朱小霞劉瓊 陳海燕 薛愉 楊雪 王娟 鄒和建*(復(fù)旦大學(xué)附屬華山醫(yī)院風(fēng)濕科,復(fù)旦大學(xué)風(fēng)濕、免疫和過敏性疾病研究中心 上海 200040)
沉默信息調(diào)節(jié)因子1
及其與痛風(fēng)和高尿酸血癥關(guān)聯(lián)的研究進(jìn)展*
朱小霞**劉瓊 陳海燕 薛愉 楊雪 王娟 鄒和建***
(復(fù)旦大學(xué)附屬華山醫(yī)院風(fēng)濕科,復(fù)旦大學(xué)風(fēng)濕、免疫和過敏性疾病研究中心 上海 200040)
沉默信息調(diào)節(jié)因子1為煙酰胺腺嘌呤二核苷酸依賴的脫乙?;福涔δ軓V泛而復(fù)雜,包括在細(xì)胞存活、增殖等過程中都有重要的生理作用。研究發(fā)現(xiàn)沉默信息調(diào)節(jié)因子1可調(diào)節(jié)糖、脂代謝,且對炎癥反應(yīng)有一定的抑制作用,故有可能通過抑制血尿酸水平升高、阻斷炎癥反應(yīng)而對慢性痛風(fēng)反復(fù)發(fā)作產(chǎn)生一定的預(yù)防作用。本文介紹沉默信息調(diào)節(jié)因子1的主要生物學(xué)功能及其與痛風(fēng)和高尿酸血癥的關(guān)聯(lián)。
沉默信息調(diào)節(jié)因子1 白藜蘆醇 炎癥 高尿酸血癥 痛風(fēng)
沉默信息調(diào)節(jié)因子(silent information regulator, SIRT)1為sirtuin蛋白家族成員之一,存在于真核和原核生物中。SIRT1在細(xì)胞存活、增殖等過程中發(fā)揮著重要的生理作用,其功能失調(diào)涉及多種疾?。ㄈ缒[瘤、糖尿病、心血管疾病和慢性炎癥等)的發(fā)生與發(fā)展。近年研究發(fā)現(xiàn),SIRT1不僅有顯著的代謝調(diào)節(jié)作用,而且對炎癥反應(yīng)也有一定的抑制作用,故有可能通過抑制血尿酸水平升高、阻斷炎癥反應(yīng)而產(chǎn)生一定的慢性痛風(fēng)反復(fù)發(fā)作預(yù)防作用。本文擬對SIRT1在該領(lǐng)域的研究進(jìn)展作一綜述。
哺乳動(dòng)物體內(nèi)的sirtuin蛋白有7種,即SIRT1 ~ SIRT7,它們分布在體內(nèi)多種細(xì)胞中,目前研究最多的為SIRT1(即sirtuin 1)。SIRT1為煙酰胺腺嘌呤二核苷酸(nicotinamide adenine dinucleotide, NAD)依賴的脫乙?;福浯呋诵挠?個(gè)基本結(jié)構(gòu)域組成:一個(gè)為大的NAD結(jié)構(gòu)域,主要由Rossmann折疊構(gòu)成,保守性較高;另一個(gè)為小的亞結(jié)構(gòu)域,包含1個(gè)鋅結(jié)合構(gòu)件和1個(gè)螺旋構(gòu)件,保守性相對較低。大、小結(jié)構(gòu)域之間有1個(gè)裂隙,底物在此與NAD結(jié)合形成酶-底物的β-折疊結(jié)構(gòu)域,發(fā)生酶催化反應(yīng)[1]。
白藜蘆醇(resveratrol)為一種天然物質(zhì),其化學(xué)名為芪三酚,即3,5,4’-三羥基-二苯乙烯,主要存在于葡萄、虎杖、漿果和花生等植物中,有順式和反式2種構(gòu)型,反式白藜蘆醇的生物學(xué)活性更為穩(wěn)定。白藜蘆醇是最早被發(fā)現(xiàn)的可激活SIRT1的多酚類化合物[2],研究發(fā)現(xiàn)其能通過激活SIRT1而產(chǎn)生多種生物學(xué)效應(yīng)。
2.1 調(diào)節(jié)細(xì)胞代謝
SIRT1可調(diào)節(jié)細(xì)胞的分化、增殖和衰老,這主要?dú)w因于其對轉(zhuǎn)錄因子FOXO和p53的調(diào)節(jié)[3-4]。在衰老的小鼠胚胎成纖維細(xì)胞或人內(nèi)皮細(xì)胞中,SIRT1的表達(dá)水平明顯下降。磷酸化或乙酰化等修飾可導(dǎo)致FOXO3轉(zhuǎn)錄活性喪失,而SIRT1則可通過其脫乙?;饔没謴?fù)FOXO3的功能,使細(xì)胞周期阻滯、允許細(xì)胞有充分的時(shí)間修復(fù)損傷的DNA或抵抗氧化應(yīng)激,同時(shí)也可上調(diào)DNA修復(fù)機(jī)制,通過激活細(xì)胞周期調(diào)節(jié)蛋白D、生長阻滯和DNA損傷誘導(dǎo)蛋白45、細(xì)胞周期調(diào)控因子p27Kip1而提高對活性氧自由基的解毒作用[5]。此外,SIRT1還可通過調(diào)節(jié)氧化-還原平衡、NAD/還原型NAD水平以及線粒體功能,進(jìn)而間接調(diào)節(jié)細(xì)胞的代謝和功能[6]。
2.2 抑制炎癥反應(yīng)
研究發(fā)現(xiàn),SIRT1基因敲除或活性抑制后可致炎癥因子釋放增加,而SIRT1激動(dòng)劑白藜蘆醇可抑制致炎癥因子如腫瘤壞死因子(tumor necrosis factor, TNF)-α、白介素(interleukin, IL)-1β、IL-6、環(huán)氧化酶-2、誘生型一氧化氮合酶、基質(zhì)金屬蛋白酶和黏附分子等的釋放[7]。對慢性阻塞性肺部疾病、結(jié)腸炎等多種慢性炎癥性疾病動(dòng)物模型的研究也發(fā)現(xiàn),白藜蘆醇可通過激活SIRT1而抑制炎癥、減緩疾病進(jìn)展[8-10]。SIRT1還可直接作用于核因子(nuclear factor, NF)-κB的亞單位RelA/p65,使之發(fā)生脫乙?;?,從而抑制NF-κB的轉(zhuǎn)錄活性[11-13]。
2.3 調(diào)節(jié)免疫功能
SIRT1在CD4+和CD8+T細(xì)胞中的高水平表達(dá)提示,其可能參與了免疫功能調(diào)節(jié)過程[14]。SIRT1功能抑制后可致T細(xì)胞活性異常,改變CD4+T細(xì)胞耐受狀態(tài)[15]。SIRT1基因敲除后的小鼠明顯缺乏T細(xì)胞耐受,易感于自身免疫性疾病[16-17]。SIRT1還可作用于轉(zhuǎn)錄因子FOXP3,通過脫乙?;饔枚岣哒{(diào)節(jié)性T細(xì)胞的數(shù)量和功能[18]。
此外,SIRT1也有抑制細(xì)胞的過度自體吞噬、減少細(xì)胞死亡,調(diào)節(jié)脂肪代謝的生物過程、減少脂肪沉積[19]和調(diào)節(jié)內(nèi)皮細(xì)胞功能、保護(hù)心臟[20-21]等作用。雖然這些調(diào)節(jié)作用的分子機(jī)制仍不明確,但通過多酚類藥物誘導(dǎo)SIRT1的活性有可能為多種慢性炎癥性疾?。ㄈ绶磸?fù)發(fā)作的慢性痛風(fēng)性關(guān)節(jié)炎)的預(yù)防和治療帶來新的希望。
痛風(fēng)為嘌呤代謝紊亂和(或)尿酸排泄障礙所致血尿酸水平升高而引起的一組異質(zhì)性疾病,高尿酸血癥是其臨床特征之一。高尿酸血癥患者可出現(xiàn)尿酸鹽結(jié)晶沉積,由此導(dǎo)致關(guān)節(jié)炎和(或)腎病、腎結(jié)石時(shí)稱之為痛風(fēng)。嘌呤代謝異常是高尿酸血癥的發(fā)病機(jī)制之一,而具有明顯代謝調(diào)節(jié)作用的SIRT1是否對嘌呤生成和代謝也有一定的調(diào)節(jié)作用?痛風(fēng)性關(guān)節(jié)炎急性發(fā)作有一定的自限性,但易反復(fù)發(fā)作、形成慢性關(guān)節(jié)炎,最終導(dǎo)致關(guān)節(jié)畸形、功能受限。白藜蘆醇能否通過調(diào)節(jié)代謝而降低血尿酸水平或阻斷炎癥反應(yīng),由此預(yù)防慢性痛風(fēng)的反復(fù)發(fā)作?這些都是臨床關(guān)心的問題。
3.1 SIRT1與代謝性疾病和高尿酸血癥
有研究顯示,SIRT1可通過解偶聯(lián)蛋白2、FOXO3或NAD依賴的通路來調(diào)節(jié)葡萄糖-三磷酸腺苷信號(hào)通路,刺激胰腺β細(xì)胞分泌胰島素[22-23];胰腺β細(xì)胞過表達(dá)SIRT1可提高對葡萄糖的耐受性、增強(qiáng)胰島素的分泌,SIRT1低表達(dá)則會(huì)減弱葡萄糖激發(fā)的胰島素分泌[24-26]。一項(xiàng)研究給糖尿病大鼠口服白藜蘆醇5 mg/(kg·d)共30 d,結(jié)果不僅發(fā)現(xiàn)大鼠的血糖水平明顯下降,且見其血尿素氮、血尿酸和血肌酐水平也下降,提示白藜蘆醇可改善糖代謝、降低血尿酸水平。筆者所在實(shí)驗(yàn)室也在小鼠模型中發(fā)現(xiàn),白藜蘆醇可明顯減輕氧嗪酸鉀和酵母膏聯(lián)合誘導(dǎo)的高尿酸血癥,并可改善腎臟組織炎性細(xì)胞浸潤、降低血肌酐水平。
3.2 SIRT1與關(guān)節(jié)炎和痛風(fēng)性關(guān)節(jié)炎
SIRT1結(jié)構(gòu)性表達(dá)于關(guān)節(jié)軟骨,但在嚴(yán)重骨關(guān)節(jié)炎患者的軟骨中卻幾乎檢測不到SIRT1。提高SIRT1表達(dá)可延緩骨關(guān)節(jié)炎的進(jìn)展,而通過小干擾RNA干擾和阻斷SIRT1表達(dá)可明顯下調(diào)軟骨聚集蛋白聚糖表達(dá)、誘導(dǎo)軟骨細(xì)胞肥大和軟骨基質(zhì)丟失,最終引發(fā)骨關(guān)節(jié)炎[27]。SIRT1激活劑可調(diào)節(jié)破骨細(xì)胞和成骨細(xì)胞的活性、改善骨代謝,從而減輕骨質(zhì)疏松癥[28]。另有研究提示,白藜蘆醇可通過降低類風(fēng)濕關(guān)節(jié)炎滑膜細(xì)胞的活性而抑制滑膜細(xì)胞肥大,由此減輕類風(fēng)濕關(guān)節(jié)炎。不過,也有研究報(bào)告,SIRT1在類風(fēng)濕關(guān)節(jié)炎患者滑膜組織和滑膜細(xì)胞中的表達(dá)水平提高,而使用SIRT1抑制劑或者通過小干擾RNA干擾和阻斷SIRT1表達(dá)可減少單核細(xì)胞合成TNF-α[29],在類風(fēng)濕關(guān)節(jié)炎滑膜細(xì)胞中阻斷SIRT1表達(dá)也可抑制IL-8和IL-6的分泌[30]。在類風(fēng)濕關(guān)節(jié)炎滑膜細(xì)胞中,TNF-α誘導(dǎo)的SIRT1可能會(huì)通過提高致炎癥因子的合成、抑制凋亡而誘導(dǎo)慢性炎癥。
在痛風(fēng)性關(guān)節(jié)炎中,SIRT1及其激動(dòng)劑白藜蘆醇有何作用呢?筆者所在實(shí)驗(yàn)室在對尿酸鹽結(jié)晶誘導(dǎo)的小鼠痛風(fēng)性關(guān)節(jié)炎研究中發(fā)現(xiàn),在痛風(fēng)急性發(fā)作期給予白藜蘆醇干預(yù)不能有效緩解已發(fā)生了的小鼠關(guān)節(jié)炎,而預(yù)防性地給予白藜蘆醇治療2周,則可見尿酸鹽結(jié)晶誘導(dǎo)的關(guān)節(jié)炎癥反應(yīng)受到明顯抑制。
綜上所述,SIRT1及其激動(dòng)劑白藜蘆醇一方面可通過調(diào)節(jié)代謝作用而減輕高尿酸血癥、從而防治痛風(fēng)性關(guān)節(jié)炎的反復(fù)發(fā)作,另一方面還可通過抑制炎癥作用而預(yù)防痛風(fēng)性關(guān)節(jié)炎發(fā)作。因此,筆者認(rèn)為,SIRT1及白藜蘆醇在預(yù)防痛風(fēng)性關(guān)節(jié)炎反復(fù)發(fā)作上可能具有一定的臨床應(yīng)用前景,但其主要的、詳細(xì)的作用機(jī)制仍不清楚,而這也是筆者今后的主要研究方向之一。
[1] Borra MT, Langer MR, Slama JT, et al. Substrate specificity and kinetic mechanism of the Sir2 family of NAD-dependent histone/protein deacetylases [J]. Biochemistry, 2004, 43(30): 9877-9887.
[2] Beher D, Wu J, Cumine S, et al. Resveratrol is not a direct activator of SIRT1 enzyme activity [J]. Chem Biol Drug Des, 2009, 74(6): 619-624.
[3] Cheng HL, Mostoslavsky R, Saito S, et al. Developmental defects and p53 hyperacetylation in Sir2 homolog (SIRT1)-deficient mice [J]. Proc Natl Acad Sci USA, 2003, 100(19): 10794-10799.
[4] Howitz KT, Bitterman KJ, Cohen HY, et al. Small molecule activators of sirtuins extend Saccharomyces cerevisiae lifespan [J]. Nature, 2003, 425(6954): 191-196.
[5] Chen CJ, Yu W, Fu YC, et al. Resveratrol protects cardiomyocytes from hypoxia-induced apoptosis through the SIRT1-FoxO1 pathway [J]. Biochem Biophys Res Commun, 2009, 378(3): 389-393.
[6] Pfluger PT, Herranz D, Velasco-Miguel S, et al. SIRT1 protects against high-fat diet-induced metabolic damage [J]. Proc Natl Acad Sci USA, 2008, 105(28): 9793-9798.
[7] Zhang R, Chen HZ, Liu JJ, et al. SIRT1 suppresses activator protein-1 transcriptional activity and cyclooxygenase-2 expression in macrophages [J]. J Biol Chem, 2010, 285(10): 7097-7110.
[8] Biesalski HK. Polyphenols and inflammation: basic interactions [J]. Curr Opin Clin Nutr Metab Care, 2007, 10(6): 724-728.
[9] Rajendrasozhan S, Yang SR, Kinnula VL, et al. SIRT1, an antiinflammatory and antiaging protein, is decreased in lungs of patients with chronic obstructive pulmonary disease [J]. Am J Respir Crit Care Med, 2008, 177(8): 861-870.
[10] Singh UP, Singh NP, Singh B, et al. Resveratrol (trans-3,5,4’-trihydroxystilbene) induces silent mating type information regulation-1 and down-regulates nuclear transcription factorkappaB activation to abrogate dextran sulfate sodium-induced colitis [J]. J Pharmacol Exp Ther, 2010, 332(3): 829-839.
[11] Birrell MA, McCluskie K, Wong S, et al. Resveratrol, an extract of red wine, inhibits lipopolysaccharide induced airway neutrophilia and inflammatory mediators through an NF-kappaβ-independent mechanism [J]. FASEB J, 2005, 19(7): 840-841.
[12] Chen LF, Mu Y, Greene WC. Acetylation of RelA at discrete sites regulates distinct nuclear functions of NF-kappaβ [J]. EMBO J, 2002, 21(23): 6539-6548.
[13] Zhu XX, Liu Q, Wang MM, et al. Activation of Sirt1 by resveratrol inhibits TNF-alpha induced inflammation in fibroblasts [J/OL]. PLoS One, 2011, 6(11): e27081. [2013-11-12]. http://www.plosone.org/article/fetchObject.action?uri=inf o%3Adoi%2F10.1371%2Fjournal.pone.0027081&representat ion=PDF.
[14] Hu N, Qiu X, Luo Y, et al. Abnormal histone modification patterns in lupus CD4+T cells [J]. J Rheumatol, 2008, 35(5): 804-810.
[15] Zhang JP, Lee SM, Shannon S, et al. The typeⅢhistone deacetylase SIRT1 is essential for maintenance of T cell tolerance in mice [J]. J Clin Invest, 2009, 119(10): 3048-3058. [16] Hu N, Long H, Zhao M, et al. Aberrant expression patternof histone acetylation modifiers and mitigation of lupus by SIRT1-siRNA in MRL/lpr mice [J]. Scand J Rheumatol, 2009, 38(6): 464-471.
[17] Sequeira J, Boily G, Bazinet S, et al. Sirt1-null mice develop an autoimmune-like condition [J]. Exp Cell Res, 2008, 314(16): 3069-3074.
[18] van Loosdregt J, Vercoulen Y, Guichelaar T, et al. Regulation of Treg functionality by acetylation-mediated Foxp3 protein stabilization [J]. Blood, 2010, 115(5): 965-974.
[19] Xu F, Gao Z, Zhang J, et al. Lack of SIRT1 (mammalian sirtuin 1) activity leads to liver steatosis in the SIRT1+/-mice: a role of lipid mobilization and inflammation [J]. Endocrinology, 2010, 151(6): 2504-2514.
[20] Tanno M, Kuno A, Yano T, et al. Induction of manganese superoxide dismutase by nuclear translocation and activation of SIRT1 promotes cell survival in chronic heart failure [J]. J Biol Chem, 2010, 285(11): 8375-8382.
[21] Yoshida Y, Shioi T, Izumi T. Resveratrol ameliorates experimental autoimmune myocarditis [J]. Circ J, 2007, 71(3): 397-404.
[22] Bordone L, Motta MC, Picard F, et al. Sirt1 regulates insulin secretion by repressing UCP2 in pancreatic beta cells [J/ OL]. PLoS Biol, 2006, 4(2): e31. [2013-11-12]. http://www. plosbiology.org/article/info%3Adoi%2F10.1371%2Fjournal. pbio.0040031.
[23] Liu FC, Liao CH, Chang YW, et al. A new insight of antiplatelet effects of sirtinol in platelets aggregation via cyclic AMP phosphodiesterase [J]. Biochem Pharmacol, 2009, 77(8): 1364-1373.
[24] Imai S, Kiess W. Therapeutic potential of SIRT1 and NAMPT-mediated NAD biosynthesis in type 2 diabetes [J]. Front Biosci (Landmark Ed), 2009, 14: 2983-2995.
[25] Milne JC, Lambert PD, Schenk S, et al. Small molecule activators of SIRT1 as therapeutics for the treatment of type 2 diabetes [J]. Nature, 2007, 450(7170): 712-716.
[26] Yoshizaki T, Schenk S, Imamura T, et al. SIRT1 inhibits inflammatory pathways in macrophages and modulates insulin sensitivity [J]. Am J Physiol Endocrinol Metab, 2010, 298(3): E419-E428.
[27] Fujita N, Matsushita T, Ishida K, et al. Potential involvement of SIRT1 in the pathogenesis of osteoarthritis through the modulation of chondrocyte gene expressions [J]. J Orthop Res, 2011, 29(4): 511-515.
[28] Shakibaei M, Buhrmann C, Mobasheri A. Resveratrolmediated SIRT-1 interactions with p300 modulate receptor activator of NF-kappaB ligand (RANKL) activation of NF-kappaB signaling and inhibit osteoclastogenesis in bonederived cells [J]. J Biol Chem, 2011, 286(13): 11492-11505.
[29] Niederer F, Ospelt C, Brentano F, et al. SIRT1 overexpression in the rheumatoid arthritis synovium contributes to proinflammatory cytokine production and apoptosis resistance [J]. Ann Rheum Dis, 2011, 70(10): 1866-1873.
[30] Nakayama H, Yaguchi T, Yoshiya S, et al. Resveratrol induces apoptosis MH7A human rheumatoid arthritis synovial cells in a sirtuin 1-dependent manner [J]. Rheumatol Int, 2012, 32(1): 151-157.
Advances in SIRT1 and its association with gout/hyperuricemia*
ZHU Xiaoxia**, LIU Qiong, CHEN Haiyan, XUE Yu, YANG Xue, WANG Juan, ZOU Hejian***
(Division of Rheumatology, Huashan Hospital, Fudan University; Institute of Rheumatology, Immunology and Allergy, Fudan University, Shanghai 200040, China)
SIRT1 is a nicotinamide adenine dinucleotide-dependent class III histone deacetylase. It has been shown to be involved in a variety of pathophysiological processes, such as cell growth and proliferation. Recent research work showed that SIRT1 could regulate metabolism modulation such as glycometabolism and lipid metabolism, and had a certain inhibition of inflammatory response and accordingly might have a preventive effect on the recurrent attacks of gouty arthritis by its inhibition of the inflammation and hyperuricemia. Here we review the biological properties of SIRT1 and its possible functions for the treatment of gout and hyperuricemia.
SIRT1; resveratrol; inflammation; hyperuricemia; gout
R589.7
A
1006-1533(2015)11-0019-04
國家自然科學(xué)基金青年項(xiàng)目(項(xiàng)目編號(hào):81302573);2013年教育部高等學(xué)校博士學(xué)科點(diǎn)專項(xiàng)科研基金(新教師類)項(xiàng)目(項(xiàng)目編號(hào):20130071120055);上海市科學(xué)技術(shù)委員會(huì)基礎(chǔ)研究重大項(xiàng)目(項(xiàng)目編號(hào):11DJ1400101)
**
朱小霞,主治醫(yī)師。研究方向:痛風(fēng)和高尿酸血癥的發(fā)病機(jī)制及干預(yù)策略。E-mail: zhuxiaoxia@medmail.com.cn
***
鄒和建,主任醫(yī)師、教授。研究方向:風(fēng)濕病及自身免疫性疾病。E-mail: hjzou@fudan.edu.cn
2014-01-07)