馬 濤 刁其玉
(中國(guó)農(nóng)業(yè)科學(xué)院飼料研究所,農(nóng)業(yè)部飼料生物技術(shù)重點(diǎn)實(shí)驗(yàn)室,北京 100081)
表觀遺傳學(xué)一直是遺傳學(xué)研究的熱點(diǎn),指在基因組序列不發(fā)生改變的情況下,基因的表達(dá)發(fā)生可遺傳的變異,是環(huán)境因素和細(xì)胞內(nèi)的遺傳物質(zhì)相互作用的結(jié)果,主要包括組蛋白乙?;⒘姿峄?、泛素化,DNA甲基化以及 microRNA調(diào)控等[1-2]。盡管目前已經(jīng)確定營(yíng)養(yǎng)素具有調(diào)控表觀遺傳的作用,但對(duì)于營(yíng)養(yǎng)素調(diào)控表觀遺傳內(nèi)在機(jī)制的研究相對(duì)較少,就畜禽而言,相關(guān)研究更是處在起步階段。
組蛋白是真核生物染色體的基本結(jié)構(gòu)蛋白質(zhì),是一類小分子堿性蛋白質(zhì)。決定組蛋白乙酰化狀態(tài)的酶有2類:組蛋白乙酰轉(zhuǎn)移酶(histone acetyltransferase,HAT)和組蛋白去乙酰化酶(histone deacetylase,HDAC)。HAT的作用是對(duì)組蛋白N端進(jìn)行乙?;揎?,使核小體結(jié)構(gòu)松散、激活基因轉(zhuǎn)錄;HDAC則對(duì)其N端進(jìn)行去乙酰化修飾,抑制基因轉(zhuǎn)錄[3]。目前在哺乳動(dòng)物中已發(fā)現(xiàn)的HDAC根據(jù)其與酵母的同源性可分為3種類型:Ⅰ型包括 HDAC1、HDAC2、HDAC3 和 HDAC8,分子質(zhì)量在42~45 ku,該類型全部位于細(xì)胞核內(nèi),調(diào)控組蛋白乙?;揎?Ⅱ型包括HDAC4、HDAC5、HDAC6、HDAC7、HDAC9 和 HDAC10,分子質(zhì)量為120~130 ku,主要位于細(xì)胞質(zhì),但可在細(xì)胞質(zhì)與細(xì)胞核間穿梭,調(diào)控組蛋白及非組蛋白的乙?;揎?Ⅲ型則與細(xì)胞衰老和能量代謝的調(diào)節(jié)相關(guān)[4]。HAT和HDAC作用的平衡一旦被打破,即出現(xiàn)乙?;Ш猓瑢?dǎo)致腫瘤的發(fā)生。研究表明丁酸和部分植物提取物(如姜黃素、蘿卜硫素等)都能夠使組蛋白高度乙?;?,具有HDAC抑制劑的作用[5]。
揮發(fā)性脂肪酸(VFA)或短鏈脂肪酸(SCFA)是目前具有代表性的“營(yíng)養(yǎng)素—表觀遺傳—表現(xiàn)型”實(shí)例,SCFA為哺乳動(dòng)物胃腸道微生物發(fā)酵飼糧中碳水化合物后的產(chǎn)物,能夠?yàn)榉雌c動(dòng)物提供高達(dá)70%的能量需要[6],其中乙酸和丙酸濃度往往較高,也是主要的能量來(lái)源,而丁酸濃度較低。研究表明丁酸除了作為一種能量來(lái)源外,還起到調(diào)節(jié)細(xì)胞分化、增殖、死亡以及誘導(dǎo)細(xì)胞周期停滯和凋亡的作用[7-9]。以丁酸為例,其能夠使細(xì)胞組蛋白高度乙?;?。
為研究細(xì)胞生長(zhǎng)是否受丁酸的抑制,Li等[10]使用2.5~10.0 mmol/L濃度的丁酸鈉處理牛腎(Madin Darby bovine kidney,MDBK)細(xì)胞系,發(fā)現(xiàn)丁酸鈉不僅導(dǎo)致細(xì)胞凋零,而且使細(xì)胞周期停滯在G1/S和M/G2的分界處,且隨丁酸濃度的升高,細(xì)胞凋零數(shù)量呈正相關(guān)升高(R2=0.948 2)。牛腎細(xì)胞在經(jīng)丁酸鈉處理后,積累大量乙?;慕M蛋白,同時(shí)半胱天冬酶得到激活,半胱天冬酶是細(xì)胞凋亡過(guò)程中的關(guān)鍵酶,由此揭示了丁酸導(dǎo)致細(xì)胞凋亡和細(xì)胞周期停滯可能的機(jī)制,即丁酸作為HDAC抑制劑,能夠激活細(xì)胞中由于不適當(dāng)?shù)慕M蛋白去乙?;磉_(dá)受阻的基因(如腫瘤抑制基因),該基因能夠終止非正常細(xì)胞的周期,促使其凋亡,防止發(fā)生惡變。與此相近,Das等[11]研究發(fā)現(xiàn)培養(yǎng)基中添加1.0或5.0 mmol/L的丁酸鈉,能夠顯著提高豬成纖維細(xì)胞組蛋白乙酰化程度。
在體外細(xì)胞試驗(yàn)開展的同時(shí),也有部分研究者通過(guò)動(dòng)物試驗(yàn)來(lái)研究丁酸對(duì)于機(jī)體組織組蛋白乙?;挠绊憽eu等[12]通過(guò)給大鼠飼喂5種不同形式的含高抗性淀粉(占飼糧總淀粉含量的46% ~53%)的飼糧,并通過(guò)注射氧化偶氮甲烷誘導(dǎo)結(jié)腸細(xì)胞DNA損傷,研究飼糧處理對(duì)大鼠結(jié)腸發(fā)酵及對(duì)DNA受損細(xì)胞的影響。結(jié)果表明,其中3種形式的淀粉飼糧能夠顯著提高大鼠結(jié)腸中丁酸濃度,并且增強(qiáng)對(duì)于DNA受損細(xì)胞的凋亡應(yīng)答,證明丁酸在動(dòng)物體內(nèi)同樣能夠起到誘導(dǎo)非正常細(xì)胞凋亡,防止細(xì)胞癌變的作用。
細(xì)胞周期受3類蛋白質(zhì)家族的調(diào)控,包括細(xì)胞周期蛋白、細(xì)胞周期蛋白依賴性激酶、細(xì)胞周期蛋白依賴性激酶抑制劑[13]。研究表明丁酸能夠下調(diào)人類小腸細(xì)胞周期蛋白D1的mRNA,以及成纖維細(xì)胞中細(xì)胞周期蛋白D1的表達(dá)[14],因此 Kien等[15]通過(guò)分別給仔豬飼喂乳果糖和向其盲腸內(nèi)灌注丁酸測(cè)定盲腸組織組蛋白乙?;潭?、細(xì)胞周期蛋白D1表達(dá)量以及細(xì)胞增殖情況,來(lái)研究體內(nèi)試驗(yàn)結(jié)果是否與體外試驗(yàn)相符,結(jié)果表明,飼喂乳果糖的仔豬盲腸內(nèi)丁酸濃度顯著升高,導(dǎo)致組蛋白乙?;潭壬?然而盲腸內(nèi)灌注丁酸顯著降低了組蛋白乙?;潭取?個(gè)試驗(yàn)中均能夠得出組蛋白乙?;潭扰c仔豬盲腸細(xì)胞周期蛋白D1表達(dá)量呈正相關(guān)的結(jié)論,與公認(rèn)的組蛋白乙?;軌蛞谆虮磉_(dá)的研究結(jié)果[14]相符。當(dāng)飼喂仔豬乳果糖產(chǎn)生“內(nèi)源”丁酸時(shí),與體外細(xì)胞試驗(yàn)結(jié)果相同,即丁酸的HDAC抑制劑作用得到體現(xiàn),乙?;潭群图?xì)胞周期蛋白D1表達(dá)量均高于對(duì)照組;但當(dāng)灌注“外源”丁酸時(shí),則出現(xiàn)與體外相反的結(jié)果,乙酰化程度和細(xì)胞周期蛋白D1表達(dá)量均低于對(duì)照組。研究者將這一結(jié)果首先歸結(jié)于丁酸對(duì)于體外培養(yǎng)細(xì)胞的影響并不能反映體內(nèi)的生理情況,因?yàn)橄惹敖Y(jié)果表明,盲腸腸腔內(nèi)的丁酸濃度不隨丁酸進(jìn)入盲腸的速率以及丁酸在盲腸內(nèi)的吸收速率的變化而變化[16],因此腸腔內(nèi)的丁酸濃度并不能反映供給腸細(xì)胞的丁酸濃度;其次飼喂乳果糖會(huì)造成盲腸中梭菌密度下降至原有的約1/16,微生物群落的變化也可能會(huì)通過(guò)調(diào)節(jié)免疫應(yīng)答來(lái)影響細(xì)胞增殖及組蛋白乙?;潭取?/p>
此外,Mátis等[17]研究了口服丁酸藥丸對(duì)雞肝臟組蛋白乙酰化和細(xì)胞色素相關(guān)酶活性的影響,亦旨在驗(yàn)證體內(nèi)試驗(yàn)結(jié)果是否能夠反映體外試驗(yàn)結(jié)果。分別給1日齡肉仔雞口腔灌注2種濃度[0.25或 1.25 g/(kg BW·d)]的丁酸藥丸連續(xù)5 d,隨后屠宰取肝臟細(xì)胞核及微粒體等組織,分別測(cè)定細(xì)胞核組蛋白乙?;潭纫约拔⒘sw中細(xì)胞色素相關(guān)酶活性。試驗(yàn)結(jié)果表明,雖然灌注丁酸能夠使肝臟組織細(xì)胞核組蛋白高度乙?;?,但細(xì)胞色素相關(guān)酶活性未發(fā)生變化,可見(jiàn)在實(shí)際生理?xiàng)l件下,丁酸并未體現(xiàn)出作為HDAC抑制劑在體外能夠影響細(xì)胞色素相關(guān)酶活性的作用[18],這可能與飼糧營(yíng)養(yǎng)水平、飼料原料和環(huán)境等多方面因素有關(guān)。由此可見(jiàn),丁酸對(duì)于動(dòng)物體內(nèi)組蛋白乙?;挠绊戇h(yuǎn)比體外對(duì)細(xì)胞的研究復(fù)雜的多,很多體外研究結(jié)果尚須體內(nèi)試驗(yàn)進(jìn)行驗(yàn)證。
姜黃素是植物姜黃的主要成分,是印度和東南亞常用的一種香料,同時(shí)也具有抗炎癥和抗氧化的功能[19],研究表明姜黃素能夠抑制HDAC1、HDAC3、以及 p300/CBP(屬于 HAT蛋白家族),從而抑制細(xì)胞增殖[20];Liu等[21]同樣證實(shí)姜黃素能夠抑制淋巴瘤胃細(xì)胞中Ⅰ型HDAC的表達(dá);在以小鼠為試驗(yàn)動(dòng)物的研究中,姜黃素能夠降低腫瘤的生長(zhǎng),提高成神經(jīng)管細(xì)胞瘤小鼠的成活率,其潛在機(jī)制為降低了HDAC4的表達(dá),提高微管蛋白乙酰化程度,調(diào)節(jié)基因表達(dá),從而促使腫瘤細(xì)胞凋亡[19]。
蘿卜硫素是一類存在于花菜、甘藍(lán)、卷心菜中的植物化學(xué)素,能夠促進(jìn)異型生物質(zhì)代謝,從而誘導(dǎo)細(xì)胞周期停滯及凋亡[22]。目前開展的動(dòng)物試驗(yàn)相對(duì)有限,Myzak等[23]給小鼠口服 10 μmol的蘿卜硫素,發(fā)現(xiàn)6 h后其結(jié)腸黏膜HDAC活性顯著降低,免疫印跡結(jié)果同時(shí)表明組蛋白H3和H4的乙?;潭蕊@著升高,直到48 h恢復(fù)到正常水平;而長(zhǎng)期飼喂添加蘿卜硫素的飼糧的小鼠盲腸、結(jié)腸、前列腺、外周血液?jiǎn)魏思?xì)胞的組蛋白乙?;骄仙T撗芯啃〗M另一研究結(jié)果表明,當(dāng)小鼠每天采食7.5μmol蘿卜硫素,前列腺和單核血細(xì)胞中HDAC活性相比對(duì)照組顯著降低[24],從而證實(shí)了蘿卜硫素在小鼠體內(nèi)具有抑制HDAC活性的作用。
蔥屬植物包括大蒜、韭菜等主要的功能性成分為有機(jī)硫化合物,包括二烯丙基一硫醚(diallyl sulfide,DAS)、二烯丙基二硫醚(diallyl disulfide,DADS)、二烯丙基三硫醚(diallyl trisulfide,DATS)。有機(jī)硫化合物已被廣泛證實(shí)具有抗癌作用,其機(jī)制為能夠介導(dǎo)細(xì)胞周期停滯和凋亡、抑制癌細(xì)胞生長(zhǎng)等[25]。體內(nèi)試驗(yàn)結(jié)果表明,DADS能夠有效抑制異種轉(zhuǎn)移模型小鼠器官癌變以及腫瘤生長(zhǎng),DADS及其代謝物S-烯丙半胱氨酸最終轉(zhuǎn)化成烯丙硫醇,DAS、DADS和DATS均為有效的HDAC 抑制劑[26]。
多酚具有廣泛的抗微生物和抗炎癥作用,槲皮素是一類主要存在于柑桔類和蕎麥中的生物黃酮。細(xì)胞試驗(yàn)結(jié)果表明,槲皮素能夠通過(guò)促進(jìn)組蛋白乙?;瘡亩_(dá)到抗腫瘤、誘導(dǎo)細(xì)胞凋亡的作用[27-28]。動(dòng)物試驗(yàn)研究表明槲皮素能夠緩解降低經(jīng)致癌物二甲基苯蒽處理倉(cāng)鼠的腫瘤發(fā)生率、并顯著降低腫瘤生長(zhǎng)速度,該作用與槲皮素抑制HDAC1的作用呈顯著正相關(guān)[29]。
其他植物提取物包括茶多酚[30-31]、二吲哚甲烷[32]、大豆異黃酮[33]、異硫氰酸苯酯[34-35]、白藜蘆醇[36]等均具有HDAC抑制劑的作用,但上述提取物作為飼料添加劑成分對(duì)于動(dòng)物表觀遺傳的影響研究相對(duì)較少,甚至以小鼠或仔豬為模型動(dòng)物的研究報(bào)道也不多見(jiàn),因此還有很大的研究空間。
丁酸是已知的最小分子質(zhì)量的HDAC抑制劑,其分子由丙基和羧基組成,其中的丙基能夠和HDAC的活性基團(tuán)相匹配[37],從而起到抑制HDAC的作用。生物素、α-硫鋅酸以及維生素E的代謝產(chǎn)物在結(jié)構(gòu)上均具備類似于丁酸“丙基”的能夠與HDAC活性基團(tuán)相互作用的基團(tuán)[38],因此上述飼糧營(yíng)養(yǎng)素可能也具有潛在的HDAC抑制劑的作用。
維生素E是一種常見(jiàn)的營(yíng)養(yǎng)添加劑,以8種不同的形式(α-、β-、γ-、δ-生育酚/生育三烯酚)存在于植物當(dāng)中,其中α-生育酚是自然界中分布最廣泛、含量最豐富、活性最高的維生素E形式,且其是人類和動(dòng)物體內(nèi)沉積的維生素E的主要形式[39]。研究表明,α-琥珀酸生育酚相對(duì)其他形式的維生素E能夠更有效地介導(dǎo)鼠細(xì)胞分化、抑制細(xì)胞增殖、促使細(xì)胞凋亡[40]。維生素 E作為一種營(yíng)養(yǎng)添加劑,能夠提高畜禽生產(chǎn)性能,但其機(jī)理一直未完全搞清楚。
近年來(lái)研究發(fā)現(xiàn)α-生育酚除具有脂溶性抗氧化劑的作用外,還能夠調(diào)節(jié)信號(hào)傳導(dǎo)及基因表達(dá)[41-42]。Li等[43]使用 α - 生育酚處理正常培養(yǎng)基條件下MDBK細(xì)胞,通過(guò)流式細(xì)胞儀分析發(fā)現(xiàn),α-生育酚能夠介導(dǎo)細(xì)胞周期停滯在G1/S分界處,且細(xì)胞生長(zhǎng)受抑制程度與α-生育酚劑量呈正相關(guān),表明α-生育酚具有抑制細(xì)胞增殖的作用。為進(jìn)一步研究α-生育酚介導(dǎo)細(xì)胞周期停滯的潛在機(jī)制,采用高密度寡核苷酸微陣列分析α-生育酚調(diào)控后的MDBK細(xì)胞全局基因表達(dá)情況,結(jié)果顯示有2.60%(1 183/45 383)的基因受α-生育酚的影響,其中包含與細(xì)胞周期、核酸代謝、DNA復(fù)制相關(guān)的基因。雖然目前尚未明確α-生育酚調(diào)控基因表達(dá)及其潛在的抑制HDAC的機(jī)制,但細(xì)胞層面的研究為今后理解維生素E影響畜禽生產(chǎn)性能的機(jī)理提供了幫助。
越來(lái)越多的飼料添加劑被證實(shí)具有HDAC抑制劑或其他影響表觀遺傳的功能,表明傳統(tǒng)意義上可作為飼糧成分的物質(zhì)能夠通過(guò)調(diào)節(jié)表觀遺傳機(jī)制來(lái)改變動(dòng)物的表型特征。然而目前相關(guān)研究大多限于人類和小鼠上,對(duì)于實(shí)際生產(chǎn)中畜禽的影響研究還比較匱乏,隨著生物技術(shù)的快速發(fā)展,能夠幫助我們深入理解飼料添加劑調(diào)控畜禽表觀遺傳的機(jī)制,對(duì)于促進(jìn)畜禽產(chǎn)業(yè)發(fā)展具有積極影響。
[1] KATSNELSON A.Genomics goes beyond DNA sequence[J].Nature,2010,465(7295):145.
[2] 王海超,張樂(lè)穎,刁其玉.營(yíng)養(yǎng)素對(duì)動(dòng)物表觀遺傳的影響及其機(jī)制[J].動(dòng)物營(yíng)養(yǎng)學(xué)報(bào),2014,26(9):2463-2469.
[3] 王潔,張心怡,郝彩麗,等.組蛋白去乙?;敢种苿┑难芯窟M(jìn)展[J].現(xiàn)代生物醫(yī)學(xué)進(jìn)展,2014,14(14):2783-2785.
[4] 檀瓊,劉全海.組蛋白去乙?;敢种苿┑难芯窟M(jìn)展[J].世界臨床藥物,2010,31(10):616-620.
[5] MYZAK M C,DASHWOOD R H.Histone deacetylases as targets for dietary cancer preventive agents:lessons learned with butyrate,diallyl disulfide,and sulforaphane[J].Current Drug Targets,2006,7(4):443-452.
[6] BERGMAN E N.Energy contributions of volatile fatty acids from the gastrointestinal tract in various species[J].Physiological Reviews,1999,70(2):567-590.
[7] GASSULL M A,CABRE E.Nutrition in inflammatory bowel diease[J].Current Opinin in Clinical Nutrition and Metabolic Care,2001,4(6):561-569.
[8] CHEN J S,F(xiàn)ALLER D V,SPANJAARD R A.Shortchain fatty acid inhibitors of histone deacetylases:promising anticancer therapeutics[J].Current Cancer Drug Targets,2003,3(3):219-236.
[9] PAJAK B,ORZECHOWSKI A,GAJKOWSKA B.Molecular basis of sodium butyrate-dependent proapoptotic activity in cancer cells[J].Advances in Medical Sciences,2007,52:83-88.
[10] LI C J,ELSASSER T H.Butyrate-induced apoptosis and cell cycle arrest in bovine kidney epithelial cells:involvement of caspase and proteasome pathways[J].Journal of Animal Science,2005,83(1):89-97.
[11] DAS Z C,GUPTA M K,UHM S J,et al.Increasing histone acetylation of cloned embryos,but not donor cells,by sodium butyrate improves their in vitro development in pigs[J].Cellular Reprogramming,2010,12(1):95-104.
[12] LEU R K L,HU Y,BROWN I L,et al.Effect of high amylose maize starches on colonic fermentation and apoptotic response to DNA-damage in the colon of rats[J].Nutriton&Metabolism,2009,6:11.
[13] BLOTTIERE H M,BUECHER B,GALMICHE JP,et al.Molecular analysis of the effect of short-chain fatty acids on intestinal cell proliferation[J].Proceedings of the Nutrition Society,2003,62:101-106.
[14] DAVIE J R.Inhibition of histone deacetylase activity by butyrate[J].Journal of Nutrition,2003,133(Suppl.7):2485S-2493S.
[15] KIEN C L,PELTIER C P,MANDAL S,et al.Effects of the in vivo supply of butyrate on histone acetylation of cecum in piglets[J].Journal of Parenteral and Enteral Nutrition,2008,32(1):51-56.
[16] KIEN C L,SCHMITZ-BROWN M,SOLLEY T,et al.Increased colonic luminal synthesis of butyric acid is associated with lowered colonic cell proliferation in piglets[J].Journal of Nutrition,2006,136:64-69.
[17] MáTIS G,NEOGRáDY Z,CSIKó G,et al.Effects of orally applied butyrate bolus on histone acetylation and cytochrome P450 enzyme activity in the liver of chicken—a randomized controlled trial[J].Nutriton&Metabolism,2013,10:12.
[18] DANNENBERG L O,EDENBERG H J.Epigenetics of gene expression in human hepatoma cells:expression profiling the response to inhibition of DNA methylation and histone deacetylation[J].BMC Genomics,2006,7:181.
[19] LEE S J,KRAUTHAUSER C,MADUSKUIE V,et al.Curcumin-induced HDAC inhibition and attenuation of medulloblastoma growth in vitro and in vivo[J].BMC Cancer,2011,11:144.
[20] CHEN Y,SHU W,CHEN W,et al.Curcumin,both histone deacetylase and p300/CBP-specific inhibitor,represses the activity of nuclear factor kappa B and Notch-1 in Raji cells [ J].Basic&Clinical Pharmacology&Toxicology,2007,101:427-433.
[21] LIU H L,CHEN Y,CUI G H,et al.Curcumin,a potent antitumor reagent,is a novel histone deacetylase inhibitor regulating B-NHL cell line Raji proliferation[J].Acta Pharmacologica Sinica,2005,26(5):603-609.
[22] CLARKE J D,DASHWOOD R H,HO E.Multi-targeted prevention of cancer by sulforaphane[J].Cancer Letters,2008,269:291-304.
[23] MYZAK M C,DASHWOOD W M,ORNER G A,et al.Sulforaphane inhibits histone deacetylase in vivo and suppresses tumorigenesis in Apc-minus mice[J].FASEB Journal,2006,20:506-508.
[24] MYZAK M C,TONG P,DASHWOOD W M,et al.Sulforaphane retards the growth of human PC-3 xenografts and inhibits HDAC activity in human subjects[J].Experimental Biology and Medicine,2007,232:227-234.
[25] ARIGA T,SEKI T.Antithrombotic and anticancer effects of garlic-derived sulfur compounds:a review[J].Biofactors,2006,26:93-103.
[26] LEA M A,RANDOLPH V M,PATEL M.Increased acetylation of histones induced by diallyl disulfide and structurally related molecules[J].International Journal of Oncology,1999,15:347-352.
[27] RUIZ P A,BRAUNE A,HOLZLWIMMER G,et al.Quercetin inhibits TNF-induced NF-kappaB transcription factor recruitment to proinflammatory gene promoters in murine intestinal epithelial cells[J].The Journal of Nutrition,2007,137:1208-1215.
[28] LEE W J,CHEN Y R,TSENG T H.Quercetin induces FasL-related apoptosis,in part,through promotion of histone H3 acetylation in human leukemia HL-60 cells[J].Oncology Reports,2011,25:583-591.
[29] PRIYADARSINI R V,VINOTHINI G,MURUGAN R S,et al.The flavonoid quercetin modulates the hallmark capabilities of hamster buccal pouch tumors[J].Nutrition and Cancer-an International Journal,2011,63:218-226.
[30] PANDEY M,SHUKLA S,GUPTA S.Promoter demethylation andchromatin remodeling by green tea polyphenols leads to reexpression of GSTP1 in human prostate cancer cells[J].International Journal of Cancer,2010,126:2520-2533.
[31] THAKUR V S,GUPTA K,GUPTA S.Green tea polyphenols causes cell cycle arrest and apoptosis in prostate cancer cells by suppressing class I histone deacetylases[J].Carcinogenesis,2012,33:377-384.
[32] LI Y,LI X,GUO B.Chemopreventive agent 3,30-diindolylmethane selectively induces proteasomal degradation of class I histone deacetylases[J].Cancer Research,2010,70:646-654.
[33] MAJID S,DAR A A,SHAHRYARI V,et al.Genistein reverses hypermethylation and induces active histone modifications in tumor suppressor gene B-cell translocation gene 3 in prostate cancer[J].Cancer,2010,116:66-76.
[34] WANG L G,BEKLEMISHEVA A,LIU X M,et al.Dual action on promoter demethylation and chromatin by an isothiocyanate restored GSTP1 silenced in prostate cancer[J].Molecular Carcinogenesis,2007,46:24-31.
[35] XIAO L,HUANG Y,ZHEN R,et al.Deficient histone acetylation in acute leukemia and the correction by an isothiocyanate[J].Acta Haematologica,2010,123:71-76.
[36] TILI E,MICHAILLE J J,ALDER H,et al.Resveratrol modulates the levels of microRNAs targeting genes encoding tumor-suppressors and effectors of TGF signaling pathway in SW480 cells[J].Biochemical Pharmacology,2010,80:2057-2065.
[37] NIAN H,DELAGE B,HO E,et al.Modulation of histone deacetylase activity by dietary isothiocyanates and allyl sulfides:studies with sulforaphane and garlic organosulfur compounds[J].Environmental and Molecular Mutagenesis,2009,50(3):213-221.
[38] DASHWOOD R H,HO E.Dietary histone deacetylase inhibitors:from cells to mice to man[J].Seminars in Cancer Biology,2007,17(5):363-369.
[39] MANOLESCU B,ATANASIU V,CERCASOV C,et al.So many options but one choice:the human body prefers alpha-tocopherol.A matter of stereochemistry[J].Journal of Medicine and Life,2008,1(4):376-382.
[40] PRASAD K N,KUMAR B,YAN X D,et al.Alphatocopheryl succinate,the most effective form of vitamin E for adjuvant cancer treatment:a review[J].Journal of the American College of Nutrition,2003,22(2):108-117.
[41] GALLI F,AZZI A.Present trends in vitamin E research[J].Biofactors,2010,36(1):33-42.
[42] HAN S N,PANG E,ZINGG J M,et al.Differential effects of natural and synthetic vitamin E on gene transcription in murine T lymphocytes[J].Archives of Biochemistry and Biophysics,2010,495(1):49-55.
[43] LI C J,LI R W,ELSASSER T H.Alpha-tocopherol modulates transcriptional activities that affect essential biological processes in bovine cells[J].Gene Regulation and Systems Biology,2010,4:109-124.