(duì)較高或較低的養(yǎng)殖水溫相比,在其條件下,血細(xì)胞的運(yùn)動(dòng)能力、細(xì)胞膜的通透性等都有不同程度的下降,從而使其與相應(yīng)結(jié)合蛋白結(jié)合的能力下降,引起與LPS的結(jié)合能力并激活細(xì)胞免疫活力的能力隨之下降。據(jù)報(bào)道LPS的激活機(jī)理主要與存在于血細(xì)胞膜上的LPS結(jié)合蛋白有關(guān)[32-33]。LPS結(jié)合蛋白是一種模式識(shí)別蛋白,可以特異性識(shí)別LPS。一旦識(shí)別LPS后,結(jié)合的復(fù)合物就會(huì)激活血細(xì)胞的免疫防御系統(tǒng),進(jìn)而引發(fā)吞噬、包囊、凝集和消化降解等,最終使血細(xì)胞內(nèi)產(chǎn)生和釋放大量免疫活性物質(zhì)增強(qiáng)細(xì)胞免疫功能[34]。這一解釋在2種螯蝦得到了驗(yàn)證:在22℃時(shí),螯蝦中的結(jié)合蛋白-mRNA表達(dá)量要顯著低于12和16℃[35]。本研究結(jié)果說(shuō)明較高的溫度能顯著影響櫛孔扇貝的細(xì)胞的吞噬率,可能增加了被病原感染的機(jī)會(huì),這也可能是櫛孔扇貝大規(guī)模死亡病在夏季水溫較高時(shí)期發(fā)病的原因。
[1] Roche P. Defense mechanisms and disease prevention in farmed marine invertebrates [J]. Aquaculture, 1999, 172(1-2): 125-145.
[2] Hine P M. The inter-relationships of bivalve haemocytes [J]. Fish and Shellfish Immunology, 1999, 9(5): 367-385.
[3] Bayne C J. Phagocytosis and non-self recognition in invertebrates. Phagocytosis appears to be an ancient line of defence [J]. Bioscience, 1990, 40: 723-731.
[4] Aladaileh S, Nair S V, Birch D, et al. Sydney rock oyster (Saccostreaglomerata) hemocytes: morphology and function [J]. Journal of Invertebrate Pathology, 2007, 96(1): 48-63.
[5] Chu F-LE. Defence mechanisms in marine bivalves [M].//Fingerman M, Nagabhushanam R. Recent Advances in Marine Biotechnology. Immunobiology and Pathology vol. 5. Plymouth, UK:Science Publishers, Enfield, NH, 2000: 1-42.
[6] 許友卿, 吳衛(wèi)君, 蔣偉明, 等. 溫度對(duì)貝類免疫系統(tǒng)的影響及其機(jī)理研究進(jìn)展 [J]. 水產(chǎn)科學(xué), 2012, 31(3): 176-180.
[7] Hegaret H, Wikfors G H, Soundant P. Flow cytometric analysis of haemocytes from eastern oysters,Crassostreavirginica, subjected to a sudden temperature elevation- II. Haemocyte functions: aggregation, viability, phagocytosis, and respiratory burst[J]. J Exp Mar Biol Ecol, 2003: 293: 249-265.
[8] Gagnaire B, Frouin H, Moreau K, et al. Effects of temperature and salinity on haemocyte activities of the pacific oyster,Crassostreagigas(Thunberg) [J]. Fish and Shellfish Immunology, 2006, 20(4): 536-547.
[9] Boyd J N, Burnett L E. Reactive oxygen intermediate production by oyster hemocytes exposed to hypoxia [J]. The Journal of Experimental Biology, 1999, 202: 3135-3143.
[10] Matozzo V, Monari M, Foschi J, et al. Exposure to anoxia of the clamChameleagallina. I: Effects on immune responses [J]. Journal of Experimental Marine Biology and Ecology, 2005, 325(2): 163-174.
[11] Liu J, Pan L Q, Zhang L, et al. Immune responses, ROS generation and the haemocyte damage of scallopChlamysfarreriexposed to Aroclor 1254 [J]. Fish and Shellfish Immunology, 2009, 26(3): 422-428.
[12] Ciacci C, Citterio B, Betti M, et al. Functional differential immune responses ofMytilusgalloprovincialisto bacterial challenge [J]. Comparative Biochemistry and Physiology, 2009, 153(4): 365-371.
[13] Xing J, Lin T, Zhan W. Variations of enzyme activities in the haemocytes of scallopChlamysfarreriafter infection with the acute virus necrobiotic virus (AVNV) [J]. Fish and Shellfish Immunology, 2008, 25(6): 847-852.
[14] Huan P, Wang H, Liu B. Comparative proteomic analysis of challenged Zhikong scallop (Chlamysfarreri): a new insight into the anti-Vibrio immune response of marine bivalves [J]. Fish and Shellfish Immunology, 2011, 31(6): 1186-1192.
[15] Jie Xiaoa, Susan E Fordb, Hongsheng Yang, et al. Studies on mass summer mortality of cultured zhikong scallops (ChlamysfarreriJones et Preston) in China [J]. Aquaculture, 2005, 250 (3-4): 602-615.
[16] Yu J H, Song J H, Choi M C, et al. Effects of water temperature change on immune function in surf clams,Mactraveneriformis(Bivalvia: Mactridae) [J]. Journal of Invertebrate Pathology, 2009, 102(1): 30-35.
[17] Cheng W, Hsiao I S, Hsu C H, et al. Change in water temperature on the immune response of Taiwan abaloneHaliotisdiversicolorsupertextaand its susceptibility toVibrioparahaemolyticus[J]. Fish and Shellfish Immunology, 2004, 17(3): 235-243.
[18] Yang J L, Qiu L M, Wang L L, et al. CfLGBP a pattern recognition receptor inChlamysfarreriinvolved in the immune response against various bacteria [J]. Fish & Shellfish Immunology, 2010, 29: 825-831.
[19] Rungrassamee W, Maibunkaew S, Karoonuthaisiri N, et al. Application of bacterial lipopolysaccharide to improve survival of the black tiger shrimp afterVibrioharveyiexposure [J]. Developmental and Comparative Immunology, 2013, 41(2): 257-262.
[20] Amparyup P, Sutthangkul J, Charoensapsri W, et al. Pattern recognition protein binds to lipopolysaccharide and β-1, 3-glucan and activates shrimp prophenoloxidase system [J]. The Journal of Biological Chemistry, 2012, 287(13): 10060-10069.
[21] Felix S. Pro-PO Based Immunomodulatory Effect of Glucan and LPS on Tiger Shrimp,Penaeusmonodon(Fabricius) [J]. Diseases in Asian Aquaculture V, 2005(3): 477-482.
[22] Takeshi Kadowaki, Yasumasa Yasui, Osamu Nishimiya, et al. Orally administered LPS enhances head kidney macrophage activation with down-regulation of IL-6 in common carp (Cyprinuscarpio) [J]. Fish & Shellfish Immunology, 2013, 34(6): 1569-1575.
[23] Carballal M J, López C, Azevedo C, et al. Invitrostudy of phagocytic ability ofMytilusgalloprovincialisLmk haemocytes [J]. Fish Shellfish Immunol, 1997, 7: 403-416.
[24] 于淼, 鄒明強(qiáng), 何昭陽(yáng). 高分子熒光微球在生物醫(yī)學(xué)領(lǐng)域中的某些應(yīng)用 [J]. 分析測(cè)試學(xué)報(bào), 2006, 25(3): 33-35.
[25] 孫敬鋒, 吳信忠. 貝類血細(xì)胞及其免疫功能進(jìn)展 [J]. 水生生物學(xué)報(bào), 2006, 30(5): 601-606.
[26] 張洪淵, 劉克武, 姜云, 等. 圓背角無(wú)齒蚌堿性硫酸酶的功能基團(tuán)研究 [J]. 水生生物學(xué)報(bào), 1997, 21(4): 348-352.
[27] 孫虎山, 李光友. 脂多糖對(duì)櫛孔扇貝血清和血細(xì)胞中7種酶活力的影響 [J]. 海洋科學(xué), 1999(4): 54-57.
[28] 羅海波, 朱平, 李蘭娟. 細(xì)菌毒素與臨床 [M]. 北京: 人民衛(wèi)生出版社, 1999: 1-9.
[29] 葉劍敏, 簡(jiǎn)紀(jì)常, 吳后波, 等. 溶藻弧菌脂多糖的化學(xué)成分分析及其對(duì)石斑魚(yú)的毒性 [J]. 水生生物學(xué)報(bào), 2004, 28(5): 574-576.
[30] Ai Q H, Mai K S, Zhang L, et al. Effects of dietary β-1, 3-glucan on innate immune response of large yellow croaker,Pseudosciaenacrocea[J]. Fish Shellfish Immunol, 2007, 22: 394-402.
[31] Chandra Kanta Misra, Basanta Kumar Das, Subhas Chandra Mukherjee, et al. Effect of long term administration of dietary β-glucan on immunity, growth and survival ofLabeorohitafingerlings [J]. Aquaculture, 2006, 255(1-4): 82-94.
[32] 趙虎, 周庭銀, 孔憲濤. LPS結(jié)合蛋白的結(jié)構(gòu)和功能 [J]. 細(xì)胞與分子免疫學(xué)雜志, 2000, 16(1): 91-92.
[33] Liu F S, Li F H, Dong B, et al. Molecular cloning and characterization of a pattern recognition protein, lipopolysaccharide and β-1, 3-glucan binding protein(LGBP) from Chinese shrimpFenneropenaeuschinensis[J]. Mol Biol Rep, 2009, 36: 471-477.
[34] Jiravanichpaisal P, Lee B L, S?derh?ll K. Cell-mediated immunity in arthropods: Hematopoiesis, coagulation, melanization and opsonization [J]. Immunobiology, 2006, 211: 213-236.
[35] Jiravanichpaisal P, S?derh?ll K, S?derh?ll I. Effect of water temperature on the immune response and infectivity pattern of white spot syndrome virus (WSSV) in freshwater crayfish [J]. Fish Shellfish Immunol, 2004, 7: 265-275.
責(zé)任編輯 朱寶象
Effect of Water Temperature on Phagocytic Activitiy of the Haemocytes of Scallop (Chlamysfarreri) After Stimulated by Lipopolysaccharide
XU Yi-Xuan, ZHAN Wen-Bin, XING Jing
(The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China)
Phagocytosis of haemocytes is the primary innate immune defense of scallop (Chlamysfarreri). In this study, the scallop was accustomed at 5,10, 15, 20 and 25 ℃, respectively, then injected with either phycoerythrin labeled fluorescent microparticles (FM), lipopolysaccharide (LPS) plus FM or PBS. After that, haemocytes were collected at 0, 6, 12, 18, 24, 30, 36, 42 and 48 hours post injection, respectively, and their phagocytic activity was measured with fluorescence microscope and flow cytometry (FCM). The results showed that haemocytes engulfed the FM at 6h, and the engulfing rate rose in the first 18-24 hours, reaching the maximum and then gradually declined. At 5℃, the maximum of haemocyte engulfing rate in the two treatment were 8.66% ± 0.26% and 9.75% ± 0.48%, respective; at 10 ℃ they were 14.00% ± 0.22% and 17.49% ± 0.43%; at 15 ℃, they were 16.97% ± 0.55% and 23.13%±0.57%; at 20 ℃ were 25.62% ± 0.88% and 34.16% ± 0.97%; at 25 ℃, they were 8.97 % ± 0.25% and 10.42% ± 0.45%. Engulfing rate in LPS-treated group was significantly higher than that in FM group. Moreover, at 20 ℃, engulfing rate was significantly higher than that of other groups, followed by 15 and 10 ℃ groups, and finally 5 and 25 ℃ groups, No significant difference between groups at 15 and 20 ℃. The results suggested that water temperature affected the engulfing rate significantly and LPS significantly enhanced the phagocytic activity of scallop haemocytes.
Chlamysfarreri; haemocyte; phagocytic activity; temperature; lipopolysaccharide
國(guó)家重點(diǎn)基礎(chǔ)研究發(fā)展計(jì)劃項(xiàng)目(2012CB114405);國(guó)家科技支撐計(jì)劃項(xiàng)目(2012BAD17B02);新世紀(jì)優(yōu)秀人才支持計(jì)劃項(xiàng)目(NCET-10-0763);教育部留學(xué)回國(guó)人員科研啟動(dòng)基金項(xiàng)目(教外司留[2011]1139)資助
2014-02-20;
2014-05-05
徐翊軒(1977-),男,碩士生,主要從事貝類免疫學(xué)研究。
?? 通訊作者: E-mail:xingjing@ouc.edu.cn
Q959.215
A
1672-5174(2015)06-031-08
10.16441/j.cnki.hdxb.20140039
中國(guó)海洋大學(xué)學(xué)報(bào)(自然科學(xué)版)2015年6期