徐超,張軍毅,朱冰川,宋挺,黃君,吳蔚
(無錫市環(huán)境監(jiān)測中心站, 江蘇 無錫 214121)
?
夏季太湖梅梁灣水體中細(xì)菌的群落結(jié)構(gòu)
徐超,張軍毅*,朱冰川,宋挺,黃君,吳蔚
(無錫市環(huán)境監(jiān)測中心站, 江蘇 無錫 214121)
利用高通量測序技術(shù),選擇16S rRNA V6區(qū)作為目標(biāo)片段,對夏季太湖梅梁灣水體中的細(xì)菌群落結(jié)構(gòu)進(jìn)行了分析,結(jié)果表明,共產(chǎn)生了101 427條優(yōu)質(zhì)序列,細(xì)菌為100 935條,占99.5%;在藍(lán)藻暴發(fā)期間,共檢測到14門,55屬,610個(gè)操作分類單位。優(yōu)勢門類為藍(lán)藻門(39.7%),放線菌門(27.2%)和變形菌門(23.4%),微囊藻屬(21.0%)和聚球藻屬(15.9%)為主要優(yōu)勢種。
高通量測序;群落結(jié)構(gòu);16S rRNA;太湖
2007年無錫市發(fā)生“供水危機(jī)”之后,太湖不但成為國際關(guān)注的焦點(diǎn),更是成為大型淺水富營養(yǎng)化湖泊研究的典范[1-12]。近年來,藍(lán)藻水華的持續(xù)暴發(fā)和最大聚集面積有冬季后移的傾向,表明藍(lán)藻水華監(jiān)測及其治理的復(fù)雜性和艱巨性。
細(xì)菌在微食物網(wǎng)的能量流動和物質(zhì)循環(huán)起著關(guān)鍵性作用,在全球性水體富營養(yǎng)化進(jìn)程中,隨著攝食食物鏈的變細(xì)與變短,以及微生物環(huán)的持續(xù)增粗,細(xì)菌在湖泊生態(tài)系統(tǒng)中的地位和作用顯著增加。目前基于營養(yǎng)鹽、氣象等研究藍(lán)藻水華暴發(fā)的很多[2,13-17],而基于細(xì)菌來探索藍(lán)藻水華暴發(fā)機(jī)制的并不是很多[18-19]。
現(xiàn)利用高通量測序技術(shù),研究藍(lán)藻水華暴發(fā)期間的細(xì)菌多樣性和群落結(jié)構(gòu),以期為后續(xù)研究藍(lán)藻水華和細(xì)菌的相互關(guān)系、以及探索藍(lán)藻水華的暴發(fā)機(jī)制提供參考。
1.1 樣本采集及其V6區(qū)擴(kuò)增
樣品采自2013年8月23日太湖梅梁灣,取2 L表層水樣,用0.22 μm微孔濾膜富集,后立即-20 ℃冷凍?;貙?shí)驗(yàn)室后即進(jìn)行DNA提取,采用E.Z.N.A.? Water DNA Kit(OMEGA,USA)。用Nano Drop ND 1000(Thermo Scientific,DE,USA)進(jìn)行定量分析。V6 目標(biāo)區(qū)的擴(kuò)增,共27個(gè)循環(huán),反應(yīng)條件如下。預(yù)變性:94 ℃,5 min,變性:94 ℃,30 s,退火:50 ℃,30 s,延伸:72 ℃,30 s,最后72 ℃,5 min。為了避免引物擴(kuò)增的偏向性,采用針對細(xì)菌16S rRNA的融合引物。上游引物:967F-PP 5′-CNACGCGAAGAACCTTANC-4′,967F-UC1 5′-CAACGCGAAAAACCTTACC-4′,967F-UC2 5′-CAACGCGCAGAACCTTACC-4′,967F-UC4 5′-ATACGCGARGAACCTTACC-4′,967F-AQ 5′-CTAACCGANGAACCTYACC-4′。下游引物:1046R 5′-CGACAGCCATGCANCACCT-4′,1046R-PP 5′-CGACAACCATGCANCACCT-4′,1046R-AQ1 5′-CGACGGCCATGCANCACCT-4′。
1.2 測序及其數(shù)據(jù)處理
采用Illumina MIseq PE250測序平臺。數(shù)據(jù)分析可以包含以下流程。首先,初步質(zhì)量過濾:步長為 1 的5 bp窗口從第一個(gè)堿基位置開始移動,窗口中堿基平均質(zhì)量>Q20,從第一個(gè)
2.1 測序結(jié)果統(tǒng)計(jì)
Illumina Miseq PE250測數(shù)的數(shù)據(jù)概要見表1。
表1 測序數(shù)據(jù)概要①
①有效序列為雙端有效拼接后序列;優(yōu)質(zhì)序列為去除嵌合體序列;過濾序列為執(zhí)行0.005%的過濾標(biāo)準(zhǔn)后過濾序列
由表1可見,通過有效拼接、去嵌合體和過濾,可以獲得101 427條,平均長度為79的序列(去除了引物)。執(zhí)行0.005%的過濾標(biāo)準(zhǔn),去掉<6以下的序列后,共總?cè)サ袅?8 214條序列,去除濾為15.2%。注解結(jié)果中,并未發(fā)現(xiàn)古細(xì)菌,表明融合引物的特異性較好。僅發(fā)現(xiàn)了492條沒有比對上的序列,所占比列為0.5%,可見V6區(qū)對太湖夏季水體的細(xì)菌群落具有較好的識別力。
2.2 細(xì)菌群落特征
V6區(qū)對于細(xì)菌物種的鑒定在門、綱、目、科、屬、種等6個(gè)分類水平上表現(xiàn)出差異。在門水平上100 935條序列,100.0%可以注解,但到了屬水平上,僅有43.5%序列可以注解。物種鑒定的效率是隨著分類水平下降呈明顯下降趨勢,見表2。
表2 各分類水平上的OTUs、個(gè)數(shù)和序列數(shù)
由表2可見,獲得了100 935條過濾后的優(yōu)質(zhì)細(xì)菌序列,隸屬于藍(lán)藻門,39.7%;放線菌門,27.3%;變形菌門,23.4%;疣微菌門Verrucomicrobia,2.5%;綠菌門Chlorobi,2.2%;擬桿菌門Bacteroidetes,2.1%;綠彎菌門Chloroflexi,1.1%;浮霉菌Planctomycetes,0.6%;酸桿菌門Acidobacteria,0.5%;芽單胞菌門Gemmatimonadetes,0.4%;厚壁菌門Firmicutes,0.3%;軟壁菌門Tenericutes,0.01%;GN02,0.01%;裝甲菌門Armatimonadetes,0.01%等14門。其中,優(yōu)勢門類為藍(lán)藻門,放線菌門和變形菌門,合計(jì)90.4%。藍(lán)藻門在豐度方面占具明顯優(yōu)勢,這主要體現(xiàn)在水體中的微囊藻Microcystis spp.(21.0%)。通過對同步浮游植物樣本的顯微鏡觀察分析,微囊藻的優(yōu)勢度高達(dá)95.4%。
14門共鑒定了610個(gè)OTUs。隸屬于變形菌門,42.5%;藍(lán)藻門,16.6%;放線菌門,15.2%;擬桿菌門,9.5%;疣微菌門,4.8%;浮霉菌,3.6%;綠菌門,2.0%;酸桿菌門,2.0%;綠彎菌門,1.1%;芽單胞菌門,1.1%;厚壁菌門,1.1%;軟壁菌門,0.2%;GN02,0.2%;裝甲菌門,0.2%等14門。其中,優(yōu)勢門類為藍(lán)藻門,放線菌門和變形菌門,合計(jì)74.3%。
在屬水平上,共鑒定55屬,183個(gè)分類單元。其中值得關(guān)注的是微囊藻屬21 162條序列,12個(gè)OTUs和聚球藻屬16 053條序列,22個(gè)OTUs。微囊藻屬和聚球藻屬序列分別占屬水平的21.0%,15.9%, OTUs分別占6.6%,28.4%。
文獻(xiàn)[23]通過DGGE的手段對中國富營養(yǎng)化湖泊,太湖和巢湖的細(xì)菌群落結(jié)構(gòu)研究表明,在富營養(yǎng)化水平較高的地方,微囊藻占優(yōu)勢種,而在一些藻類生物量較低的地方聚球藻占優(yōu)勢種。除此之外,太湖水體藍(lán)藻門還發(fā)現(xiàn)有擬浮絲藻屬Planktothricoides、束絲藻屬Aphanizomenon、細(xì)鞘絲藻屬Leptolyngbya、長胞藻屬Dolichospermum、顫藻屬Oscillatoria和假魚腥藻屬Pseudanabaena等6個(gè)常見種類,與光學(xué)顯微鏡觀察的結(jié)果一致,見表3。
表3 屬水平上的種類明細(xì)①
續(xù)表
①*為藍(lán)藻門;A為高豐度(reads數(shù)>10 000) ;B為中豐度(100 太湖藍(lán)藻水華暴發(fā)期間,共檢測到14門,55屬,610個(gè)OTUs。細(xì)菌群落結(jié)構(gòu)特征較為明顯,主要優(yōu)勢門類為藍(lán)藻門(39.7%),放線菌門(27.2%)和變形菌門(23.4%),3門共計(jì)90.4%。在屬水平上,微囊藻屬(21.0%)和聚球藻屬(15.9%)為主要優(yōu)勢種。此外,假魚腥藻在微囊藻膠被中大量存在的現(xiàn)象也被證實(shí)。 [1] GUO L.Doing battle with the green monster of Taihu Lake[J].Ecology,2007,317(5842):1166. [2] AKYUZ DE,LUO L,HAMILTON DP.Temporal and spatial tren-ds in water quality of Lake Taihu,China:analysis from a north to mid-lake transect,1991-2011[J].Environmental monitoring and assessment,2014,186(6):3891-3904. [3] BAI X,DING S,FAN C,et al.Organic phosphorus species in surface sediments of a large,shallow,eutrophic lake,Lake Taihu,China[J].Environmental pollution 2009,157(8-9):2507-2513. [4] CAI HY,YAN ZS,WANG AJ,et al.Analysis of the attached microbial community on mucilaginous cyanobacterial aggregates in the eutrophic Lake Taihu reveals the importance of Planctomycetes[J].Microbial ecology,2013,66(1):73-83. [5] CHAO JY,GAO G,TANG XM,et al.Effects of wind-induced wave on organic aggregates physical and chemical characteristics in a shallow eutrophic lake(Lake Taihu) in China[J].Environmental Science,2011,32(10):2861-2867. [6] CHAO JY,GAO G,TANG XM,et al.Effects of ecosystem structure on the organic aggregates physical and chemical parameters of Lake Taihu[J].Environmental Science,2009,30(11):3196-3202. [7] CHEN C,ZHENG B,JIANG X,et al.Spatial distribution and pollution assessment of mercury in sediments of Lake Taihu,China[J].Journal of environmental sciences,2013,25(2):316-325. [8] DENG JC,ZHAI SJ,CHEN Q.Effects of elevated CO2 concentration on the growth of submerged macrophyte Potamogeton malaianus in Taihu Lake[J].The journal of applied ecology,2009,20(6):1299-1304. [9] HE W,SHANG J,LU X,et al.Effects of sludge dredging on the prevention and control of algae-caused black bloom in Taihu Lake,China[J].Journal of environmental sciences,2013,25(3):430-440. [10] LI D,LIU Z,CUI Y,et al.Toxicity of cyanobacterial bloom extracts from Taihu Lake on mouse,Mus musculus[J].Ecotoxicology,2011,20(5):1018-1025. [11] LI D,YU Y,YANG Z,et al.The dynamics of toxic and nontoxic Microcystis during bloom in the large shallow lake,Lake Taihu,China[J].Environmental monitoring and assessment,2014,186(5):3053-3062. [12] ZHU M,ZHU G,ZHAO L,et al.Influence of algal bloom degradation on nutrient release at the sediment-water interface in Lake Taihu,China[J].Environmental science and pollution research international,2013,20(3):1803-1811. [13] HAN XX,ZHU GW,XU H,et al.Source analysis of urea-N in Lake Taihu during summer[J].Environmental Science,2014,35(7):2547-2556. [14] LI JS,ZHANG B,SHEN Q,et al.Analysis of directional reflectance properties of Lake Taihu using multi-angle measurements[J].Spectroscopy and Spectral Analysis,2013,33(9):2506-2511. [15] ZHANG R,QIAN X,ZHU W,et al.Simulation and evaluation of pollution load reduction scenarios for water environmental management:a case study of inflow river of taihu lake,china[J].International journal of environmental research and public health,2014,11(9):9306-9324. [16] ZHANG Y,SHI K,LIU X,et al.Lake topography and wind waves determining seasonal-spatial dynamics of total suspended matter in turbid Lake Taihu,China:assessment using long-term high-resolution MERIS data[J].PloS one,2014,9(5):e98055. [17] ZHOU Q,CHEN W,SHAN K,et al.Influence of sunlight on the proliferation of cyanobacterial blooms and its potential applications in Lake Taihu,China[J].J Environ Sci(China),2014,26(3):626-635. [18] NIU Y,SHEN H,CHEN J,et al.Phytoplankton community succession shaping bacterioplankton community composition in Lake Taihu,China[J].Water research,2011,45(14):4169-4182. [19] SHAO K,GAO G,WANG Y,et al.Vertical diversity of sediment bacterial communities in two different trophic states of the eutrophic Lake Taihu,China[J].J Environ Sci(China) 2013,25(6):1186-1194. [20] JIANG C,BROWN PJ,DUCRET A,et al.Sequential evolution of bacterial morphology by co-option of a developmental regulator[J].Nature,2014,506(7489):489-493. [21] BOKULICH NA,SUBRAMANIAN S,FAITH JJ,et al.Quality-filtering vastly improves diversity estimates from Illumina amplicon sequencing[J].Nature methods,2013,10(1):57-59. [22] FAITH JJ,GURUGE JL,CHARBONNEAU M,et al.The long-term stability of the human gut microbiota[J].Science,2013,341(6141):1237439. [23] CAI Y F,KONG F X,SHI L M,et al.Spatial heterogeneity of cyanobacterial communities and genetic variation of microcystis populations within large,shallow eutrophic lakes(Lake Taihu and Lake Chaohu,China)[J].Journal of environmental sciences,2012,24(10):1832-1842. 投稿須知 為提高編輯部工作效率,縮短稿件審改周期,《環(huán)境監(jiān)控與預(yù)警》編輯部在線采編系統(tǒng)現(xiàn)已啟用,投稿時(shí),請作者進(jìn)入《環(huán)境監(jiān)控與預(yù)警》編輯部網(wǎng)站(http://www.hjjkyyj.com)。首先注冊用戶名,填寫相關(guān)信息后登陸,按頁面提示要求進(jìn)行投稿及查詢。本刊已停止E-MAIL投稿方式,特此說明,謝謝合作。 《環(huán)境監(jiān)控與預(yù)警》編輯部 Extensive Profiling of a Bacterial Community during Summer in Meiliang Bay,Lake Taihu XU Chao,ZHANG Jun-yi*,ZHU Bing-chuan,SONG Ting,HUANG Jun,WU Wei (WuxiEnvironmentalMonitoringCentralStation,Wuxi,Jiangsu214121,China) In order to explore the prokaryotic community during summer in Meiliang Bay,Lake Taihu, we performed high-throughput sequencing of the 16S rRNA genes V6 hypervariable regions. The results showed that a total of 101 427 quality reads (bacterial reads 100 935, 99.5%) were obtained.Bacteria were found belonging to 14 phyla, 55 genera, and 610 OTUs. At the phylum level, the bacterial community composition was predominated byCyanobacteria(39.7%),Actinobacteria(27.2%),Proteobacteria(23.4%). At the genus level,Microcystis(21.0%) andSynechococcus(15.9 %) was the most abundant genus. High-throughput sequencing; Community structure; 16S rRNA; Lake Taihu 2014-10-11; 2014-12-23 江蘇省環(huán)境監(jiān)測科研基金資助項(xiàng)目(1320)。 徐超(1986—),女,助理工程師,碩士,主要從事水域生態(tài)學(xué)研究。 *通訊作者:張軍毅 E-mail:blocksharon@163.com X832 B 1674-6732(2015)01-0037-043 結(jié)論