陳雷 閆臻 王宗起 王瑞廷 寧磊 甘昌簡 代軍治
CHEN Lei1,YAN Zhen2,WANG ZongQi1,WANG RuiTing3,NING Lei4,GAN ChangJian4 and DAI JunZhi3
1. 中國地質(zhì)科學院礦產(chǎn)資源研究所,國土資源部成礦作用與資源評價重點實驗室,北京 100037
2. 中國地質(zhì)科學院地質(zhì)研究所,大陸構(gòu)造與動力學國家重點實驗室,北京 100037
3. 西北有色地質(zhì)勘查局地質(zhì)勘查院,西安 710054
4. 中國地質(zhì)大學,北京 100083
1. MLR Key Laboratory of Metallogeny and Mineral Assessment,Institute of Mineral Resources,Chinese Academy of Geological Sciences,Beijing 100037,China
2. State Key Laboratory for Continental Tectonics and Dynamics,Institute of Geology,Chinese Academy of Geological Sciences,Beijing 100037,China
3. Geological Exploration Institution of Northwest Mining and Geological Exploration Bureau for Nonferrous Metals,Xi’an 710054,China
4. China University of Geosciences,Beijing 100083,China
2014-11-13 收稿,2015-02-28 改回.
秦嶺造山帶是華北板塊和揚子板塊長期聚合而形成的復合造山帶(Mattauer et al.,1985;Kr?ner et al.,1993;Meng and Zhang,2000;張國偉等,2001),大地構(gòu)造位置上以商丹斷裂帶為界,北部為北秦嶺,南部為南秦嶺(圖1a,b);在地理上則大致以寶成鐵路為界,西側(cè)稱為西秦嶺,而東側(cè)稱為東秦嶺。秦嶺造山帶經(jīng)歷了新元古代、古生代和中生代構(gòu)造巖漿熱事件和造山作用,發(fā)育有完整的3 次構(gòu)造巖漿活動和造山事件(張國偉等,2001),形成了復雜多樣的多期構(gòu)造變形、強烈而廣泛的巖漿活動和豐富的礦產(chǎn)資源(王宗起等,2009;王東生等,2009)。在商丹斷裂帶以北的北秦嶺和華北板塊南緣地區(qū),在古生代俯沖-增生造山作用的基礎上疊加了中生代碰撞造山作用,巖漿活動強烈,形成了金堆城、南泥湖-三道莊、上房溝和東溝等超大型斑巖、斑巖-矽卡巖型鉬(鎢)礦床及十幾個大中型鉬礦床(圖1c),使得該區(qū)域成為世界第一大鉬成礦帶(李諾等,2007)。
這些大型、超大型鉬礦床的出現(xiàn),吸引了眾多的學者(羅銘玖等,1991;黃典豪等,1994;陳衍景等,2000,2009;盧欣祥等,2002,2011;李永峰等,2005;葉會壽,2006;李諾等,2007;Mao et al.,2008;毛景文等,2009;胡海珠等,2013 及其參考文獻)對該區(qū)域進行了長期、細致的研究和總結(jié),結(jié)果表明東秦嶺地區(qū)的鉬礦床不僅成礦類型多樣,成礦時代也十分復雜,既有中生代成礦作用,也有元古代成礦作用(如龍門店鉬礦床,魏慶國等,2009),而且中生代成礦作用又可分為晚三疊紀(~220Ma)和晚侏羅世-早白堊世(160~110Ma)(圖1c),其中晚侏羅世-早白堊世成礦作用進一步可分為160 ~140Ma 和130 ~100Ma 兩期成礦作用,不同時期的鉬礦化在成礦物質(zhì)來源和成礦巖體特征等方面均具有一定的差異(Mao et al.,2008)。正是由于這些大型、超大型鉬礦床的存在,使得眾多研究者的注意力長期集中于商丹斷裂帶以北的區(qū)域,而對商丹斷裂帶以南區(qū)域內(nèi)與中生代巖漿活動有關(guān)的成礦作用并未引起過多的關(guān)注。
商丹斷裂帶以南的區(qū)域,尤其是山陽-柞水地區(qū),出露有大量晚三疊紀和晚侏羅世-早白堊世巖漿巖,部分晚侏羅世-早白堊世巖漿巖周邊及其內(nèi)部發(fā)育強烈的熱液蝕變,并形成小規(guī)模銅礦床(張本仁等,1989;張銀龍,2002;陳雷等,2014a)。近年來的找礦勘查工作在該區(qū)域內(nèi)陸續(xù)發(fā)現(xiàn)一系列與晚侏羅世-早白堊世巖體有關(guān)的銅礦床,顯示該區(qū)域內(nèi)晚侏羅世-早白堊世巖體具有很大的尋找銅礦潛力(任濤等,2009)。已有學者對區(qū)域內(nèi)晚侏羅世-早白堊世巖體及其成礦作用進行了研究(張本仁等,1989;羅德正,1995;張銀龍,2002;朱華平和祁思敬,1997;朱華平等,2003;謝桂青等,2012;陳雷等,2014b;吳發(fā)富等,2014),結(jié)果顯示這些巖體主要形成于150 ~140Ma,并與已發(fā)現(xiàn)的銅礦床具有密切的成因聯(lián)系,這說明商丹斷裂帶南部的銅礦床和北部的鉬礦床形成于同一時代,是同一次構(gòu)造-巖漿活動的產(chǎn)物。相對于商丹斷裂帶北側(cè)發(fā)育以鉬(鎢)為主的礦化,目前在商丹斷裂帶南部發(fā)現(xiàn)的礦床以銅礦化為主,伴生少量鉬礦化,為何同期成礦作用會在商丹斷裂帶南北兩側(cè)形成兩種截然不同的礦化類型,造成這種礦化差異的因素是什么?在商丹斷裂帶南部是否也具有尋找與北部類似的同時期以鉬礦化為主的礦床,反之,在北部地區(qū)是否也具有尋找銅礦的可能?針對這些問題,本次研究在詳細對比商丹斷裂帶南北兩側(cè)Cu(Mo)和Mo(W)成礦作用特征的基礎上,對兩種礦化的成礦巖體從地球化學、溫壓條件、氧化還原狀態(tài)及深部巖漿源區(qū)特征方面進行了綜合對比研究,以期能夠找出造成這種差異性的控制因素,同時也希望能夠?qū)^(qū)域內(nèi)的找礦勘查工作提供一些建議。
本次研究的東秦嶺地區(qū)主要包括山陽-鳳鎮(zhèn)斷裂以北,西安以東的地區(qū),以東秦嶺鉬成礦帶和山陽-柞水礦集區(qū)為主要研究區(qū)域。在大地構(gòu)造位置上,東秦嶺鉬成礦帶主要位于北秦嶺和華北板塊南緣,而山陽-柞水礦集區(qū)位于南秦嶺泥盆紀弧前盆地(王宗起等,2002,2009;閆臻等,2007)。區(qū)域內(nèi)出露地層具有多時代的特征,從新太古界、古元古界、中元古界、新元古界、寒武系和奧陶系,到泥盆系、石炭系和新生代地層均有所出露(圖1c)。在商丹斷裂帶以北的區(qū)域,即東秦嶺鉬成礦帶,主要分布有新太古代至奧陶紀地層,包括秦嶺群、熊耳群、高山河群、欒川群、寬坪群和陶灣群等巖石地層單元,巖性主要是一系列變質(zhì)程度不同的火山巖和沉積巖,形成時代相對較老;商丹斷裂帶以南的山陽-柞水地區(qū)主要分布泥盆紀和少量石炭紀地層,也有零星的志留紀和前寒武紀地層出露(圖1c),其中泥盆紀和石炭紀地層主要由粉砂巖、砂巖、絹云板巖、結(jié)晶灰?guī)r、石英雜砂巖及白云巖組成。
東秦嶺地區(qū)構(gòu)造活動強烈,以斷裂構(gòu)造最為發(fā)育,尤其以EW 向的斷裂分布最為廣泛,包括一系列區(qū)域性的斷裂,如:商丹斷裂帶,欒川斷裂帶、馬超營斷裂帶和山陽-鳳鎮(zhèn)斷裂帶(圖1),這些大型的EW 向斷裂不僅劃分了大地構(gòu)造格局,還對區(qū)域沉積特征和礦化分布產(chǎn)生了重要影響。同時,區(qū)域內(nèi)還分布有NE、NNE 和NW 向的次級斷裂,這些次級斷裂與主斷裂的交匯部位及次級斷裂的相互交匯部位是區(qū)域內(nèi)中生代巖漿巖侵位和相關(guān)礦床分布的主要區(qū)域。
區(qū)內(nèi)巖漿活動持續(xù)時間較長,從太古代至中生代均有不同規(guī)模的巖漿巖侵位,太古代至新元古代時期,由于板塊的匯聚和裂解活動,形成了同碰撞到后碰撞的花崗巖(圖1c,陸松年等,2004;Wang et al.,2003;張成立等,2004;王濤等,1999,2005);古生代時期由于俯沖增生作用,沿商丹斷裂帶發(fā)育有大量古生代花崗巖(Wang et al.,2005,2009);中生代時期,由于揚子板塊和華北板塊的碰撞,形成了大量晚三疊紀和侏羅紀-白堊紀巖漿巖,其中晚三疊紀的巖漿活動主要分布在商丹斷裂帶南側(cè),形成東江口、柞水、沙河灣和曹坪等大型巖體,而晚中生代的巖漿巖,即侏羅紀-白堊紀的巖漿活動主要集中在商丹斷裂帶以北的區(qū)域,南部只有零星的小規(guī)模巖體出露(圖1c)。
由于強烈、多期次的構(gòu)造-巖漿活動,區(qū)域內(nèi)也形成了多期次的成礦作用,既有與元古代基性巖有關(guān)的釩鈦磁鐵礦(郭現(xiàn)輕等,2014),也有古生代的熱水噴流沉積-改造型Cu-Fe-PbZn-Ag 礦床(朱華平等,2003),但分布最廣泛的還是與中生代構(gòu)造-巖漿活動有關(guān)的Mo(W)CuAuAgPbZn 礦床(陳衍景等,2009;毛景文等,2009)。
東秦嶺地區(qū)160 ~140Ma 的Mo(W)礦床主要位于商丹斷裂帶以北的北秦嶺和華北板塊南緣,礦化類型主要是斑巖型和斑巖-矽卡巖型,以Mo 和Mo(W)礦化為主,伴生有PbZn、Ag、Fe 和Cu 礦化。礦區(qū)內(nèi)出露有新太古代至奧陶紀的巖石地層單元,而賦礦地層具有多時代特征,不受地層時代和層位的控制,各時代地層均可有Mo 礦床產(chǎn)出(表1)。賦礦地層的巖石單元可從中高級的變質(zhì)巖到變質(zhì)程度較弱的巖石,巖性從火山巖到沉積巖。但地層巖性對礦床類型具有重要的影響,當圍巖中含有較多的碳酸鹽巖時,形成斑巖-矽卡巖型礦床,如南泥湖-三道莊礦床;而當圍巖以火山巖、石英砂巖、碎屑巖或片巖為主,不含或含很少量碳酸鹽巖時,則形成斑巖型礦床,如金堆城、八里坡和石家灣等礦床。成礦巖體主要是小型、中酸性淺成侵入體,巖石類型主要為花崗斑巖,少量為斑狀二長花崗巖和花崗閃長(斑)巖。Mo(W)礦床總體沿區(qū)域構(gòu)造呈近EW 向展布,NNE、NW 向次級斷裂與近EW 向構(gòu)造交匯部分控制成礦巖體的空間侵位和礦體展布,尤其是NNE 向斷裂與絕大多數(shù)礦床的形成具有密切的聯(lián)系。東秦嶺地區(qū)160 ~140Ma Mo(W)礦床中除Mo 作為最主要成礦元素以外,還伴生有W、Pb、Zn、Ag、Fe、Cu 等成礦元素,不同元素的礦化強度不同,如南泥湖礦床中伴生的W 礦化已達超大型規(guī)模(向君峰等,2012),但是在整個東秦嶺商丹斷裂以北的區(qū)域內(nèi)目前只有秋樹灣礦床形成MoCu 礦化,而且Cu 礦化達到中等規(guī)模(郭保健等,2006)。不同礦化類型的礦體產(chǎn)狀不同,斑巖型礦床的礦體直接產(chǎn)于斑巖體內(nèi)部或接觸帶上,呈似層狀、板狀、透鏡狀;斑巖-矽卡巖型礦床的礦體一般呈層狀、似層狀、透鏡狀。斑巖型、斑巖-矽卡巖型和矽卡巖型鉬礦床中均發(fā)育典型的面狀蝕變,主要圍巖蝕變有鉀長石化、綠簾石化、絹英巖化、硅化、黑云母化、螢石化和矽卡巖等;礦石金屬礦物主要有輝鉬礦、黃鐵礦、磁黃鐵礦、白鎢礦、方鉛礦、閃鋅礦和黃銅礦;脈石礦物主要有透輝石、石榴石、陽起石、綠簾石、符山石、長石、石英、絹云母、螢石、方解石、綠泥石及沸石等(表1)。
東秦嶺地區(qū)Cu(Mo)礦床主要位于商丹斷裂帶以南的晚古生代弧前盆地內(nèi),多發(fā)育于150 ~140Ma 的中酸性小斑巖體與泥盆系、石炭系富含鈣質(zhì)成分的接觸部位及巖體內(nèi)部,成礦作用與150 ~140Ma 的侵入體、含鈣地層(泥盆紀的池溝組、云鎮(zhèn)組、龍洞溝組及石炭紀的下東溝組、桐峪寺組、二峪河組等)關(guān)系密切(表1)。EW、NNE、NE 和NEE 向斷裂控制了成礦巖體和礦化的展布,同時地層中的層間破碎帶也為成礦提供了有利條件。礦化類型以矽卡巖型礦化為主,少量斑巖型礦化,成礦元素以Cu 為主,伴生有Mo、Fe、Au 等元素(表1)。目前已發(fā)現(xiàn)的礦體多呈透鏡狀、似層狀和囊狀,主要分布于矽卡巖中,少量位于巖體內(nèi)部。圍巖蝕變主要有角巖化、矽卡巖、硅化、鉀化、絹英巖化、綠泥石化及粘土化。礦化和蝕變均具有鮮明的分帶特征,而且矽卡巖型礦化和斑巖型礦化具有密切時空聯(lián)系,具有統(tǒng)一的矽卡巖-斑巖型成礦系統(tǒng)(陳雷等,2014a)。礦石金屬礦物主要有黃銅礦、黃鐵礦、輝鉬礦、磁鐵礦、黝銅礦、斑銅礦、鏡鐵礦和輝銅礦;脈石礦物主要有石榴石、透輝石、透閃石、陽起石、符山石、綠簾石、綠泥石、方解石、長石、絹云母和石英等(表1)。
由上述東秦嶺地區(qū)160 ~140Ma Cu(Mo)和Mo(W)礦床的地質(zhì)特征概述可以發(fā)現(xiàn),這兩類礦床在礦化類型和主要控礦構(gòu)造方面具有相似的特征,而且成礦作用均與同時期的巖漿巖具有成因聯(lián)系。賦礦地層的巖性特征方面,兩者既有一定的相似性也存在差異,Cu(Mo)礦床的地層巖性主要是粉砂巖、砂巖、絹云板巖、結(jié)晶灰?guī)r及白云巖,而Mo(W)礦床的地層巖性除了砂巖、千枚巖、板巖、大理巖和白云巖外,還含有火山巖、碎屑巖和石英巖等(表1)。因此,除了圍巖的不同外,這種成礦作用的差異性可能與成礦巖體具有直接聯(lián)系,對這兩種不同礦化的成礦巖體進行對比研究可以更加深入的理解這種成礦差異性的控制因素。
表1 東秦嶺地區(qū)160 ~140Ma主要Cu(Mo)和Mo(W)礦床地質(zhì)特征Table1 ThegeologicfeaturesoftheCu(Mo) and Mo(W) depositsformed in 160 ~140Main EastQinlingarea
續(xù)表1Continued Table1
續(xù)表1Continued Table1
表2 東秦嶺地區(qū)典型160 ~140Ma Cu(Mo)和Mo(W)礦床成礦巖體地球化學數(shù)據(jù)(主量元素:wt%;稀土和微量元素:×10 -6)Table 2 The geochemical data of the metallogenic rocks of the typical Cu(Mo)and Mo(W)deposits formed in 160 ~140Ma in East Qinling area (major elements:wt%;trace elements:×10 -6)
圖2 東秦嶺地區(qū)160 ~140Ma Mo(W)和Cu(Mo)礦床成礦巖體QAP 圖解(a,據(jù)Streckeisen,1976)、SiO2-K2O(b,據(jù)Peccerillo and Taylor,1976)、A/CNK-A/NK(c,據(jù)Maniar and Piccoli,1989)和分異指數(shù)(Di)-SiO2 圖解(d)數(shù)據(jù)來源見表2;圖3、圖5、圖7 數(shù)據(jù)來源和圖例同此圖;圖4 數(shù)據(jù)來源同此圖;圖8、圖9、圖10 的圖例同此圖Fig.2 QAP (a,Streckeisen,1976),SiO2-(K2O+Na2O)(b,Le Bas et al.,1986),A/CNK-A/NK (c,Maniar and Piccoli,1989)and Di-SiO2diagram (d)of 160 ~140Ma metallogenic rocks of Mo(W)and Cu(Mo)deposits in East QinlingThe data are seen in Table 2;The source of data and symbols in Fig.3,F(xiàn)ig.5 and Fig.7 as this figure;The source of data in Fig.4 as this figure;Symbols in Fig.8,F(xiàn)ig.9 and Fig.10 as this figure
通過對東秦嶺地區(qū)160 ~140Ma Cu(Mo)和Mo(W)礦床的地質(zhì)特征對比(表2)可以發(fā)現(xiàn),Mo(W)礦床的成礦巖體主要是花崗斑巖和斑狀二長花崗巖,Cu(Mo)礦床的成礦巖體主要是花崗閃長斑巖,少量為花崗斑巖。Cu(Mo)和Mo(W)礦床成礦巖體均具有明顯地斑狀結(jié)構(gòu),發(fā)育強烈的鉀化、硅化、絹云母化和綠泥石化等熱液蝕變特征。同時,Cu(Mo)和Mo(W)成礦巖體絕大多數(shù)為小型侵入體,地表出露面積都不足1km2,而且成礦巖體的展布均受到斷裂控制。本次對Cu(Mo)和Mo(W)成礦巖體主要從巖石地球化學、結(jié)晶溫度、氧化還原狀態(tài)及巖漿源區(qū)特征方面進行對比研究。
東秦嶺地區(qū)160 ~140Ma Cu(Mo)和Mo(W)礦床的成礦巖體在地球化學特征上主要表現(xiàn)為花崗閃長巖、二長花崗巖和花崗巖特征(圖2a),均屬于高鉀鈣堿性-鉀玄巖系列(圖2b),以準鋁質(zhì)為主,個別為過鋁質(zhì)巖石(圖2c)。相對于Cu(Mo)礦床,Mo(W)礦床的成礦巖體具有較高的SiO2含量(分別為63.92% ~79.13%和60.21% ~68.31%)、K2O 含量(均值分別為5.72%和4.34%)(圖2b)和較大的分異指數(shù)(Di)(均值分別為90.26 和77.9)(圖2d),但是Mo(W)成礦巖體具有較低的MgO 含量(均值分別為0.37% 和1.64%)、Mg#(均值分別為25.6 和49.3)(圖3)和Fe2O3T 含量(均值分別為2.04%和3.11%)。通過上述對比可以發(fā)現(xiàn),東秦嶺地區(qū)160 ~140Ma Mo(W)礦床的成礦巖體具有高硅、富鉀,貧鎂鐵,高分異的特征,而Cu(Mo)礦床的成礦巖體表現(xiàn)出低硅、低鉀,富鎂鐵,低分異的特征。
圖3 東秦嶺地區(qū)160 ~140Ma Mo(W)和Cu(Mo)礦床成礦巖體SiO2-Mg#圖解Fig.3 SiO2-Mg# diagrammatize of 160 ~140Ma metallogenic rocks of Mo(W)and Cu(Mo)deposits in East Qinling
Cu(Mo)和Mo(W)礦床的成礦巖體具有相似的微量元素特征(圖4a,c),但Cu(Mo)成礦巖體相對富集Ba,虧損U和Nb;Mo(W)成礦巖體則表現(xiàn)出Ba 虧損,U 富集,并且大部分巖體具有弱的Nb 富集。Cu(Mo)和Mo(W)成礦巖體Rb/Sr 比值分別為0.05 ~0.83(平均0.21)和0.04 ~21.46(平均4.12),Rb/Nb 比值分別為6.09 ~35.94(平均11.07)和1.46~40.1(平均7.77),Cu(Mo)成礦巖體Rb/Sr 比值明顯低于中國東部(0.31,高山等,1999)和全球上地殼的平均值(0.32,Taylor and McLennan,1985),Rb/Nb 比值高于中國東部(6.8,高山等,1999)和全球上地殼的平均值(4.5,Taylor and McLennan,1985),而Mo(W)成礦巖體均高于中國東部和全球的上地殼平均值,反映Cu(Mo)和Mo(W)成礦巖體源區(qū)可能都含有不同的陸殼物質(zhì)。
在稀土元素方面,Cu(Mo)成礦巖體∑REE(83.98 ×10-6~261.7 ×10-6,平均為151.8 ×10-6)略高于Mo(W)成礦巖體∑REE(39.43 ×10-6~253.8 ×10-6,平均為100.4 ×10-6)。在球粒隕石標準化配分圖上(圖4b,d),Cu(Mo)和Mo(W)成礦巖體均表現(xiàn)出輕稀土元素富集,重稀土元素虧損;Cu(Mo)和Mo(W)成礦巖體LREE/HREE 分別為9.38 ~16.39 和2.39 ~25.64,(La/Yb)N值分別為19.44 ~28.77 和2.69 ~27.55。Mo(W)成礦巖體總體表現(xiàn)出較為明顯的負Eu 異常(δEu 值為0.3 ~1.0),而Cu(Mo)成礦巖體并未表現(xiàn)出明顯的Eu 異常(δEu 值為0.8 ~1.3),只有部分樣品有弱的Eu 異常,表明Mo(W)成礦巖體在分餾結(jié)晶或部分熔融的過程中源區(qū)有長石的殘余,而Cu(Mo)成礦巖體沒有或只有很少量的長石殘余。兩者的(La/Sm)N值分別為3.01 ~6.74和2.52 ~10.84,(Gd/Yb)N值分別為1.41 ~2.36 和0.24 ~2.54,表明輕、重稀土元素都發(fā)生了一定程度的分餾,輕稀土元素的分餾程度要強于重稀土元素,Mo(W)成礦巖體的分餾程度要高于Cu(Mo)成礦巖體。
圖4 東秦嶺地區(qū)160 ~140Ma Cu(Mo)(a、b)和Mo(W)(c、d)礦床成礦巖體的微量元素和稀土元素配分模式圖(原始地幔和球粒隕石值據(jù)Sun and McDonough,1989)Fig.4 Chondrite-normalized and primitive mantle normalized REE and trace elements diagrams of the 160 ~140Ma metallogenic rocks of Cu(Mo)(a,b)and Mo(W)(c,d)deposits in East Qinling (primitive mantle and chondrite values after Sun and McDonough,1989)
圖5 東秦嶺地區(qū)160 ~140Ma Cu(Mo)和Mo(W)礦床成礦巖體的(La/Sm)-La 圖(a)和Sm/Yb-La/Sm 圖(b)Fig.5 Diagrams of (La/Sm)-La (a)and Sm/Yb-La/Sm (b)of the 160 ~140Ma metallogenic rocks of Mo(W)and Cu(Mo)deposits in East Qinling
在(La/Sm)-La 圖解中(圖5a),Cu(Mo)和Mo(W)礦床的成礦巖體均表現(xiàn)出良好的正相關(guān)性特征,表明兩種巖漿在形成過程中都經(jīng)歷了部分熔融作用。鑒于稀土元素的不活動性,La/Sm 和Sm/Yb 比值對于判斷源區(qū)殘留相具有十分重要的指示意義(Kay and Mpodozis,2001;Ahmadian et al.,2009;Shafiei et al.,2009;Haschke et al.,2010)。由于Yb在石榴石中的分配系數(shù)高于Sm,因此高Sm/Yb 比值(>6)代表一種含水量低的榴輝巖相熔融殘留體;Sm/Yb 比值(3 ~6)代表含水角閃石相殘留體,而低Sm/Yb 比值(<3)則代表一種以輝石相為主的殘留體(Van Westrenen et al.,2001)。高La/Sm 比值(>8)代表富集熔融源區(qū),并以角閃石為殘留相,而低La/Sm 比值代表富集程度相對較低的熔融源區(qū)且無或極少量角閃石殘留(Kay and Abbruzzi,1996)。對比東秦嶺地區(qū)160 ~140Ma Cu(Mo)和Mo(W)礦床的成礦巖體可以發(fā)現(xiàn),Cu(Mo)礦床的成礦巖體Sm/Yb 比值為2.67 ~4.56,La/Sm 比值為3.0 ~6.7,說明巖漿源區(qū)可能是以極少量角閃石為殘留相的部分熔融產(chǎn)物(圖5b)。Mo(W)礦床的成礦巖體Sm/Yb 比值為0.33 ~4.32,La/Sm 比值為2.52 ~10.84,說明成礦巖體的巖漿可能是以輝石為殘留相的部分熔融產(chǎn)物(圖5b)。上述對比說明Cu(Mo)和Mo(W)礦床的成礦巖體在巖漿源區(qū)上具有一定的差異。王翠云等(2012)和Hou et al. (2013)分別對德興斑巖銅礦和岡底斯地區(qū)的斑巖銅礦進行研究顯示成礦巖體的巖漿均為以角閃石為主要殘留相的部分熔融產(chǎn)物,而本次研究的Cu(Mo)礦床的成礦巖漿源區(qū)卻是以極少量或無角閃石為殘留相,這種巖漿源區(qū)的差異可能也是南秦嶺山陽-柞水地區(qū)150 ~140Ma 的成礦巖體雖然具有良好的成礦地質(zhì)背景,但并未形成大規(guī)模的Cu 礦化的原因之一。
花崗質(zhì)巖漿初始結(jié)晶溫度對于理解花崗質(zhì)巖漿的起源和演化具有重要的意義,本次主要選取巖石的鋯石飽和溫度計對Cu(Mo)和Mo(W)礦床的成礦巖體進行結(jié)晶溫度估算。根據(jù)Miller et al. (2003)的計算公式,計算出Cu(Mo)成礦巖體的結(jié)晶溫度為718 ~815℃,主要集中在770℃;Mo(W)成礦巖體的結(jié)晶溫度為699 ~826℃,主要集中于~740℃、~770℃和~790℃三個區(qū)間,兩者總體具有相似的結(jié)晶溫度(圖6)。Sylvester (1998)提出花崗巖的Al2O3/TiO2比值可以作為源區(qū)部分熔融的溫度指示劑,當Al2O3/TiO2>100 時,表明部分熔融溫度<875℃,反之則相反。本次研究的Cu(Mo)成礦巖體Al2O3/TiO2比值在20.6 ~47.5 之間,Mo(W)成礦巖體在33.8 ~112.4 之間,這也表明Mo(W)和Cu(Mo)成礦巖體的具有相似的源區(qū)部分熔融的溫度。
圖6 東秦嶺地區(qū)160 ~140Ma Mo(W)和Cu(Mo)礦床成礦巖體結(jié)晶溫度分布圖Fig. 6 Plot of crystallization temperature of the 160 ~140Ma metallogenic rocks of Mo(W)and Cu(Mo)deposits in East Qinling
圖7 東秦嶺地區(qū)160 ~140Ma Mo(W)和Cu(Mo)礦床成礦巖體巖漿系列(a)和氧化還原狀態(tài)與分異程度關(guān)系圖(b,據(jù)Hart et al.,2004)NNO-鎳-氧化鎳;QFM-石英-鐵橄欖石-磁鐵礦;Hem-Mag-赤鐵礦-磁鐵礦Fig.7 Magma series (a)and oxidation state (b,modified after Hart et al.,2004)of the 160 ~140Ma metallogenic rocks of Mo(W)and Cu(Mo)deposits in East QinlingNNO-Ni-NiO;QFM-quartz-fayalite-magnetite;Hem-Mag-hematite-magnetite
圖8 東秦嶺地區(qū)160 ~140Ma Mo(W)和Cu(Mo)礦床成礦巖體(87Sr/86Sr)i-εNd(t)(a)和t-εHf(t)(b)分布圖北秦嶺地區(qū)中生代巖漿巖和華北板塊南緣中生代巖漿巖的數(shù)據(jù)引自王曉霞等(2011);華北板塊上、下地殼的成分特征引自Jahn et al.(1999);Cu(Mo)礦床成礦巖體Nd、Hf 同位素數(shù)據(jù)來自作者待發(fā)表數(shù)據(jù);南泥湖、上房溝、石寶溝礦床和合裕巖體的Nd、Hf 同位素數(shù)據(jù)引自王新(2001)、李永峰(2005)、楊陽等(2012)和Bao et al. (2014);金堆城礦床的Nd、Hf 同位素數(shù)據(jù)引自郭波(2009)、李洪英等(2011)和焦建剛等(2010a);八里坡礦床的Nd 同位素數(shù)據(jù)引自焦建剛等(2010b);石家灣礦床的Nd、Hf 同位素數(shù)據(jù)引自趙海杰等(2010);南臺礦床的Hf同位素數(shù)據(jù)引自柯昌輝等(2012)Fig.8 Plot of (87Sr/86Sr)i-εNd(t)(a)and t-εHf(t)(b)of the 160 ~140Ma metallogenic rocks of Mo(W)and Cu(Mo)deposits in East QinlingData of the Mesozoic magmatic rocks from North Qinling orogenic belt and southern of North China Plate are from Wang et al. (2011);the component of lower and upper crust of North China Plate are from Jahn et al. (1999). The Nd and Hf data of the rocks related to Cu(Mo)deposits are the unpublished data of author. Nd and Hf isotopic data of Nannihu,Shangfanggou,Shibaogou deposits and Heyu intrusion are from Wang et al. (2011),Li et al. (2005),Yang et al. (2012)and Bao et al. (2014). Nd and Hf isotopic data of Jinduicheng deposit are from Guo et al. (2009),Li et al.(2011)and Jiao et al. (2010a). Nd isotopic data of Balipo are from Jiao et al. (2010b). Nd and Hf isotopic data of Shijiawa deposit are from Zhao et al. (2010). Hf isotopic data of Nantai deposit are from Ke et al. (2012)
通過上述Cu(Mo)和Mo(W)成礦巖體巖漿源區(qū)殘留相的對比可以發(fā)現(xiàn)(圖5b),Cu(Mo)成礦巖體巖漿源區(qū)可能是以極少量角閃石為殘留相,而Mo(W)成礦巖體的巖漿是以輝石為殘留相的部分熔融的產(chǎn)物,說明Mo(W)成礦巖體形成壓力要高于Cu(Mo)成礦巖體,也進一步說明在晚侏羅世-早白堊世時期,商丹斷裂南北兩側(cè)的地殼厚度不同,北部的地殼厚度要大于南部。區(qū)域重磁資料研究結(jié)果顯示,Mo(W)礦床主要形成于地幔的坳陷區(qū),而地幔的隆起區(qū)并無Mo(W)礦床(張乃昌等,1986),也說明了Mo(W)礦床所處的北部地區(qū)的地殼厚度較大。
Cu(Mo)和Mo(W)成礦巖體在Fe2O3/FeO-SiO2圖解上(圖7a),都位于磁鐵礦系列花崗巖區(qū)域,但是兩者具有不同的分布區(qū)間,Mo(W)成礦巖體分異程度較高,而Cu(Mo)成礦巖體分異程度較低。在Fe2O3/FeO-Rb/Sr 圖解上(圖7b),雖然Cu(Mo)和Mo(W)成礦巖體在氧化還原狀態(tài)上都位于NNO-Hem-Mag 區(qū)間內(nèi)(圖7b),但是Mo(W)成礦巖體具有相對較高的氧化態(tài),這可能也是同時期的巖體形成大規(guī)模的Mo(W)礦化而只能形成小規(guī)模的Cu(Mo)礦化的原因之一。
成礦巖體的深部巖漿源區(qū)特征與成礦類型和礦化規(guī)模具有密切聯(lián)系,巖漿源區(qū)中的地幔物質(zhì)對不同成礦類型有重要貢獻(Griffiths and Godwin,1983;Lehmann,1990;Cline and Bodnar,1991;Barnes,1997;侯增謙等,2003;曲曉明等,2004;Wang et al.,2006;Li et al.,2011;Hou et al.,2013;Song et al.,2014)。對于斑巖型Mo 礦床成礦巖體的源區(qū)特征,大部分學者認為含Mo 的成礦巖漿起源于下地殼的部分熔融,但是有地幔成分的混入(羅銘玖等,1991;Mao et al.,1999,2008;盧欣祥等,2002),Stein (1988)、Stein and Crock (1990)、Stein et al. (1997)及Brooks et al. (2004)則認為成Mo 的巖漿具有強烈的幔源特征,而侯增謙和楊志明(2009)認為含Mo 巖漿的確起源于加厚的下地殼,但并沒有確切證據(jù)能說明斑巖型鉬礦的成礦巖體源區(qū)中有地幔物質(zhì)的混入。Li et al. (2011)、Hou et al. (2013)和秦克章等(2014)對岡底斯地區(qū)斑巖銅礦的成礦巖體進行研究后認為成礦巖漿源區(qū)中具有大量的地幔物質(zhì),并認為巖漿的源區(qū)性質(zhì)和源區(qū)中地幔物質(zhì)的貢獻決定了斑巖能否成礦。由此可以看出,無論是Mo 礦化還是Cu 礦化,成礦巖體的巖漿源區(qū)中地殼和地幔物質(zhì)成分的比例對兩種礦化均具有重要意義。
在(87Sr/86Sr)i-εNd(t)圖解(圖8a)上,可以看出東秦嶺地區(qū)160 ~140Ma 兩類不同礦化的成礦巖體具有明顯不同的源區(qū)特征,Cu(Mo)成礦巖體相比Mo(W)成礦巖體具有較大的εNd(t)值(分別為-4.75 ~-2.73 和-28.8 ~-12.1),Cu(Mo)成礦巖體與北秦嶺地區(qū)中生代巖漿巖具有相似的源區(qū),而Mo(W)成礦巖體主體分布在華北板塊南緣中生代巖漿巖區(qū)域內(nèi),更接近華北板塊的上地殼,說明相較Cu(Mo)成礦巖體,Mo(W)成礦巖體在巖漿源區(qū)中含有更多的地殼成分。
圖9 東秦嶺地區(qū)160 ~140Ma Mo(W)和Cu(Mo)礦床成礦巖體Pb 同位素分布圖DM、EMI、EMII 及NHRL 數(shù)據(jù)引自Hart (1984,1988);MORB 數(shù)據(jù)引自Othman et al. (1989)和Vroon et al. (1993,1995). 金堆城、南泥湖、夜長坪礦床的Pb 同位素數(shù)據(jù)引自張本仁等(1987)、陳岳龍等(1994)、焦建剛等(2010a);八里坡礦床數(shù)據(jù)引自焦建剛等(2010b);上房溝礦床的數(shù)據(jù)引自張本仁等(2002);Cu(Mo)礦床的成礦巖體Pb 同位素引自張本仁等(1989)Fig.9 Plot of Pb isotope of the 160 ~140Ma metallogenic rocks of Mo(W)and Cu(Mo)deposits in East QinlingThe field of DM,EMⅠand EMⅡ,and the Northern Hemisphere Reference Line (NHRL)are from Hart (1984,1988). The data of MORB are from Othman et al. (1989)and Vroon et al. (1993,1995). Pb isotopic data of Jinduicheng,Nannihu and Yechangping deposits are from Zhang et al. (1987),Chen et al. (1994)and Jiao et al. (2010a),the data of Balipo deposit are from Jiao et al.(2010b). Data of Shangfagngou depositare from Zhang et al. (2002). Pb isotopic data of the rocks related to Cu(Mo)deposits are from Zhang et al. (1989)
在t-εHf(t)圖中(圖8b),Cu(Mo)成礦巖體的εHf(t)值(-3.79 ~+1.79)明顯大于Mo(W)成礦巖體εHf(t)值(-38 ~-7.9),Mo(W)成礦巖體的εHf(t)值和華北板塊南緣的中生代巖漿巖具有相同的分布范圍,均位于早元古代-中元古代和太古代地殼的演化線之間;而Cu(Mo)成礦巖體位于球粒隕石演化線附近,相對Mo(W)成礦巖體更靠近虧損地幔演化線。這也進一步說明Cu(Mo)成礦巖體在巖漿源區(qū)中含有相對更多的幔源物質(zhì)成分。
在Pb 同位素分布圖上(圖9),雖然Cu(Mo)和Mo(W)成礦巖體均位于地幔源區(qū)附近,變化特征不明顯,但是相對Cu(Mo)成礦巖體,Mo(W)成礦巖體具有明顯向下地殼演化線分布的趨勢,這也說明Mo(W)成礦巖體在巖漿源區(qū)中含有相對更多的地殼成分。
圖10 東秦嶺地區(qū)160 ~140Ma Mo(W)和Cu(Mo)礦床成礦巖體鋯石Hf 同位素模式年齡分布圖數(shù)據(jù)來源同圖8. 其中HY 代表合裕巖體,NT 代表南臺礦床,其他字母代號同表2Fig.10 Plot of Zircon Hf isotopic tDM2 of the 160 ~140Ma metallogenic rocks of Mo(W)and Cu(Mo)deposits in East QinlingThe data have the same source with Fig.8. HY represent Heyu intrusions,NT represent Naitai deposit,others as inTable 2
由鋯石的εHf(t)值和模式年齡(tDM2)的分布(圖10)可以看出,以商丹斷裂帶為界,北部的Mo(W)礦床的成礦巖體普遍具有較老的模式年齡,而南部的Cu(Mo)礦床的成礦巖體則相對年輕,這也進一步說明南部的Cu(Mo)成礦巖體的巖漿源區(qū)中古老地殼物質(zhì)成分逐漸減少,幔源成分增加,礦化類型也逐漸由北部以Mo(W)礦化為主轉(zhuǎn)變?yōu)槟喜恳訡u(Mo)礦化為主。
由上述Cu(Mo)和Mo(W)成礦巖體Nd、Pb 和Hf 同位素特征可以看出,Mo(W)成礦巖體源區(qū)中含有較多的殼源成分,而Cu(Mo)成礦巖體源區(qū)中含有較多的幔源成分,這種巖漿源區(qū)上的差異可能是導致東秦嶺地區(qū)160 ~140Ma 巖漿活動形成兩種不同礦化的根本原因,而造成這種差異的主要因素可能與兩者位于不同的構(gòu)造單元和不同的基底組成有關(guān)。
通過對東秦嶺地區(qū)160 ~140Ma Cu(Mo)和Mo(W)兩種不同礦化類型的礦床進行礦床地質(zhì)特征和成礦巖體的對比,發(fā)現(xiàn)造成這種差異性的因素主要如下:
(1)東秦嶺地區(qū)160 ~140Ma Cu(Mo)和Mo(W)礦床位于不同的大地構(gòu)造單元,以商丹斷裂帶為界,北部主要為Mo(W)礦化,主要分布于北秦嶺和華北板塊南緣;南部主要為Cu(Mo)礦化,主要位于南秦嶺的晚古生代弧前盆地。
(2)Mo(W)礦床的成礦巖體以花崗斑巖為主,具有高硅、富鉀,貧鎂鐵,高分異的特征;而Cu(Mo)礦床成礦巖體以花崗閃長斑巖為主,表現(xiàn)出低硅、低鉀,富鎂鐵,低分異的特征。Cu(Mo)成礦巖體可能是以極少量角閃石為殘留相的巖漿源區(qū)經(jīng)部分熔融而形成的產(chǎn)物,而Mo(W)成礦巖體可能是以輝石為殘留相的部分熔融產(chǎn)物。
(3)Mo(W)和Cu(Mo)成礦巖體具有相似的結(jié)晶溫度;但相對來說,Mo(W)成礦巖體具有相對較高的巖體形成壓力和氧化態(tài)。
(4)Mo(W)成礦巖體在巖漿源區(qū)中含有更多的殼源成分,而Cu(Mo)成礦巖體含有更多的幔源物質(zhì)成分。商丹斷裂帶兩側(cè)巖漿源區(qū)成分的變化控制了南北兩側(cè)礦化類型的不同,這種巖漿源區(qū)上的差異可能是導致東秦嶺地區(qū)160 ~140Ma 巖漿活動形成兩種截然不同礦化的根本原因。
致謝 本次研究工作得到了西北有色地質(zhì)勘查局地質(zhì)勘查院和西北有色地質(zhì)勘查局713 總隊大力支持,野外工作中713 總隊的李劍斌隊長,任濤、張西社教授級高級工程師,王鵬、郭延輝、劉凱工程師給予了支持與協(xié)助;葉會壽研究員、趙俊興博士兩名審稿人對文章提出了很多具有建設性的建議;在此一并表示感謝。
Ahmadian J,Haschke M,McDonald I,Regelous M,Ghorbani M,Emami M and Murata M. 2009. High magmatic flux during Alpine-Himalayan collision:Constraints from the Kale-Kafi complex,central Iran. Geological Society of America Bulletin,121(5 - 6):857-868 Bao ZW,Zeng QS,Zhao TP and Yuan ZL. 2009. Geochemistry and petrogenesis of the ore-related Nannihu and Shangganggou granite porphyries from East Qinling belt and their constraints on the molybdenum mineralization. Acta Petrologica Sinica,25(10):2523-2536 (in Chinese with English abstract)
Bao ZW,Wang YC,Zhao TP,Li CJ and Gao XY. 2014. Petrogenesis of the Mesozoic granites and Mo mineralization of the Luanchuan ore field in the East Qinling Mo mineralization belt,Central China. Ore Geology Reviews,57:132 -153
Barnes HL. 1997. Geochemistry of Hydrothermal Ore Deposits. Hubert:John Wiley & Sons,Inc,1 -963
Brooks CK,Tegner C,Stein H and Thomassen B. 2004. Re-Os and40Ar/39Ar ages of porphyry molybdenum deposits in the East Greenland volcanic-rifted margin. Economic Geology,99(6):1215-1222
Chen L,Wang ZQ,Yan Z,Wu FF,Ren T and Guo YH. 2014a.Metallogenesis of 150 ~140Ma porphyry-skarn CuMoFe(Au)deposit in Shanyang-Zhashui ore concentration area, Qinling. Acta Petrologica Sinica,30(2):415 - 436 (in Chinese with English abstract)Chen L,Yan Z,Wang ZQ,Wu FF,Wang RT,Ren T,Guo YH and Wang P. 2014b. Mineralogical characteristic of the Yanshanian granitic rocks in Shanyang-Zhashui ore concentration area:An indicator for the magmatic nature and metallogenesis. Acta Geologica Sinica,88(1):109 -133 (in Chinese with English abstract)
Chen YL and Zhang BR. 1994. Pb,Sr and Nd isotope geochemistry of Yanshanian granitoids on southern margin of North China Craton in western Henan Province. Earth Science,19(3):375 - 382 (in Chinese with English abstract)
Chen YJ,Li C,Zhang J,Li Z and Wang HL. 2000. Sr and O isotopic characteristics of porphyries in the Qinling molybdemum deposit belt and their implication to genetic mechanism and type. Science in China (Series D),43(Suppl. 1):82 -94
Chen YJ,Zhai MG and Jiang SY. 2009. Significant achievements and open issues in study of orogenesis and metallogenesis surrounding the North China continent. Acta Petrologica Sinica,25(11):2695 -2726 (in Chinese with English abstract)
Cline JS and Bodnar RJ. 1991. Can economic porphyry copper mineralization be generatedby a typical calc-alkaline melt?Journal of Geophysical Research,96(B5):8113 -8126
Gao S,Luo TC,Zhang BR,Zhang HF,Han NW,Zhao ZD and Kern H.1999. Stracture and composition of the continental crust in East China. Science in China (Series D),42(2):129 -140
Griffiths JR and Godwin CI. 1983. Metallogeny and tectonics of porphyry copper-molybdenum deposits in British Columbia. Canadian Journal of Earth Sciences,20(6):1000 -1018
Guo B. 2009. Geology, geochemistry and geodynamic setting of Jinduicheng porphyry molybdenum deposit in East Qinling. Master Degree Thesis. Xi’an:Northwest University,1 -135 (in Chinese with English summary)
Guo BJ,Mao JW,Li HM,Qu WJ,Qiu JJ,Ye HS,Li MW and Zhu XL.2006. Re-Os dating of molybdenite from the Qiushuwan Cu-Mo deposit in the east Qinling and its geological significance. Acta Petrologica Sinica,22(9):2341 -2348 (in Chinese with English abstract)
Guo XQ,Yan Z,Wang ZQ,F(xiàn)u CL and Chen L. 2014. Tectonic setting of Lijiabian Ti-Fe deposit in Shanyang-Zhashui ore concentration area,Qinling Orogen. Acta Petrologica Sinica,30(2):437 -450(in Chinese with English abstract)
Hart CJR,Mair JL,Goldfarb RJ and Groves DI. 2004. Source and redox controls on metallogenic variations in intrusion-related ore systems,Tombstone-Tungssten Belt Yukon Territory Canada. Transactions of the Royal Society of Edinburgh:Earth Sciences,95(1 -2):339-356
Hart SR. 1984. A large-scale isotope anomaly in the Southern Hemisphere mantle. Nature,309(5971):753 -757
Hart SR. 1988. Heterogeneous mantle domains:Signatures,genesis and mixing chronologies. Earth and Planetary Science Letters,90(3):273 -296
Haschke M,Ahmadian J,Murata M and McDonald I. 2010. Copper mineralization prevented by arc-root delamination during Alpine-Himalayan collision in central Iran. Economic Geology,105(4):855 -865
Hou ZQ,Mo XX,Gao YF,Qu XM and Meng XJ. 2003. Adakite:A possible host rock for porphyry copper deposits:Case studies of porphyry copper belts in Tibetan Plateau and in Northern Chile.Mineral Deposits,22 (1):1 - 12 (in Chinese with English abstract)
Hou ZQ and Yang ZM. 2009. Porphyry deposits in continental settings of China:Geological characteristics,magmatic-hydrothermal system,and metallogenic model. Acta Geologica Sinica,83(12):1779 -1817 (in Chinese with English abstract)
Hou ZQ,Zheng YC,Yang ZM,Rui ZY,Zhao ZD,Jiang SH,Qu XM and Sun QZ. 2013. Contribution of mantle components within juvenile lower-crust to collisional zone porphyry Cu systems in Tibet.Mineralium Deposita,48(2):173 -192
Hu HZ,Li N,Deng XH,Chen YJ and Li Y. 2013. Indosinian Mo mineralization in Qinling area and prospecting potential. Geology in China,40(2):549 -565 (in Chinese with English abstract)
Huang DH,Wu CY,Du AD and He HL. 1994. Re-Os isotope ages of molybdenum deposits in East Qingling and their significance.Mineral Deposits,13(3):221 - 229 (in Chinese with English abstract)
Jahn BM,Wu FY,Lo CH and Tsai CH. 1999. Crust-mantle interaction induced by deep subduction of the continental curst:Geochemical and Sr-Nd isotopic evidence from post-collisional mafic-ultramafic intrusions of the northern Dabie complex,central China. Chemical Geology,157(1 -2):119 -146 Jiao JG,Yuan HC,He K,Sun T,Xu G and Liu RP. 2009. Zircon U-Pb and molybdenite Re-Os dating for the Balipo porphyry Mo deposit in East Qinling,China,and its geological implication. Acta Geologica Sinica,83(8):1159 -1166 (in Chinese with English abstract)
Jiao JG,Tang ZL,Qian ZZ,Yuan HC,Yan HQ,Sun T,Xu G and Li XD. 2010a. Metallogenic mechanism,magma source and zircon UPb age of Jinduicheng granitic porphyry,East Qinling. Earth Science,35(6):1011 -1022 (in Chinese with English abstract)Jiao JG,Yuan HC,Liu RP,Li XD and He K. 2010b. Lithogeochemical characteristics of Balipo molybdenum deposit and its prospecting significance,Huaxian,Shaanxi Province. Acta Petrologica Sinica,26(12):3538 -3548 (in Chinese with English abstract)
Kay SM and Abbruzzi JM. 1996. Magmatic evidence for Neogene lithospheric evolution of the central Andean“flat slab”between 30°S and 32°S. Tectonophysics,259(1 -3):15 -28
Kay SM and Mpodozis C. 2001. Central Andean ore deposits linked to evolving shallow subduction systems and thickening crust. GSA Today,11:4 -9
Ke CH,Wang XX,Yang Y,Qi QJ,F(xiàn)an ZP,Gao F and Wang XY.2012. Rock-forming and ore-forming ages of the Nantai Mo polymetallic deposit in North Qinling Mountains and its zircon Hf isotope composition. Geology in China,39(6):1562 -1576 (in Chinese with English abstract)
Kr?ner A,Zhang GW and Sun Y. 1993. Granulites in the Tongbai area,Qinling belt, China: Geochemistry, petrology, single zircon geochronology,and implications for the tectonic evolution of Eastern Asia. Tectonics,12(1):245 -255
Le Bas MJ,Le Maitre RW,Streckeisen A and Zanettin BA. 1986. A chemical classification of volcanic rocks based on the total alkalisilica diagram. Journal of Petrology,27:745 -750
Lehmann B. 1990. Metallogeny of tin. In:Lecture Notes in Earth Sciences. Berlin:Springer-Verlag,1 -211
Li HY,Mao JW,Wang XX,Ye HS and Yang L. 2011. Sr,Nd,Pb isotopic characteristics of granite in Jinduicheng area and their geological significance. Geology in China,38(6):1536 -1550 (in Chinese with English abstract)
Li JX,Qin KZ,Li GM,Xiao B,Chen L and Zhao JX. 2011. Postcollisional ore-bearing adakitic porphyries from Gangdese porphyry copper belt,southern Tibet:Melting of thickened juvenile arc lower crust. Lithos,126(3 -4):265 -277
Li N,Chen YJ,Zhang H,Zhao TO,Deng XH,Wang Y and Ni ZY.2007. Molybdenum deposits in East Qinling. Earth Science Frontiers,14(5):186 -198 (in Chinese with English abstract)
Li XF,Watanabe Y and Yi XK. 2013. Ages and sources of ore-related porphyries at Yongping Cu-Mo deposit in Jiangxi Province,Southeast China. Resource Geology,63(3):288 -312
Li YF,Mao JW,Bai FJ,Li JP and He ZJ. 2003. Re-Os isotopic dating of molybdenites in the Nannihu molybdenum (tungsten)ore field in the eastern Qinling and its geological significance. Geological Review,49(6):652 -661 (in Chinese with English abstract)
Li YF. 2005. The temporal-spatial evolution of Mesozoic granitoids in Xiong’ershan area and their relationships to molybdenite-gold mineralization. Ph. D. Dissertation. Beijing:China University of Geosciences,1 -135 (in Chinese)
Li YF,Mao JW,Hu HB,Guo BJ and Bai FJ. 2005. Geology,distribution,types and tectonic settings of Mesozoic molybdenum deposits in East Qinling area. Mineral Deposits,24(3):292 -304(in Chinese with English abstract)
Lu SN,Chen ZH,Li HK,Hao GJ,Zhou HY and Xiang ZQ. 2004. Late Mesoproterozoic-Early Neoproterozoic evolution of the Qinling orogen. Geological Bulletin of China,23 (2):107 - 112 (in Chinese with English abstract)
Lu XX,Xiao QH,Dong Y,Li XB and Chang QL. 2000. Granitoid Tectonic Map of Qinling Belt (1 ∶1000000). Xi’an:Xi’an Cartographic Publishing Home (in Chinese)
Lu XX,Yu ZP,F(xiàn)eng YL,Wang YT,Ma WF and Cui HF. 2002.Mineralizat ion and tectonic setting of the deep-hypabyssal granites in East Qinling Mountain. Mineral Deposits,21(2):168 -178 (in Chinese with English abstract)
Lu XX,Luo ZH,Huang F,Gu DM,Li ML,Yang ZF,Huang DF,Liang T,Liu CQ,Zhang Z and Gao Y. 2011. Mo deposit types and mineralization assemblage characteristics in Qinling-Dabie Mountain area. Geology in China,38(6):1518 - 1535 (in Chinese with English abstract)
Luo DZ. 1995. The metallogenic characteristics of copper deposit in intermediate acid intrusive in the Lengshuigou-Xiaguangfang district,Shaanxi Province. Henan Geology,13(2):91 -94 (in Chinese with English abstract)
Luo MJ,Zhang FM,Dong QY,Xu YR,Li SM and Li KH. 1991.Molybdenum Deposits in China. Zhengzhou:Henan Press of Science and Technology,1 -425 (in Chinese)
Maniar PD and Piccoli PM. 1989. Tectonic discrimination of granitoids.Geology Society of America Bulletin,101(5):635 -643
Mao B,Ye HS,Li C,Xiao ZJ and Yang GQ. 2011. Molybdenite Re-Os isochron age of Yechangping Mo deposit in western Henan Province and its geological implications. Mineral Deposits,30(6):1069 -1074 (in Chinese with English abstract)
Mao JW,Zhang ZC,Zhang ZH and Du AD. 1999. Re-Os isotopic dating of molybdenites in the Xiaoliugou W(Mo)deposit in the northern Qilian Mountains and its geological significance. Geochimica et Cosmochimica Acta,63(11 -12):1815 -1818
Mao JW,Xie GQ,Bierlein F,Qu WJ,Du AD,Ye HS,Pirajno F,Li HM,Guo BJ,Li YF and Yang ZQ. 2008. Tectonic implications from Re-Os dating of Mesozoic molybdenum deposits in the East Qinling-Dabie orogenic belt. Geochimica et Cosmoschimica Acta,72(18):4607 -4626 Mao JW,Ye HS,Wang RT,Dai JZ,Jian W,Xiang JF,Zhou K and Meng F. 2009. Mineral deposit model of Mesozoic porphyry Mo and vein-type Pb-Zn-Ag ore deposits in the eastern Qinling,Central China and its implication for prospecting. Geological Bulletin of China,28(1):72 -79 (in Chinese with English abstract)
Mattauer M,Matte P,Malavielle J,Tapponnier P,Maluski H,Xu ZQ,Lu YL and Tang YQ. 1985. Tectonics of the Qinling belt:Build-up and evolution of eastern Asia. Nature,317(6037):496 -500
Meng QR and Zhang GW. 2000. Geologic framework and tectonic evolution of the Qinling orogen,central China. Tectonophysics,323(3 -4):183 -196
Miller CF,McDowell SM and Mapes RW. 2003. Hot and cold granites?Implications of zircon saturation temperatures and preservation of inheritance. Geology,31(6):529 -532
Othman DB,White WM and Patchett J. 1989. The geochemistry of marine sediments,island arc magma genesis,and crust-mantle recycling. Earth and Planetary Science Letters,94(1 -2):1 -21
Peccerillo A and Taylor SR. 1976. Geochemistry of Eocene cala-alkaline volcanic rocks from Kastamonu area,Northern Turkey. Contributions to Mineralogy and Petrology,58(1):63 -81
Peng SX,Cheng JX,Chen JL,Zhao DH,Liu JC,Yang HQ,Zhang ZW,Zhang HD and Zhang SN. 2013. Geology and geochemical characteristics of rock mass at Lianhuagou molybdenite (copper)mine in Luonan County,Shaanxi Province. Geological Science and Technology Information,32(3):31 -41 (in Chinese with English abstract)
Qin KZ,Xia DX,Li GM,Xiao B,Duo J,Jiang GW and Zhao JX.2014. Qulong Porphyry-Skarn Cu-Mo Deposit,Tibet. Beijing:Science Press,1 -316 (in Chinese)
Qin Z,Dai XL and Deng XW. 2011. Two different granites in Qiushuwan and Yanlailing area,East Qinling Orogenic Belt,and their tectonic significance. Journal of Mineralogy and Petrology,31(3):48 -54(in Chinese with English abstract)
Qu XM,Hou ZQ,Guo LJ and Xu WY. 2004. Source compositions and crustal contaminations of adakitic ore-bearing porphyries in the Gangdise copper belt:Nd,Sr,Pb and O isotope constraints. Acta Geologica Sinica,78(6):813 - 821 (in Chinese with English abstract)
Ren T,Wang RT,Wang XY,Xia CL and Guo YH. 2009. A way and method for prospecting copper deposit in the Zhashui-Shanyang sedimentary basin in the Qinling orogenic belt. Acta Geologica Sinica,83(11):1730 -1738 (in Chinese with English abstract)
Shafiei B,Haschke M and Shahabpour J. 2009. Recycling of orogenic arc crust triggers porphyry Cu mineralization in Kerman Cenozoic arc rocks,southeastern Iran. Mineralium Deposita,44(3):265 -283
Song GX,Qin KZ,Li GM,Noreen JE and Li XH. 2014. Mesozoic magmatism and metallogeny in the Chizhou area,Middle-Lower Yangtze Valley, SE China: Constrained by petrochemistry,geochemistry and geochronology. Journal of Asian Earth Sciences 91(3):137 -153
Stein HJ. 1988. Genetic traits of Climax-type granites and molybdenum mineralization,Colorado mineral belt. In:Taylor RP and Strong DF(eds.). Recent Advances in the Geology of Granite-related Mineral Deposits. Canadian Institute of Mining,Metallurgy,and Petroleum Special,39:394 -401
Stein HJ and Crock JG. 1990. Late Cretaceous-Tertiary magmatism in the Colorado mineral belt:Rare earth element and Sm-Nd isotopic studies. In:Anderson JL (ed.). The Nature and origin of Cordilleraan magmatism. Geological Society of America,Memoirs,174:195 -224
Stein HJ,Markey RJ,Morgan JW,Du AD and Sun Y. 1997. Highly precise and accurate Re-Os ages for molybdenite from the East Qinling molybdenum belt,Shaanxi Province,China. Economic Geology,92(7 -8):827 -835
Streckeisen A. 1976. To each plutonic rock its proper name. Earth-Science Reviews,12(1):1 -33
Sun SS and McDonough WF. 1989. Chemical and isotopic systematics of oceanic basalts:Implications for mantle composition and processes.In:Saunder AD and Norry MJ (eds.). Magmatism in the Ocean Basins. Geological Society,London,Special Publications,42(1):313 -345
Sylvester PJ. 1998. Post-collisional peraluminous granites. Lithos,45(1-4):29 -44
Taylor SR and McLennan SM. 1985. The Continental Crust:Its Composition and Evolution. Oxford:Blackwell,1 -312
Van Westrenen W,Blundy JD and Wood BJ. 2001. High field strength element /rare earth element fractionation during partial melting in the presence of garnet: Implications for identification of mantle heterogeneities. Geochemistry,Geophysics,Geosystems,2 (7):223 -235
Vroon PZ,van Bergen MJ,White WM and Varekamp JC. 1993. Sr-Nd-Pb isotope systematics of the Banda arc,Indonesia:Combined subduction and assimilation of continental material. Journal of Geophysical Research,98:22349 -22366
Vroon PZ,van Bergen MJ,Klaver GJ and White WM. 1995. Strontium,neodymium,and lead isotopic and trace-element signature of the East Indonesian sediments:Provenance and implications for Banda Arc magma genesis. Geochemica et Cosmochimica Acta,59(12):2573-2598
Wang CY,Li XF,Xiao R,Bai YP,Yang F and Jiang SK. 2012.Elements mobilization of mineralized porphyry rocks during hydrothermal alteration at Zhushahong porphyry copper deposit,Dexing district,South China. Acta Petrologica Sinica,28(12):3869 -3886 (in Chinese with English abstract)
Wang DS,Wang RT,Dai JZ,Wang CA,Li JH and Chen LX. 2009.“Dual Ore-Controlling Factors”characteristics of metallic deposits in the Qinling Orogenic Belt. Acta Geologica Sinica,83(11):1717 -1729 (in Chinese with English abstract)
Wang Q,Wyman DA,Xu JF,Zhao ZH,Jian P,Xiong XL,Bao ZW,Li CF and Bai ZH. 2006. Petrogenesis of Cretaceous adakitic and shoshonitic igneous rocks in the Luzong area,Anhui Province(eastern China ): Implications for geodynamics and Cu-Au mineralization. Lithos,89(3 -4):424 -446
Wang T,Zhang GW,Wang XX and Li WP. 1999. A possible dynamic characteristics of more continental blocks,ocean basin and weak subduction and the granite evolution:An example from the granites in the core of the Qinling orogenic belt,Central China. Journal of Nanjing University (Natural Sciences),35(6):659 - 667 (in Chinese with English abstract)
Wang T,Wang XX,Zhang GW,Pei XZ and Zhang CL. 2003.Remnants of a Neoproterozoic collisional orogenic belt in the core of the Phanerozoic Qinling orogenic belt (China ). Gondwana Research,6(4):699 -710
Wang T,Pei XZ,Wang XX and Hu NG. 2005. Orogen-parallel westward oblique uplift of the Qinling basement complex in the core of the Qinling orogen (China):An example of oblique extrusion of deepseated metamorphic rocks in a convergent orogen. Journal of Geology,113(2):181 -200 Wang T Zhang ZQ,Wang XX and Zhang CL. 2005. Neoproterozoic collisional deformation in the core of the Qinling orogen and its age:Constrained by zircon SHRIMP dating of strongly deformed syncollisional granites and weakly deformed granitic veins. Acta Geologica Sinica,79(2):220 - 231 (in Chinese with English abstract)
Wang T,Wang XX,Tian W,Zhang CL,Li WP and Li S. 2009. North Qinling Paleozoic granite associations and their variation in space and time:Implications for orogenic processes in the orogens of Central China. Science in China (Series D),52(9):1359 -1384
Wang XX,Wang T,Qi QJ and Li S. 2011. Temporal-spatial variations,origin and their tectonic significance of the Late Mesozoic granites in the Qinling,Central China. Acta Petrologica Sinica,27(6):1573-1593 (in Chinese with English abstract)
Wang ZQ,Wang T,Yan Z and Yan QR. 2002. Late Paleozoic forearc accretionary piggyback type basin system in the South Qinling,Central China. Regional Geology of China,21(8 -9):456 -464(in Chinese with English abstract)
Wang ZQ,Yan QR,Yan Z,Wang T,Jiang CF,Gao LD,Li QG,Chen JL,Zhang YL,Liu P,Xie CL and Xiang ZJ. 2009. New division of the main tectonic units of the Qinling Orogenic Belt,Central China.Acta Geologica Sinica,83(11):1527 - 1546 (in Chinese with English abstract)Wei QG,Yao JM,Zhao TP,Sun YL,Li J,Yuan ZL and Qiao B. 2009.Discovery of a ~1.9Ga Mo deposit in the eastern Qinling orogen:Molybdenite Re-Os ages of the Longmendian Mo deposit in Henan Province. Acta Petrologica Sinica,25 (11):2747 - 2751 (in Chinese with English abstract)Weng JC,Zhang YZ,Huang CY,Li WZ,Cui BL and Luo MW. 2010.Geological characteristic and genesis of Sandaozhuang supar-large molybdenum-tungsten ore deposit in Luanchan,Shaanxi Province.Geology and Exploration,46(1):41 -48 (in Chinese with English abstract)Wu FF,Wang ZQ,Yan Z,Chen L,Xia CL,Guo YH and Peng YM.2014. Geochenmical characteristics,zircons U-Pb ages and Lu-Hf isotopic composition of the Yanshanian intermediate-acidic plutons in Shangyang-Zhashui areas,Qinling Orogenic Belt. Acta Petrologica Sinica,30(2):451 -471 (in Chinese with English abstract)
Xiang JF,Mao JW,Pei RF,Ye HS,Wang CY,Tian ZH and Wang HL.2012. New geochronological data of granites and ores from the Nannihu-Sandaozhuang Mo(W)deposit. Geology in China,39(2):458 -473 (in Chinese with English abstract)
Xie GQ,Ren T,Li JB,Wang RT,Xian CL,Gou YH,Dai JZ and Shen ZC. 2012. Zircon U-Pb age and petrogenesis of ore-bearing granitoid for the Chigou Cu-Mo deposit from the Zhashan basin,Shaanxi Province. Acta Petrologica Sinica,28(1):15 -26 (in Chinese with English abstract)Xie GQ,Mao JW,Wang RT,Ren T,Li JB and Dai JZ. 2015. Origin of Late Mesozoic granitoids in the newly discovered Zha-Shan porphyry Cu district,South Qinling,central China,and implications for regional metallogeny. Journal of Asian Earth Sciences,103:184-197 Yan GL, Ren JG, Xiao GF and Pan D. 2013. Geochemical characteristics of granite porphyry of Yechangping molybdenum deposit and the analysis on its relationship with mineralization,western Henan. Mineral Exploration,4(2):154 -166 (in Chinese with English abstract)
Yan Z,Wang ZQ,Yan QR,Wang T,Xiao WJ,Li JL,Han FL,Chen JL and Yang YC. 2006. Devonian sedimentary environments and provenance of the Qinling orogen:Constraints on Late Paleozoic southward accretionary tectonics of the North China craton.International Geology Review,48(7):585 -618
Yan Z,Wang ZQ,Wang T,Yan QR,Xiao WJ,Li JL,Han FL and Chen JL. 2007. Tectonic setting of Devonian sediments in the Qinling orogen:Constraints from detrital modes and geochemistry of clastic rocks. Acta Petrologica Sinica,23(5):1023 - 1042 (in Chinese with English abstract)
Yang Y,Wang XX,Ke CH and Li JB. 2012. Zircon U-Pb age,geochemistry and Hf isotopic compositions of Shibaogou granitoid pluton in the Nannihu ore district,western Henan Province. Geology in China,39(6):1525 -1542 (in Chinese with English abstract)Ye HS. 2006. The mesozoic tectonic evolution and Pb-Zn-Ag metallogeny in the southern margin of North China Craton. Ph. D. Dissertation.Beijing:Chinese Academy of Geological Sciences,1 - 217 (in Chinese)
Zhang BR,Li ZJ and Luo TC. 1987. Regional Geochemical Studies in the Lushi-Linbao Area, Western Henan. Beijing: Geological Publishing House,1 -285 (in Chinese)
Zhang BR,Chen DX,Li ZJ,Gu XM,Jiang JY,Hu YK,Li FL,Guo WY and Li YC. 1989. Region Geochemistry of Shanyang-Zhashui Metallogenic Belt,Shaanxi Province. Wuhan:Press of China University of Geosciences,1 -221 (in Chinese)
Zhang BR,Gao S,Zhang HF and Han YW. 2002. Geochemistry of the Qinling Orogenic Belt. Beijing:Science Press,1 - 187 (in Chinese)
Zhang CL,Liu L,Zhang GW,Wang T,Chen DL,Yuan HL,Liu XM and Yan YX. 2004. Determination of Neoproterozoic post-collisional granites in the North Qinling Mountains and its tectonic significance.Earth Science Frontiers,11(3):33 -42 (in Chinese with English abstract)
Zhang GW,Zhang BR,Yuan XC and Xiao QH. 2001. Qinling Orogenic Belt and Continental Dynamics. Beijing:Science Press,1 -855 (in Chinese)
Zhang NC,Yan JH and Liu XN. 1986. A discussion on the deep structures and mineralizations in Henan Province from gravitational and magnetic data. Henan Geology,4(1):16 -22 (in Chinese with English abstract)
Zhang X,Dai XL,Deng XW,Qin Z and Zhang ZH. 2011. The characteristics of Qiushuwan porphyry granite and the prospecting target in the outside of its Nanshan ore section. Mineral Exploration,2(2):126 -134 (in Chinese with English abstract)
Zhang YL. 2002. Geological features and the metallogenetic conditions of acid-intermediate acid small rock bodies in Xiaohekou area of Shanyang County,Shaanxi Province. Geology of Shaanxi,20(2):27 -38 (in Chinese with English abstract)
Zhang ZW,Li WY,Zhao DH,Gao YB and Peng SX. 2010. Zircon UPb dating of Lianhuagou pluton in East Qinling and its geological implication. Geochimica,39(1):90 -99 (in Chinese with English abstract)
Zhao HJ,Mao JW,Ye HS,Hou KJ and Liang HS. 2010. Chronology and petrogenesis of Shijiawan granite porphyry in Shannxi Province:Constrains from zircon U-Pb geochronology and Hf isotopic compositions. Mineral Deposits,29(1):143 - 157 (in Chinese with English abstract)
Zhu HP and Qi SJ. 1997. Copper ore prospecting breakthrough in Shangzha area of Shaanxi Province. Northwestern Geology,18(1):18 -21 (in Chinese with English abstract)
Zhu HP,Ye L,Gan BX and Wang CQ. 2003. The ralationship to basin constructure system with metallgenic in Shan(yang)-Zha(shui)-Zhen(an)-Xun(yang)area. Northwestern Geology,36(1):52 -58 (in Chinese with English abstract)
Zhu LM,Zhang GW,Guo B and Li B. 2008. U-Pb (LA-ICP-MS)zircon dating for the large Jinduicheng porphyry Mo deposit in the East Qinling,China,and its metallogenetic geodynamical setting.Acta Geologica Sinica,82(2):204 -220 (in Chinese with English abstract)
附中文參考文獻
包志偉,曾喬松,趙太平,原振雷. 2009. 東秦嶺鉬礦帶南泥湖-上房溝花崗斑巖成因及其對鉬成礦作用的制約. 巖石學報,25(10):2523 -2536
陳雷,王宗起,閆臻,吳發(fā)富,任濤,郭延輝. 2014a. 秦嶺山陽-柞水礦集區(qū)150 ~140Ma 斑巖-矽卡巖型CuMoFe(Au)礦床成礦作用研究. 巖石學報,30(2):415 -436
陳雷,閆臻,王宗起,吳發(fā)富,王瑞廷,任濤,郭延輝,王鵬. 2014b.陜西山陽-柞水礦集區(qū)燕山期巖體礦物學特征:對巖漿性質(zhì)及成礦作用的指示. 地質(zhì)學報,88(1):109 -133
陳衍景,李超,張靜,李震,王海華. 2000. 秦嶺鉬礦帶斑巖體鍶氧同位素特征與巖石成因機制和類型. 中國科學(D 輯),30(增刊):64 -72
陳衍景,翟明國,蔣少涌. 2009. 華北大陸邊緣造山過程與成礦研究的重要進展和問題. 巖石學報,25(11):2695 -2726
陳岳龍,張本仁. 1994. 華北克拉通南緣豫西燕山期花崗巖類的Pb、Sr、Nd 同位素地球化學研究. 地球科學,19(3):375 -382
高山,駱庭川,張本仁,張宏飛,韓吟文,趙志丹,Kern H. 1999. 中國東部地殼的結(jié)構(gòu)和組成. 中國科學(D 輯),29(3):204 -213郭波. 2009. 東秦嶺金堆城斑巖鉬礦床地質(zhì)地球化學特征與成礦動力學背景. 碩士學位論文. 西安:西北大學,1 -135
郭保健,毛景文,李厚民,屈文俊,仇建軍,葉會壽,李蒙文,竹學麗. 2006. 秦嶺造山帶秋樹灣銅鉬礦床輝鉬礦Re-Os 定年及其地質(zhì)意義. 巖石學報,22(9):2341 -2348
郭現(xiàn)輕,閆臻,王宗起,付長壘,陳雷. 2014. 山陽-柞水礦集區(qū)李家砭Ti-Fe 礦床成礦構(gòu)造背景研究. 巖石學報,30(2):437 -450
侯增謙,莫宣學,高永豐,曲曉明,孟祥金. 2003. 埃達克巖:斑巖銅礦的一種可能的重要含礦母巖——以西藏和智利斑巖銅礦為例. 礦床地質(zhì),22(1):1 -12
侯增謙,楊志明. 2009. 中國大陸環(huán)境斑巖型礦床:基本地質(zhì)特征、巖漿熱液系統(tǒng)和成礦概念模型. 地質(zhì)學報,83(12):1779-1817
胡海珠,李諾,鄧小華,陳衍景,李毅. 2013. 秦嶺地區(qū)印支期鉬礦化特征及找礦前景. 中國地質(zhì),40(2):549 -565
黃典豪,吳澄宇,杜安道,何紅蓼. 1994. 東秦嶺地區(qū)鉬礦床的錸-鋨同位素年齡及其意義. 礦床地質(zhì),13(3):221 -230
焦建剛,袁海潮,何克,孫濤,徐剛,劉瑞平. 2009. 陜西華縣八里坡鉬礦床鋯石U-Pb 和輝鉬礦Re-Os 年齡及其地質(zhì)意義. 地質(zhì)學報,83(8):1159 -1166
焦建剛,湯中立,錢壯志,袁海潮,閆海卿,孫濤,徐剛,李小東.2010a. 東秦嶺金堆城花崗斑巖體的鋯石U-Pb 年齡、物質(zhì)來源及成礦機制. 地球科學,35(6):1011 -1022
焦建剛,袁海潮,劉瑞平,李小東,何克. 2010b. 陜西華縣八里坡鉬礦床巖石地球化學特征及找礦意義. 巖石學報,26(12):3538-3548
柯昌輝,王曉霞,楊陽,齊秋菊,樊忠平,高非,王修緣. 2012. 北秦嶺南臺鉬多金屬礦床成巖成礦年齡及鋯石Hf 同位素組成. 中國地質(zhì),39(6):1562 -1576
李洪英,毛景文,王曉霞,葉會壽,楊磊. 2011. 陜西金堆城鉬礦區(qū)花崗巖Sr、Nd、Pb 同位素特征及其地質(zhì)意義. 中國地質(zhì),38(6):1536 -1550
李諾,陳衍景,張輝,趙太平,鄧小華,王運,倪智勇. 2007. 東秦嶺斑巖鉬礦帶的地質(zhì)特征和成礦構(gòu)造背景. 地學前緣,14(5):186 -198
李永峰,毛景文,白鳳軍,李俊平,和志軍. 2003. 東秦嶺南泥湖鉬(鎢)礦田Re-Os 同位素年齡及其地質(zhì)意義. 地質(zhì)論評,49(6):652 -661
李永峰,毛景文,胡華斌,郭保健,白鳳軍. 2005. 東秦嶺鉬礦類型、特征、成礦時代及其地球動力學背景. 礦床地質(zhì),24(3):292-304
李永峰. 2005. 豫西熊耳山地區(qū)中生代花崗巖類時空演化與鉬(金)成礦作用. 博士學位論文. 北京:中國地質(zhì)大學,1 -135
陸松年,陳志宏,李懷坤,郝國杰,周紅英,相振群. 2004. 秦嶺造山帶中-新元古代(早期)地質(zhì)演化. 地質(zhì)通報,23(2):107-112
盧欣祥,肖慶輝,董有,李曉波,常秋玲. 2000. 秦嶺花崗巖大地構(gòu)造圖(1∶1000000). 西安:西安地圖出版社
盧欣祥,于在平,馮有利,王義天,馬維峰,崔海峰. 2002. 東秦嶺深源淺成型花崗巖的成礦作用及地質(zhì)構(gòu)造背景. 礦床地質(zhì),21(2):168 -178
盧欣祥,羅照華,黃凡,谷德敏,李明立,楊宗峰,黃丹峰,梁濤,劉傳權(quán),張震,高源. 2011. 秦嶺-大別山地區(qū)鉬礦類型與礦化組合特征. 中國地質(zhì),38(6):1518 -1535
羅德正. 1995. 陜西冷水溝-下官房一帶中酸性侵入體成銅特征. 河南地質(zhì),13(2):91 -94
羅銘玖,張輔民,董群英,許永仁,黎世美,李昆華. 1991. 中國鉬礦床. 鄭州:河南科學技術(shù)出版社,1 -425
毛冰,葉會壽,李超,肖中軍,楊國強. 2011. 豫西夜長坪鉬礦床輝鉬礦錸-鋨同位素年齡及地質(zhì)意義. 礦床地質(zhì),30(6):1069-1074
毛景文,葉會壽,王瑞廷,代軍治,簡偉,向君鋒,周珂,孟芳.2009. 東秦嶺中生代鉬鉛鋅銀多金屬礦床模型及其找礦評價.地質(zhì)通報,28(1):72 -79
彭素霞,程建新,陳雋璐,趙東宏,劉建朝,楊合群,張照偉,張海東,張?zhí)K楠. 2013. 陜西省洛南縣蓮花溝鉬(銅)礦巖體地質(zhì)及巖石地球化學特征. 地質(zhì)科技情報,32(3):31 -41
秦克章,夏代祥,李光明,肖波,多吉,蔣光武,趙俊興. 2014. 西藏驅(qū)龍斑巖-夕卡巖銅鉬礦床. 北京:科學出版社,1 -316
秦臻,戴雪靈,鄧湘?zhèn)? 2011. 東秦嶺秋樹灣-雁來嶺兩種不同類型的花崗巖及其構(gòu)造意義. 礦物巖石,31(3):48 -54
曲曉明,侯增謙,國連杰,徐文藝. 2004. 岡底斯銅礦帶埃達克質(zhì)含礦斑巖的源區(qū)組成與地殼混染:Nd、Sr、Pb、O 同位素約束. 地質(zhì)學報,78(6):813 -821
任濤,王瑞廷,王向陽,夏長玲,郭延輝. 2009. 秦嶺造山帶柞水-山陽沉積盆地銅礦勘查思路與方法. 地質(zhì)學報,83(11):1730-1738
王翠云,李曉峰,肖榮,白艷萍,楊鋒,蔣松坤. 2012. 德興朱砂紅斑巖銅礦熱液蝕變作用及元素地球化學遷移規(guī)律. 巖石學報,28(12):3869 -3886
王東生,王瑞廷,代軍治,王長安,李建華,陳荔湘. 2009. 秦嶺造山帶金屬礦床的“二元控礦”特征. 地質(zhì)學報,83(11):1717-1729
王濤,張國偉,王曉霞,李伍平. 1999. 一種可能的多陸塊、小洋盆、弱俯沖的動力學特征及其花崗巖演化特點——以秦嶺造山帶核部及其花崗巖為例. 南京大學學報(自然科學版),35(6):659-667
王濤,張宗清,王曉霞,王彥斌,張成立. 2005. 秦嶺造山帶核部新元古代碰撞變形及其時代——強變形同碰撞花崗巖與弱變形脈體鋯石SHRIMP 年齡限定. 地質(zhì)學報,79(2):220 -231
王曉霞,王濤,齊秋菊,李舢. 2011. 秦嶺晚中生代花崗巖時空分布、成因演變及構(gòu)造意義. 巖石學報,27(6):1573 -1593
王宗起,王濤,閆臻,閆全人. 2002. 秦嶺晚古生代弧前增生的背馱型盆地體系. 地質(zhì)通報,21(8 -9):456 -464
王宗起,閆全人,閆臻,王濤,姜春發(fā),高聯(lián)達,李秋根,陳雋璐,張英利,劉平,謝春林,向忠金. 2009. 秦嶺造山帶主要大地構(gòu)造單元的新劃分. 地質(zhì)學報,83(11):1527 -1546
魏慶國,姚軍明,趙太平,孫亞莉,李晶,原振雷,喬波. 2009. 東秦嶺發(fā)現(xiàn)~1.9Ga 鉬礦床——河南龍門店鉬礦床Re-Os 定年. 巖石學報,25(11):2747 -2751
甕紀昌,張云政,黃超勇,李文智,崔蓓蕾,羅明偉. 2010. 欒川三道莊特大型鉬鎢礦床地質(zhì)特征及礦床成因. 地質(zhì)與勘探,46(1):41 -48
吳發(fā)富,王宗起,閆臻,陳雷,夏長玲,郭延輝,彭遠民. 2014. 秦嶺山陽-柞水地區(qū)燕山期中酸性侵入巖地球化學特征、鋯石U-Pb年齡及Lu-Hf 同位素組成. 巖石學報,30(2):451 -471
向君峰,毛景文,裴榮富,葉會壽,王春毅,田志恒,王浩琳. 2012.南泥湖-三道莊鉬(鎢)礦的成巖成礦年齡新數(shù)據(jù)及其地質(zhì)意義.中國地質(zhì),39(2):458 -473
謝桂青,任濤,李劍斌,王瑞廷,夏長玲,郭延輝,代軍治,申志超.2012. 陜西柞山盆地池溝銅鉬礦區(qū)含礦巖體的鋯石U-Pb 年齡和巖石成因. 巖石學報,28(1):15 -26
晏國龍,任繼剛,肖光富,潘登. 2013. 豫西夜長坪鉬礦區(qū)巖體地球化學特征及其與成礦關(guān)系的探討. 礦產(chǎn)勘查,4(2):154 -166
閆臻,王宗起,王濤,閆全人,肖文交,李繼亮,韓芳林,陳雋璐.2007. 秦嶺造山帶泥盆系形成構(gòu)造環(huán)境:來自碎屑巖組成和地球化學方面的約束. 巖石學報,23(5):1023 -1042
楊陽,王曉霞,柯昌輝,李金寶. 2012. 豫西南泥湖礦集區(qū)石寶溝花崗巖體的鋯石U-Pb 年齡、巖石地球化學及Hf 同位素組成. 中國地質(zhì),39(6):1525 -1542
葉會壽. 2006. 華北陸塊南緣中生代構(gòu)造演化與鉛鋅銀成礦作用.博士學位論文. 北京:中國地質(zhì)科學院,1 -217
張本仁,李澤九,駱庭川. 1987. 豫西盧氏-靈寶地區(qū)區(qū)域地球化學研究. 北京:地質(zhì)出版社,1 -285
張本仁,陳德興,李澤九,谷曉明,蔣敬業(yè),胡以鏗,李方林,郭五寅,李耀成. 1989. 陜西柞水-山陽成礦帶區(qū)域地球化學. 武漢:中國地質(zhì)大學出版社,1 -221
張本仁,高山,張宏飛,韓吟文. 2002. 秦嶺造山帶地球化學. 北京:科學出版社,1 -187
張成立,劉良,張國偉,王濤,陳丹玲,袁洪林,柳小明,晏云翔.2004. 北秦嶺新元古代后碰撞花崗巖的確定及其構(gòu)造意義. 地學前緣,11(3):33 -42
張國偉,張本仁,袁學誠,肖慶輝. 2001. 秦嶺造山帶與大陸動力學. 北京:科學出版社,1 -855
張乃昌,閻景漢,劉新年. 1986. 從重磁成果探討我省深部構(gòu)造及成礦作用. 河南地質(zhì),4(1):16 -22
張旭,戴雪靈,鄧湘?zhèn)ィ卣?,張智? 2011. 河南秋樹灣斑巖體特征及其南山鉬礦段外圍找礦方向. 礦產(chǎn)勘查,2(2):126 -134
張銀龍. 2002. 陜西省山陽縣小河口地區(qū)酸性-中酸性巖體地質(zhì)特征及其成礦地質(zhì)條件分析. 陜西地質(zhì),20(2):27 -38
張照偉,李文淵,趙東宏,高永寶,彭素霞. 2010. 東秦嶺蓮花溝巖體鋯石U-Pb 年代學研究及其地質(zhì)意義. 地球化學,39(1):90-99
趙海杰,毛景文,葉會壽,侯可軍,梁慧山. 2010. 陜西洛南縣石家灣鉬礦相關(guān)花崗斑巖的年代學及巖石成因:鋯石U-Pb 年齡及Hf 同位素制約. 礦床地質(zhì),29(1):143 -157
朱華平,祁思敬. 1997. 陜西柞山地區(qū)銅礦找礦突破口的選擇. 西北地質(zhì),18(1):18 -21
朱華平,葉磊,甘寶新,汪長青. 2003. 山柞鎮(zhèn)旬地區(qū)盆地體制與金屬成礦關(guān)系. 西北地質(zhì),36(1):52 -58
朱賴民,張國偉,郭波,李犇. 2008. 東秦嶺金堆城大型斑巖鉬礦床LA-ICP-MS 鋯石U-Pb 定年及成礦動力學背景. 地質(zhì)學報,82(2):204 -220