郭亞麗 劉 建 劉燕梅 趙京霞,3,4 王玉光,3 劉清泉,3,4
(1 首都醫(yī)科大學(xué)附屬北京中醫(yī)醫(yī)院,北京,100010;2 北京中醫(yī)藥大學(xué),北京,100029;3 中醫(yī)感染性疾病基礎(chǔ)研究北京市重點(diǎn)實(shí)驗(yàn)室,北京,100010;4 北京市中醫(yī)研究所,北京,100010)
流感病毒感染后固有免疫病理損傷機(jī)制的探討
郭亞麗1劉 建1劉燕梅2趙京霞1,3,4王玉光1,3劉清泉1,3,4
(1 首都醫(yī)科大學(xué)附屬北京中醫(yī)醫(yī)院,北京,100010;2 北京中醫(yī)藥大學(xué),北京,100029;3 中醫(yī)感染性疾病基礎(chǔ)研究北京市重點(diǎn)實(shí)驗(yàn)室,北京,100010;4 北京市中醫(yī)研究所,北京,100010)
流感病毒感染后可以造成廣泛的免疫病理損傷,病毒的持續(xù)復(fù)制和宿主產(chǎn)生的過度的免疫應(yīng)答是介導(dǎo)病理損傷的主要原因。文章主要針對病毒感染初始階段,固有免疫應(yīng)答中關(guān)鍵因子在抗病毒免疫和介導(dǎo)肺損傷中的利弊加以綜述,為深入了解流感病毒防御機(jī)制及尋找出合理有效的治療策略提供參考。
流感病毒;免疫病理損傷;天然免疫
流行性感冒,簡稱流感,是由流感病毒通過呼吸道感染引起的重要傳染病。流感病毒屬于正粘病毒科的分節(jié)段、單股、負(fù)鏈RNA病毒,其分節(jié)段的基因組導(dǎo)致其容易發(fā)生基因重組,并且在病毒傳代中易發(fā)生抗原漂移,形成新的病毒株。根據(jù)其表面糖蛋白HA與NA的不同分別有16個(gè)與9個(gè)亞型。目前發(fā)現(xiàn)的可以感染人的亞型有H1N1、H3N2、H2N2、pdm2009H1N1、H5N1、H9N2、H7N7、H7N2、H7N3等,其中H5N1、H7N9對人有高致病性。流感病毒是典型的引起局部感染的病毒,呼吸道上皮細(xì)胞是流感病毒侵犯的主要部位。流感病毒感染過程中,機(jī)體的免疫應(yīng)答對病毒的有效清除十分重要,但是過度的免疫應(yīng)答又是介導(dǎo)免疫病理損傷的主要因素。為探討流感病毒感染防御機(jī)制,尋找流感靶向治療策略,我們主要對人及實(shí)驗(yàn)動(dòng)物感染流感病毒初始階段天然免疫病理損傷機(jī)制進(jìn)行綜述。
流感病毒感染介導(dǎo)的小鼠肺損傷過程是一個(gè)多因素參與的復(fù)雜過程,其中病毒持續(xù)復(fù)制是造成損傷的主要因素之一。流感病毒通過其表面的HA蛋白特異性地與宿主細(xì)胞表面的唾液酸相結(jié)合,感染呼吸道上皮細(xì)胞,導(dǎo)致上皮細(xì)胞壞死性死亡、脫落。毒力較強(qiáng)的毒株感染后,病毒在感染部位持續(xù)復(fù)制,而高病毒載量和持續(xù)的病毒復(fù)制導(dǎo)致了炎性反應(yīng)的持續(xù)存在,并最終導(dǎo)致了進(jìn)行性的組織損傷[1-2]。病毒的高效的復(fù)制能力除了與病毒自身的多種成分如HA(與肺上皮細(xì)胞特異性結(jié)合)、NA(子代病毒的釋放)、PB2(病毒復(fù)制)[3]、NS1(抵抗宿主免疫應(yīng)答力)[4]相關(guān)外,還與流感病毒感染后成功激活宿主細(xì)胞內(nèi)的多條信號通路如Ras/Raf/MERK/ERK信號通路[5]、NF-κB信號通路[6]、PKS和PI3K/AKT信號通路[7]等以幫助其順利完成復(fù)制、組裝有關(guān)。
流感病毒感染后病理損傷雖與病毒的持續(xù)復(fù)制相關(guān),但并非必然關(guān)聯(lián)。早前,Dawson TC等通過基因敲除小鼠研究,發(fā)現(xiàn)一有趣現(xiàn)象:CCR5-/-小鼠染毒后雖病毒滴度相對正常,但肺部呈現(xiàn)出廣泛的炎癥應(yīng)答反應(yīng)和肺病理損傷,病死率高;而CCR2-/-小鼠肺部病毒載量明顯升高,但肺部浸潤及肺損傷程度低,病死率反減低[8]。2009H1N1流感大流行高死亡率主要發(fā)生在健康的大齡兒童和年輕成人,且在疾病早期,體內(nèi)IL-1、IL-12、IFN-γ、IL-6、TNF-α、IL-5、IL-10、IL-17等細(xì)胞因子血清濃度均明顯上升[9-10],再次證實(shí)產(chǎn)生了宿主免疫應(yīng)答過度介導(dǎo)的病理損傷。
2.1 天然免疫的激活 天然免疫系統(tǒng)通過相應(yīng)的模式識別受體(Pattern Recognition Receptors,PRRs)識別病原微生物,激活機(jī)體的免疫應(yīng)答,是機(jī)體抵御病原微生物入侵的第一道防線,在病毒感染后率先發(fā)揮非特異性防護(hù)作用。天然免疫的激活主要通過3種PRRs途徑:RIG-1(Retinoic Acid Inducible Gene I)樣受體(RLR)途徑、Toll樣受體(TLR)途徑、NOD樣受體(NLR)途徑。宿主細(xì)胞識別流感病毒核酸的TLRs主要為TLR3和TLR7/8[11]。其中TLR3主要識別病毒RNA,活化轉(zhuǎn)錄因子IRF3(IFN Regulatory Factor 3,IRF3)、AP1(Activator Protein 1,AP1)和NF-κB的p50/p65,激活干擾素介導(dǎo)的天然免疫應(yīng)答[12]。TLR7識別流感病毒的ssRNA,激活MyD88(myeloiddifferentiation factor88)依賴的信號通路,活化IRF7,誘導(dǎo)產(chǎn)生I型干擾素和炎性因子,介導(dǎo)中性粒細(xì)胞的激活,同時(shí)也激活轉(zhuǎn)錄因子NF-κB信號通路,誘導(dǎo)干擾素等多種炎性因子的表達(dá)[13]。流感病毒RNA同時(shí)可以會被RIG-I識別,繼而激活轉(zhuǎn)錄因子IRF3、IRF7和NF-κB,進(jìn)而誘導(dǎo)干擾素和細(xì)胞因子的表達(dá),抵抗病毒的感染[14]。此外,NLR可以識別流感病毒RNA,活化DCs(dendritic cells)和巨噬細(xì)胞中的NLRP3炎性復(fù)合體,通過caspase-1促進(jìn)IL-1β和IL-18的活化,放大炎性反應(yīng),參與機(jī)體抗病毒免疫[15]。
2.2 細(xì)胞因子風(fēng)暴介導(dǎo)的免疫損傷 流感病毒感染初期,病毒誘導(dǎo)天然免疫系統(tǒng)產(chǎn)生大量促炎性反應(yīng)細(xì)胞因子參與機(jī)體免疫應(yīng)答。無論是1918年的流感大流行還是H5N1、H7N9禽流感病毒均可引起以炎性反應(yīng)細(xì)胞因子過度表達(dá)及功能失調(diào)為特點(diǎn)的“細(xì)胞因子風(fēng)暴”的出現(xiàn)[16-17]。早前Julkunen I等的研究即發(fā)現(xiàn)甲型流感病毒感染后可以在呼吸道上皮細(xì)胞和白細(xì)胞中復(fù)制,在轉(zhuǎn)錄翻譯水平上調(diào)控宿主細(xì)胞內(nèi)NF-κB,AP-1,STAT和IRF信號通路,激活caspase-1酶,下調(diào)細(xì)胞凋亡通路,最終導(dǎo)致RANTES、MIP-1α、MCP-1、MCP-3、IP-10、IL-1β、IL-6、IL-18、TNF-α、IFN-α/β等的過度表達(dá)[18],且IFN-α、TNF-α、IL-1α/β、IL-6、IL-8等于疾病的嚴(yán)重程度相關(guān)[19]。這些細(xì)胞因子會加重病情,引發(fā)嚴(yán)重的呼吸道功能失調(diào)及致死性的肺部病理損傷。
I型干擾素信號通路在病毒控制和病理損傷中有著雙刃劍的作用。既往多項(xiàng)研究表明,I型干擾素在抑制流感病毒的復(fù)制、播散中發(fā)揮重要作用[20],IFNAR1-/-小鼠感染流感病毒后肺部中性粒細(xì)胞浸潤增加,病死率升高[21]。同時(shí),多促炎因子和趨化因子亦可通過I型干擾素信號通路放大,誘導(dǎo)肺病理性損傷[21]。II型干擾素,即IFN-γ,在流感病毒感染的整個(gè)過程中均產(chǎn)生。感染早期IFN-γ(感染3 d內(nèi))主要有巨噬細(xì)胞和自然殺傷細(xì)胞產(chǎn)生,感染后期(感染5~10 d)主要由肺和次級淋巴結(jié)中的抗病毒CD4和CD8 T細(xì)胞產(chǎn)生。保護(hù)性記憶CD4 T細(xì)胞應(yīng)答與病毒感染后肺部分泌IFN-γ的CD4 T細(xì)胞的水平直接相關(guān)[22]。IFN-γ參與控制病毒感染和免疫調(diào)節(jié)。在流感早期給予IFN-γ干擾素可以增強(qiáng)機(jī)體的抗病毒能力,有保護(hù)性作用[23]。然該細(xì)胞因子對于病毒的有效清除及免疫應(yīng)答的有效激發(fā)并非必需[24]。IFN-γ,即III型干擾素,是2003年新發(fā)現(xiàn)的一種類似于I型干擾素的信號通路,流感病毒感染后的體外培養(yǎng)的呼吸道上皮細(xì)胞和鼠肺中均檢測到[25]。與IFN-γ不同,IFN-γ并不依賴與I型干擾素信號的誘導(dǎo),在I型干擾素信號缺失的情況下,流感病毒感染小鼠仍表現(xiàn)出有效的保護(hù)作用[26]。
眾多研究表明流感中癥患者中TNF-α、IL-1、IL-6水平明顯升高,且有強(qiáng)有力的證據(jù)表明TNF-α、IL-1升高的程度與病情嚴(yán)重程度相關(guān)。然由IL-1R、TNF-α、IL-6介導(dǎo)的信號通路并非百害無利,更準(zhǔn)確的說是有著介導(dǎo)宿主保護(hù)作用和免疫損傷中雙重作用。IL-1R-/-小鼠肺部中性粒的募集減少,炎性病理損傷減輕,但是抗病毒IgM抗體水平同時(shí)降低,病毒清除延遲,病死率增加[27]。TNF-α水平增高與高致病性流感病毒的發(fā)病和病死率相關(guān)。但有意思的是,接受抗TNF-α中和抗體治療的小鼠炎性反應(yīng)細(xì)胞募集、T細(xì)胞因子產(chǎn)量降低,病死率降低[28];而在TNFR-/-小鼠中病死率并無統(tǒng)計(jì)學(xué)意義[29]。TNFR和IL-1R基因雙陰性的小鼠的病死率顯著降低,肺中細(xì)胞因子/趨化因子水平明顯、中性粒細(xì)胞和巨噬細(xì)胞明顯減少[30]。IL-6水平與流感病理損傷呈現(xiàn)出強(qiáng)相關(guān)性,但是IL-6基因敲除后并未改變小鼠病死率[30]。相反,IL-6信號缺如后,小鼠肺病理損傷加重、病毒滴度升高,肺部中性粒減少[31]。同時(shí),IL-6R介導(dǎo)的信號通路為CD4Th細(xì)胞的產(chǎn)生、B細(xì)胞和中和抗體應(yīng)答所必須,這種免疫刺激抗病毒特性也許能解釋為什么IL-6缺陷小鼠較高的肺病毒滴度和病死率。
除了細(xì)胞因子外,流感病毒感染還可誘導(dǎo)產(chǎn)生多種趨化因子,如MCP-1(CCL2)、IL-10(CXCL10)、RANTES(CCL5)、IL-8等,其升高水平在高致病力的毒株中更明顯[32]。這些趨化因子與致死型流感病毒感染和病理損傷之間有一定聯(lián)系,但這種聯(lián)系目前尚未得到充分證實(shí)。
此外宿主免疫系統(tǒng)還產(chǎn)生多種抑炎因子來避免過度有害的免疫病理損傷。TGF-β是一個(gè)被廣泛研究的調(diào)節(jié)因子。TGF-β在流感病毒感染小鼠中升高。早期有研究表明流感病毒NA蛋白可以將TGF-β有非活化形式轉(zhuǎn)化為活化形式。但是高致病性H5N1流感病毒卻無法活化TGF-β,用腺病毒載體外源性轉(zhuǎn)入活化的TGF-β后,H5N1感染小鼠的病毒載量和死亡率降低,而中和TGF-β后,小鼠死亡率增加[33],可見TGF-β是一個(gè)保護(hù)性因子。此外,外周血TGF-β水平還是區(qū)別A(H1N1)pdm09與其他感染的一個(gè)很好的指標(biāo)[34]。IL-10通過調(diào)控JAK-STAT信號軸調(diào)節(jié)病原體感染后促炎免疫應(yīng)答與抑炎免疫應(yīng)答的平衡[35]。流感重癥患者IL-10水平明顯升高,這種上調(diào)可能是機(jī)體試圖防止高細(xì)胞因子血癥導(dǎo)致的炎性反應(yīng)的一種保護(hù)性應(yīng)答[36]。
2.3 固有免疫細(xì)胞介導(dǎo)的免疫損傷 流感病毒感染后引起單核/巨噬細(xì)胞、中性粒細(xì)胞向肺部的募集[37]。盡管募集的單核細(xì)胞/巨噬細(xì)胞在早期相當(dāng)于為流感病毒的復(fù)制提供了一個(gè)儲存器[38],但這一復(fù)制過程并不能有效進(jìn)行,亦少有感染性病毒顆粒釋放。大量研究表明,巨噬細(xì)胞、中性粒細(xì)胞在控制病毒復(fù)制和加劇細(xì)胞因子風(fēng)暴中均發(fā)揮主要作用。用中和抗體清除巨噬細(xì)胞或中性粒細(xì)胞的小鼠感染1918H1N1流感病毒后體內(nèi)細(xì)胞因子和趨化因子明顯降低,但病毒感染失控,病死率增加;而在感染后3~5 d時(shí)清除巨噬細(xì)胞或中性粒細(xì)胞則對預(yù)后無明顯影響[40]。此外,肺部定居的肺泡巨噬細(xì)胞(AMs)亦對病毒的控制有著重要作用[39]。肺泡巨噬細(xì)胞缺失小鼠的氣道病毒復(fù)制增加,肺損傷加重[40]。BrandesM等的研究表明通過減少而非完全消除中性粒應(yīng)答的方法可以改善存活率[41]。
DCs對流感病病毒易感,是專職抗原遞呈細(xì)胞,在調(diào)節(jié)宿主固有免疫和適應(yīng)性免疫起著關(guān)鍵作用。DCs分泌I型IFN參與固有免疫應(yīng)答,同時(shí)向T細(xì)胞呈遞抗原,激活適應(yīng)性免疫應(yīng)答。不同DCs亞群誘導(dǎo)T細(xì)胞的能力不同,不同的流感病毒株激活的DCs呈遞反應(yīng)也存在差異[42]。在高致病性流感病毒株感染模型中檢測到TipDCs(TNF-α and Nitric Oxide Producing DCs)亞群[43],該亞群在病毒特異性CD8T細(xì)胞應(yīng)答中至關(guān)重要,TipDCs清除后會導(dǎo)致病毒復(fù)制失控。另一研究則顯示[8],CCR2+單核細(xì)胞源性DCs在肺部聚集會加重肺損傷、小鼠染毒后發(fā)病和病死率增加;CCR2-/-小鼠肺部CCR2+單核細(xì)胞源性DCs減少,小鼠發(fā)病率和病死率均降低。
綜上所述,流感病毒感染后宿主的免疫應(yīng)答反應(yīng)是多靶點(diǎn)、多條信號通路共同激活的、錯(cuò)綜復(fù)雜的反應(yīng)。雖然天然免疫在病毒感染早期可以做出一系列有利于機(jī)體及時(shí)有效的控制病毒感染的保護(hù)反應(yīng),然又同時(shí)具有雙面性,任何一種應(yīng)答因素多強(qiáng)都會導(dǎo)致嚴(yán)重的免疫病例損傷?,F(xiàn)今的以調(diào)節(jié)宿主免疫應(yīng)答的為靶點(diǎn)的研究多是試圖通過抑制過度炎性反應(yīng),幫助機(jī)體抵御炎癥損傷,卻往往影響病毒的有效控制。我們期待的最理想的結(jié)果是能找到一種既能有效控制病毒復(fù)制、播散,又不誘導(dǎo)過度的炎癥應(yīng)答的藥物,使免疫應(yīng)答回歸至穩(wěn)態(tài)。
[1]To KK,Hung F,Li IW,et al.Delayed clearance of viral load and marked cytokine activation in severe cases of pandemic H1 N1 2009 influenza virus infection[J].Clin Infect Dis,2010,50(6):850-859.
[2]de Jong M D,Simmons C P,Thanh T T,et al.Fatal outcome ofhuman influenza A(H5N1)is associated with high viral load andhypercytokinemia[J].Nat Med,2006,12(10):1203-1207.
[3]Neumann G,Kawaoka Y.Host range restriction and pathogenicity in the context of influenza pandemic[J].Emerg Infect Dis,2006,12(6):881-886.
[4]Lipatov A S,Andreansky S,Webby R J,et al.Pathogenesis ofHong Kong H5N1 influenza virus NS gene reassortants in mice:therole of cytokines and B-and T-cell responses[J].J Gen Virol,2005,86(Pt 4):1121-1130.
[5]Dai X,Zhang L,Hong T.Host cellular signaling inducedby influenza virus[J].Sci China Life Sci,2011,54:68-74.
[6]Hayden MS,Ghosh S.NF-kappaB,the first quarter-century:remarkable progress and outstanding questions[J].GenesDev,2012,26:203-234.
[7]Jackson D,Killip MJ,Galloway CS,et al.Loss of function ofthe influenza A virus NS1 protein promotes apoptosis but this is not due to a failure to activate phosphatidylinositol 3-kinase(PI3K)[J].Virology,2010,396:94-105.
[8]Dawson TC,Beck MA,Kuziel WA,et al.Contrasting effects of CCR5and CCR2 deficiency in the pulmonary inflammatory response to influenza A virus[J].Am JPathol,2010,156:1951-1959.
[9]Rothberg MB,Haessler SD.Complications of seasonal and pandemic influenza[J].Crit Care Med,2010,38(4Suppl):e91-e97.
[10]Lee,N.,Chan,P.K.,Wong,C.K.,et al.Viral clearance andinflammatory response patterns in adults hospitalized for pandemic 2009influenza A(H1N1)virus pneumonia[J].AntivirTher,2011,16(2):237-247.
[11]Sandra N.Lester and Kui Li.Toll-like receptors in antiviral innate immunity[J].J Mol Biol,2014,426(6):1246-1264.
[12]Kawai T,Akira S.Antiviral signaling through pattern recognition receptors[J].J Biochem,2007,141(2):137-145.
[13]Wan Q,Wang H,Han X,et al.Baicalin inhibits TLR7/MYD88 signaling pathway activation to suppress lung inflammation in mice infected with influenza A virus[J].Biomed Rep,2014,2(3):437-441.
[14]Koyama S,Ishii KJ,Kumar H,et al.Differential role of TLR-and RLR-signaling in the immune responses to influenza A virus infection and vaccination[J].J Immunol,2007,179(7):4711-4720.
[15]Pang IK,Iwasaki A.Inflammasomes as mediators ofimmunity against influenza virus[J].Trends Immunol,2011,32:34-41.
[16]Cheung CY,Poon LL,Lau AS,et al.IInduction of proinflammatory cytokines in human macrophages by influenza A(H5N1)viruses:a mechanism for the unusual severity of human disease?[J]Lancet,2002,360(9348):1831-1837.
[17]Wang Z,Zhang A,Wan Y,et al.Early hypercytokinemia is associated with interferon-induced transmembrane protein-3 dysfunction and predictive of fatal H7N9 infection[J].ProcNatlAcadSci U S A.,2014,111(2):769-774.
[18]Julkunen I,Sareneva T,Pirhonen J,et al.Molecular pathogenesis of influenza A virus infection and virus-induced regulation of cytokine gene expression[J].Cytokine Growth Factor Rev,2001,12(2-3):171-180.
[19]Kristien,Van Reeth.Cytokines in the pathogenesis of influenza[J].Veterinary Microbiology,2000:109-116.
[20]Arimori Y,Nakamura R,Yamada H,et al.Type I interferon plays opposing roles in cytotoxicity and interferon-γ production by natural killer and CD8 T cells after influenza A virus infection in mice[J].J Innate Immun,2014,6(4):456-466.
[21]Seo SU,Kwon HJ,Ko HJ,et al.Type Iinterferon signaling regulates Ly6C(hi)monocytes and neutrophils during acute viralpneumonia in mice[J].PLoS Pathog,2011,7:e1001304.
[22]McKinstry KK,Strutt TM,Kuang Y,et al.Memory CD4+T cells protect against influenza through multiple synergizing mechanisms[J].J Clin Invest,2012,122(8):2847-2856.
[23]Weiss ID,Wald O,Wald H,et al.IFN-gamma treatment at early stages of influenza virus infection protects mice from death in a NK cell-dependent manner[J].J Interferon Cytokine Res,2010,30(6):439-449.
[24]Nguyen HH,van Ginkel FW,Vu HL,et al.Gammainterferon is not required for mucosal cytotoxic T-lymphocyte responses or heterosubtypicimmunity to influenza A virus infection in mice[J].J Virol,2000,74(12):5495-5501.
[25]StefaniaCrotta,Sophia Davidson,TanelMahlakoiv,et al.Type I and type III interferons drive redundant amplification loops to induce a transcriptional signature in influenza-infected airway epithelia[J].PLoSPathog,2013,9(11):e1003773.
[26]Jewell NA,Cline T,Mertz SE,etal.Lambda interferon is the predominant interferon induced byinfluenza A virus infection in vivo[J].J Virol,2010,84(21):11515-11522.
[27]Schmitz N,Kurrer M,Bachmann MF,Kopf M.Interleukin-1 is responsible for acute lung immunopathology but increases survival of respiratory influenza virus infection[J].J Virol,2005,79(10):6441-6448.
[28]Hussell T,Pennycook A,Openshaw PJ.Inhibition of tumor necrosis factor reduces the severity of virus-specific lung immunopathology[J].Eur J Immunol,2001,31(9):2566-2573.
[29]Salomon R,Hoffmann E,Webster RG.Inhibition of the cytokine response does not protect against lethal H5N1 influenza infection[J].Proc Nat AcadSci U.S.A.,2007,104(30):12479-12481.
[30]Perrone LA,Szretter KJ,Katz JM,et al.Mice lacking both TNF and IL-1 receptors exhibit reduced lung inflammation and delay in onset of death following infection with a highly virulent H5N1 virus[J].J Infect Dis,2010,202(8):1161-1170.
[31]Dienz O,Rud JG,Eaton SM,et al.Essential role of IL-6 in protection against H1N1 influenza virus by promoting neutrophil survival in the lung[J].Mucosal Immunol,2012,5(3):258-266.
[32]de Jong MD,Simmons CP,Thanh TT,et al.Fatal outcome of human influenza A(H5N1)is associatedwith high viral load and hypercytokinemia[J].Nat Med,2006,12(10):1203-1207.
[33]Carlson CM,Turpin EA,Moser LA,et al.Transforming growth factor-beta:activation by neuraminidase and role in highly pathogenic H5N1 influenza pathogenesis[J].PLoS Pathog,2010,6:e1001136.
[34]Rendón-Ramirez Erick J.,Ortiz-Stern Alejandro,Martinez-Mejia Corazon,et al.TGF-β Blood Levels Distinguish Between Influenza A(H1N1)pdm09 Virus Sepsis and Sepsis due to Other Forms of Community-Acquired Pneumonia[J].Viral Immunology,2015,28(5):248-254.
[35]Carey AJ,Tan CK,Ulett GC.Infection-induced IL-10 and JAK-STAT:A review of the molecular circuitry controlling immune hyperactivity in response to pathogenic microbes[J].JAKSTAT,2012,1(3):159-167.
[36]Teijaro JR.The Role of Cytokine Responses DuringInfluenza Virus Pathogenesisand Potential Therapeutic Options[J].Current Topics in Microbiology and Immunology,2015,386:3-22.
[37]Perrone LA,Plowden JK,García-Sastre A,et al.H5N1 and 1918 pandemic influenza virus infection results in early and excessive infiltration of macrophages and neutrophils in the lungs of mice[J].PLoS Pathog,2008,4(8):e1000115.
[38]Pang IK,Pillai PS,Iwasaki A.Efficient influenza A virus replication in the respiratory tract requires signals from TLR7 and RIG-I[J].Proc Nat AcadSci U.S.A.,2013,110(34):13910-13915.
[39]Tumpey TM,Garcia-Sastre A,Taubenberger JK,et al.Pathogenicity ofinfluenza viruses with genes from the 1918 pandemic virus:functional roles of alveolarmacrophages and neutrophils in limiting virus replication and mortality in mice[J].J Virol,2005,79(23):14933-14944.
[40]Tate MD,Pickett DL,van Rooijen N,et al.Critical role of airwaymacrophages in modulating disease severity during influenza virus infection of mice[J].J Virol,2010,84(15):7569-7580.
[41]Brandes M,Klauschen F,Kuchen,et al.A systems analysis identifies a feedforward inflammatory circuit leading to lethal influenza infection[J].Cell,2013,154(1):197-212.
[42]Hartmann BM,Thakar J,Albrecht RA,et al.Human Dendritic Cell Response Signatures Distinguish 1918,Pandemic,and Seasonal H1N1 Influenza Viruses[J].J Virol,2015,89(20):190-205.
[43]Aldridge JR Jr,Moseley CE,Boltz DA,et al.TNF/iNOS-producing dendritic cells are the necessary evil of lethal influenza virus infection[J].Proc Nat AcadSci U.S.A.,2009,106(13):5306-5311.
(2015-10-08收稿 責(zé)任編輯:洪志強(qiáng))
Mechanism of Innate Immune Pathological Damage after Influenza Virus Infection
Guo Yali1,Liu Jian1,Liu Yanmei2,Zhao Jingxia1,3,4,Wang Yuguang1,3,Liu Qingquan1,3,4
(1BeijingChineseMedicineHospitalaffiliatedtoCapitalMedicalUniversity,Beijing100010,China;2BeijingUniversityofChineseMedicine,Beijng100029,China; 3BeijingKeyLaboratoryofBasicResearchonInfectiousDiseasesofTCM,Beijing100010,China;4BeijingInstituteofTraditionalChineseMedicine,Beijing100010,China)
Influenza virus infection can result in a wide range of immune pathological damage, and the continuous replication of the virus and the excessive immune response of the hosts are the main reasons for the injury. Based on the key factors in the initial stage of virus infection, this paper summarized the advantages and disadvantages of immune response in anti-virus and mediating lung injury, which provide a reference for in-depth understanding of the mechanism of influenza virus defense and a reasonable and effective treatment strategy.
Influenza virus; Immune pathological injury; Natural immunity
國家“十二五”科技支持計(jì)劃“名老中醫(yī)特色治則治法傳承研究”(編號:2013BAI13B02);北京地區(qū)流感病證特征監(jiān)測及中醫(yī)預(yù)警體系建設(shè)(編號:Z141100006014056);北京市醫(yī)院管理局“登峰”人才培養(yǎng)計(jì)劃(編號:DFL20150902)
郭亞麗,在讀碩士研究生,研究方向:中西醫(yī)結(jié)合診治呼吸系統(tǒng)感染性疾病,E-mail:guoyali891022@sina.com
王玉光,E-mail:wygzhyiaids@126.com,電話:010-52176634;劉清泉(1956—),男,主任醫(yī)師,教授,E-mail:liuqingquan2003@126.com
R511.7
A
10.3969/j.issn.1673-7202.2015.10.003