国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

模擬失重對雄性大鼠背根神經(jīng)節(jié)尼氏小體形態(tài)和膠質細胞源性神經(jīng)營養(yǎng)因子的影響

2015-04-01 08:57解放軍總醫(yī)院北京00853第四軍醫(yī)大學西京醫(yī)院骨科陜西西安7003
解放軍醫(yī)學院學報 2015年5期
關鍵詞:背根小體神經(jīng)節(jié)

解放軍總醫(yī)院,北京 00853;第四軍醫(yī)大學西京醫(yī)院 骨科,陜西西安 7003

模擬失重對雄性大鼠背根神經(jīng)節(jié)尼氏小體形態(tài)和膠質細胞源性神經(jīng)營養(yǎng)因子的影響

任寧濤1,張 恒1,李 潔1,雷 偉2,劉 寧2,畢 龍2,吳子祥2,張 然1,張永剛1,崔 賡1

1解放軍總醫(yī)院,北京 100853;2第四軍醫(yī)大學西京醫(yī)院 骨科,陜西西安 710032

目的探討模擬失重對背根神經(jīng)節(jié)(dorsal root ganglia,DRG)及膠質細胞源性神經(jīng)營養(yǎng)因子(glial cell line-derived neurotrophic factor,GDNF)的影響。方法健康雄性SD大鼠80只,隨機分為尾部懸吊(HU)組(n=40)和正常對照(NC)組(n=40),4周后處死各組大鼠,取腰5背根神經(jīng)節(jié),甲苯氨蘭染色觀察背根神經(jīng)節(jié)內(nèi)尼氏小體變化,免疫組化觀察GDNF的變化,Western-blot方法檢測GDNF的蛋白表達,實時PCR檢測GDNF mRNA表達情況。結果與NC組相比,HU組尼氏體染色淺,尼氏體變小,彌散分布。免疫組化結果顯示,與NC組比較,HU組GDNF量及積分光密度(integral optical density,IOD)值減少(P<0.05)。Western-blot結果顯示,HU組較NC組GDNF蛋白表達減少(P<0.05)。實時PCR結果顯示,與NC組相比,HU組GDNF mRNA表達降低(P<0.05)。結論4周模擬失重可導致DRG內(nèi)尼氏小體形態(tài)發(fā)生變化,GDNF數(shù)量減少,GDNF蛋白表達及mRNA表達降低,推測失重狀態(tài)下可引起大鼠背根神經(jīng)節(jié)發(fā)生損傷。

模擬失重;背根神經(jīng)節(jié);動物模型

地球上一切生命都在重力環(huán)境中,當各種生命體離開地球重力環(huán)境進入太空后,他們的生理功能將受到不同程度的影響[1-5],如骨質疏松[6-8]、心血管功能紊亂[9-12]、肌肉萎縮[13]、脊髓方面相關改變[14-16]等。但由于空間搭載實驗的機會較少,且成本較高,Morey-Holton和Globus[17]提出了通過尾部懸吊來模擬失重狀態(tài),有學者通過此模型發(fā)現(xiàn)模擬失重下可引起大鼠L5背根神經(jīng)節(jié)(dorsal root ganglia,DRG)動作電位傳導速度下降,髓鞘呈退變性改變[18],但未深入研究。膠質細胞源性神經(jīng)營養(yǎng)因子(glial cell line-derived neurotrophic factor,GDNF)作為多巴胺能神經(jīng)營養(yǎng)因子,對神經(jīng)元有強大的神經(jīng)營養(yǎng)作用,能夠抑制其發(fā)生退變[19],而DRG作為功能性脊柱單位的“大腦”,與腰背痛和根性痛有著密切的關系,因此本研究旨在通過建立大鼠尾部懸吊模型,從背根神經(jīng)節(jié)內(nèi)尼氏小體的形態(tài)及神經(jīng)營因子GDNF的改變來探討失重狀態(tài)下是否可引起大鼠背根神經(jīng)節(jié)損傷,進一步完善失重下引起背根神經(jīng)節(jié)損傷的原因。

材料和方法

1實驗動物及模擬失重模型制備 選用鼠齡為12 ~ 14周(體質量約300 g)健康雄性SD大鼠80只(由解放軍總醫(yī)院實驗動物中心提供),隨機分為尾部懸吊(HU)組(n=40)和正常對照(NC)組(n=40),各組大鼠按照標準條件單籠飼養(yǎng)。參照Morey-Holton和Globus[17]方法制備模擬失重模型。

2背根神經(jīng)節(jié)采集及制備 尾部懸吊4周后,各組大鼠腹腔內(nèi)注射戊巴比妥鈉(45 mg/kg)進行麻醉。將其俯臥于平板上固定,去除背部皮膚,消毒皮膚,后正中切口,顯露椎板,在手術顯微鏡下,用蚊鉗咬去椎板,顯露背根神經(jīng)節(jié),NC組和HU組各取右側L5背根神經(jīng)節(jié)40個,NC組和HU組各取20個背根神經(jīng)節(jié)放入含4%多聚甲醛的磷酸鹽緩沖液(phosphate buffer,PB)中后固定4 ~ 6 h (4℃),再移入30%蔗糖的PB中4℃過夜,沉底,OCT膠包埋,垂直DRG長軸行橫斷切片,片厚4 ~ 5 μ m,其余40個(NC組20個,HU組20個) DRG用于Western-blot及實時PCR檢測。

3甲苯氨蘭染色觀察DRG內(nèi)尼氏小體形態(tài)變化取DRG冷凍切片20個,NC組和HU組各10個,室溫放置1 h,PBS洗滌3次,染色,75%乙醇分色,丙酮脫水,封片,鏡下觀察結果。

4GDNF免疫組化染色 取DRG冷凍切片20個,NC組和HU組各10個,室溫放置30 min后,入4℃丙酮固定10 min,PBS洗,用3%過氧化氫溶液孵育5 ~ 10 min,PBS洗,5% ~ 10%正常山羊血清(PBS稀釋)封閉,室溫孵育10 min。滴加一抗:多克隆的兔抗鼠GDNF抗體,37℃孵育2 h。PBS沖洗,滴加二抗:Cy-3;驢抗兔抗體;(1∶200;Jackson Immuno Research,PA,USA and DyLight488;),37℃孵育30 min,PBS沖洗,滴加辣根酶標記鏈霉卵白素,37℃孵育30 min,PBS沖洗,封片,觀測,測定比較各組積分光密度(integral optical density,IOD)值。

5Western-blot檢測GDNF蛋白表達 取右側L5背根神經(jīng)節(jié)樣本20個,NC組和HU組各10個,進行低溫勻漿,在4℃ 800 g條件下離心15 min,取上清液,4℃ 105 g條件下離心1 h。離心沉淀后,加入勻漿液,待沉淀充分溶解后,重新在4℃ 105 g條件下離心1 h,上清即為胞膜蛋白。測定樣本蛋白濃度后,加入1/4體積的5倍樣本緩沖液,于95℃水浴中變性5 min。取等量的40μ g蛋白樣本放置在12% SDS-聚丙烯酰胺凝膠上恒壓電泳,然后濕轉法轉移至硝酸纖維素膜。分別加入一抗(1∶200兔抗鼠GDNF,Santa Cruz公司),室溫孵育4 h,后濾膜漂洗3次,每次10 min。再加入小??雇枚?1∶500,SantaCruz公司),于37℃條件下平緩搖動溫育1 h。增強化學發(fā)光法檢測信號,拍攝并掃描照片。反應條帶做半定量分析。

6實時PCR檢測GDNF mRNA表達 用總RNA抽提試劑盒(Invitrogen life technologies,美國)提取腰5 DRG總RNA。逆轉錄合成cDNA:RNA 2 μ g,加無RNA酶的H2O至總體積10 μ l;加10 μ l的RT反應液到10 μ l退火混合物中,37℃水浴60 min,95℃變性5 min,得到的RT終溶液即為cDNA溶液。實時定量PCR擴增:25 μ l反應體系,在Rotor-Gene 3 000 Realtime PCR儀中擴增。引物用Primer 5.0軟件設計,GDNF上游引物5-'CAGAG GGAAAGGTCGCAGAG-3',下游引物5-'TCGTAGC CCAAACCCAAGTC-3',PCR產(chǎn)物長度96 bp。

7統(tǒng)計學處理 采用SPSS17.0軟件處理所得數(shù)據(jù),計量資料以表示,組間比較采用t檢驗,P<0.05為差異有統(tǒng)計學意義,

結 果

1各組大鼠背根神經(jīng)節(jié)切片甲苯氨蘭染色分析與NC組相比,HU組尼氏體染色淺,尼氏體變小,彌散分布。見圖1。

2各組大鼠背根神經(jīng)節(jié)內(nèi)GDNF免疫組化分析免疫組化結果顯示,與NC組相比,HU組背根神經(jīng)節(jié)內(nèi)GDNF數(shù)量減少(圖2),IOD值降低(P<0.05)。

3各組大鼠背根神經(jīng)節(jié)GDNF蛋白表達 HU組背根神經(jīng)節(jié)內(nèi)GDNF蛋白表達較NC組減少(P<0.05)。見圖3。

4各組大鼠背根神經(jīng)節(jié)GDNF mRNA表達 HU組GDNF mRNA表達量明顯低于NC組(P<0.05)。見圖4。

圖 1 與NC組相比,HU組尼氏體染色淺,尼氏體變小,彌散分布(甲苯氨蘭染色×100)Fig. 1 Nissl bodies were stained light, smaller and scattering distribution in HU group (×100)

圖 2 HU組背根神經(jīng)節(jié)內(nèi)GDNF數(shù)量較NC組減少(免疫組化×200)Fig. 2 Number of GDNF in DRG detected by immunohistochemistry (×200). In HU group, the number of GDNF and IOD were signifi cantly lower than that of NC group

圖 3 各組大鼠脊髓背根神經(jīng)節(jié)內(nèi)GDNF蛋白表達 (aP<0.05)Fig. 3 Protein expression of GDNF in DRG of rats in different treatment group (aP<0.05)

圖 4 HU組GDNF mRNA表達量較NC組降低 (aP<0.05)Fig. 4 HU group displayed lower expression of mRNA of GDNF than that of NC group (aP<0.05)

討 論

尼氏小體可合成神經(jīng)元所需的蛋白,尼氏小體的形態(tài)可反應神經(jīng)元的功能活性。本實驗結果示,經(jīng)4周的模擬失重, HU組尼氏體較NC組染色淺,尼氏體變小,彌散分布。模擬失重后DRG內(nèi)尼氏小體形態(tài)的改變驗證了模擬失重狀態(tài)下可引起大鼠背根神經(jīng)節(jié)發(fā)生損傷,與其他學者研究結果類似。

GDNF由Lin等[20]從大鼠神經(jīng)膠質細胞系B49的培養(yǎng)液中首先純化并命名,GDNF對神經(jīng)元有強大的神經(jīng)營養(yǎng)作用,抑制其發(fā)生退變[19],當神經(jīng)受損后,GDNF含量或蛋白表達會出現(xiàn)異常。本實驗免疫組化、Wester-blot及實時PCR結果示,與NC組相比,HU組大鼠腰5背根神經(jīng)節(jié)中GDNF數(shù)量、蛋白表達減少,GDNF mRNA表達量降低。GDNF作為神經(jīng)營養(yǎng)因子,其含量的減少可導致神經(jīng)失營養(yǎng),進而引起神經(jīng)的損傷。

此實驗結果與前期其他學者研究結果相一致,但在失重后神經(jīng)營養(yǎng)方面的研究卻較少,本實驗從神經(jīng)營養(yǎng)方面分析了背根神經(jīng)節(jié)損傷的原因,結果顯示,失重可引起神經(jīng)營養(yǎng)因子GDNF減少,背根神經(jīng)節(jié)失去營養(yǎng)導致?lián)p傷,為后期預防和治療提供了一定的理論基礎。

綜上所述,4周的模擬失重可以引起大鼠DRG發(fā)生損傷性變化,但模擬失重后引起DRG損傷是否具有性別差異、失重條件去除后損傷是否可逆、損傷機制及防治方法還有待于后期進一步研究。

1 Blaber E, Mar?al H, Burns BP. Bioastronautics: the influence of microgravity on astronaut health[J]. Astrobiology, 2010, 10(5):463-473.

2 Buckey JC Jr. Preparing for Mars: the physiologic and medical challenges[J]. Eur J Med Res, 1999, 4(9):353-356.

3 Williams DR. Bioastronautics: optimizing human performance through research and medical innovations[J]. Nutrition, 2002,18(10):794-796.

4 Clement G, Slenzka K. Fundamentals of Space Biology: Research on Cells, Animals, and Plants in Space[M]. New York: Springer,2006:51-80.

5 Kalb R, Solomon D. Space exploration, Mars, and the nervous system[J]. Arch Neurol, 2007, 64(4):485-490.

6 LeBlanc A, Schneider V, Shackelford L, et al. Bone mineral and lean tissue loss after long duration space flight[J]. J Musculoskelet Neuronal Interact, 2000, 1(2):157-160.

7 劉寧,崔賡,雷偉,等.尾部懸吊大鼠骨質疏松模型骨的微觀結構及力學性能變化的研究[J].中國骨與關節(jié)雜志,2012,1(2):169-173.

8 劉寧,雷偉,崔賡,等. 尾部懸吊模擬失重大鼠模型骨密度測量與骨折風險預測[D]. 西安:第四軍醫(yī)大學,2012.

9 Zhang R, Ran HH, Cai LL, et al. Simulated microgravity-induced mitochondrial dysfunction in rat cerebral arteries[J]. FASEB J,2014, 28(6):2715-2724.

10 Zhang R, Ran HH, Peng L, et al. Mitochondrial regulation of NADPH oxidase in hindlimb unweighting rat cerebral arteries[J]. PLoS One, 2014, 9(4):e95916.

11 Zhang R, Jia G, Bao J, et al. Increased vascular cell adhesion molecule-1 was associated with impaired endothelium-dependent relaxation of cerebral and carotid arteries in simulated microgravity rats[J]. J Physiol Sci, 2008, 58(1):67-73.

12 Zhang R, Ran HH, Gao YL, et al. Differential vascular cell adhesion molecule-1 expression and superoxide production in simulated microgravity rat vasculature[J]. EXCLI J, 2010, 9:195-204.

13 Kawano F, Nomura T, Ishihara A, et al. Afferent input-associated reduction of muscle activity in microgravity environment[J]. Neuroscience, 2002, 114(4):1133-1138.

14 Sayson JV, Lotz J, Parazynski S, et al. Back pain in space and postflight spine injury: Mechanisms and countermeasure development[J]. Acta Astronautica, 2013, 86: 24-38.

15 Islamov RR, Rizvanov AA, Tyapkina OV, et al. Genomic study of gene expression in the mouse lumbar spinal cord under the conditions of simulated microgravity[J]. Dokl Biol Sci, 2011, 439:197-200.

16 Jiang B, Roy RR, Polyakov IV, et al. Ventral horn cell responses to spaceflight and hindlimb suspension[J]. J Appl Physiol, 1992, 73(S2):S107-S111.

17 Morey-Holton ER, Globus RK. Hindlimb unloading rodent model:technical aspects[J]. J Appl Physiol, 2002, 92(4): 1367-1377.

18 Ren JC, Fan XL, Song XA, et al. Prolonged hindlimb unloading leads to changes in electrophysiological properties of L5 dorsal root ganglion neurons in rats after 14 days[J]. Muscle Nerve, 2012,45(1): 65-69.

19 H?ke A, Ho T, Crawford TO, et al. Glial cell line-derived neurotrophic factor alters axon schwann cell units and promotes myelination in unmyelinated nerve fibers[J]. J Neurosci, 2003,23(2):561-567.

20 Lin LF, Doherty DH, Lile JD, et al. GDNF: a glial cell linederived neurotrophic factor for midbrain dopaminergic neurons[J]. Science, 1993, 260(5111):1130-1132.

Effects of simulated weightlessness on Nissl body morphology and GDNF in DRG of male rats

REN Ningtao1, ZHANG Heng1, LI Jie1, LEI Wei2, LIU Ning2, BI Long2, WU Zixiang2, ZHANG Ran1, ZHANG Yonggang1, CUI Geng1
1Chinese PLA General Hospital, Beijing 100853, China;2Department of Orthopedics, Xijing Hospital, The Fourth Military Medical University, Xi'an 710032, Shaanxi Province, China

CUI Geng. Email: cuigeng@aliyun.com

Objective To investigate the effect of simulated weightlessness on dorsal root ganglia (DRG) and GDNF in rat model. Methods Eighty male Sprague-Dawley rats were randomly divided into HU group (n=40) and normal control (NC) group (n=40). The experiment lasted for 4 weeks, then L5 DRG was excised, toluidine blue staining was used to detect the changes of nissl body morphology, and GDNF was detected using immunohistochemistry method. GDNF protein expression was measured by Westernblot and GDNF mRNA expression was measured by RT-PCR. Results Nissl body staining showed that, compared with NC group, nissl bodies were stained light, smaller and scattering distribution in HU group. Immunohistochemistry revealed that the number of GDNF and IOD value reduced significantly in HU group (P<0.05). Western-blot showed that GDNF protein expression in HU group were significantly lower than NC group (P<0.05). mRNA expression of GDNF decreased significantly in HU group (P<0.05). Conclusion Four weeks of stimulated weightlessness can cause damaged changes in DRG nissl body morphology and reduction of the number, protein expression and mRNA expression of GDNF, which suggests that simulated weightlessness can cause damage changes in rat dorsal root ganglion.

simulated weightlessness; dorsal root ganglia; animal model

R 856

A

2095-5227(2015)05-0502-04

10.3969/j.issn.2095-5227.2015.05.024

時間:2015-02-04 10:50

http://www.cnki.net/kcms/detail/11.3275.R.20150204.1050.003.html

2014-11-17

任寧濤,男,碩士,研究方向:脊柱外科。Email: ning taoren@163.com

崔賡,男,副主任醫(yī)師,副教授。Email: cuigeng@aliyun. com

猜你喜歡
背根小體神經(jīng)節(jié)
基于對背根神經(jīng)節(jié)中神經(jīng)生長因子的調控探究華蟾素治療骨癌痛的機制
GM1神經(jīng)節(jié)苷脂貯積癥影像學表現(xiàn)及隨訪研究
蝶腭神經(jīng)節(jié)針刺術治療動眼神經(jīng)麻痹案1則
鞘內(nèi)注射ZD7288對糖尿病大鼠周圍神經(jīng)痛及血糖的作用
遠志對DPN大鼠背根節(jié)神經(jīng)元損傷的預防保護作用*
視網(wǎng)膜神經(jīng)節(jié)細胞凋亡機制的研究進展
一種優(yōu)化小鼠成纖維細胞中自噬小體示蹤的方法
超聲引導星狀神經(jīng)節(jié)阻滯治療原發(fā)性痛經(jīng)
炎癥小體與腎臟炎癥研究進展
NLRP3炎癥小體與動脈粥樣硬化的研究進展
罗定市| 合肥市| 抚州市| 崇仁县| 逊克县| 马关县| 长丰县| 册亨县| 乌拉特中旗| 景泰县| 玉林市| 呼伦贝尔市| 谷城县| 公安县| 宜宾县| 红原县| 大新县| 广州市| 桓台县| 弥勒县| 万山特区| 屏东县| 刚察县| 简阳市| 西华县| 抚松县| 万源市| 全南县| 永胜县| 抚宁县| 仁化县| 友谊县| 南溪县| 乌拉特中旗| 久治县| 江都市| 渑池县| 永丰县| 南汇区| 翼城县| 贡山|