国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

高血壓促進(jìn)血管平滑肌細(xì)胞L型鈣離子通道重塑的研究進(jìn)展

2015-04-15 16:56曾國(guó)偉趙國(guó)政
關(guān)鍵詞:離子通道亞基平滑肌

曾國(guó)偉,劉 波,趙國(guó)政,石 菲

1解放軍95072部隊(duì)門診部,廣西南寧 530021;2解放軍95890部隊(duì),湖北武漢 430030;3第四軍醫(yī)大學(xué) 航空航天生物動(dòng)力學(xué)教研室,陜西西安 710032

高血壓促進(jìn)血管平滑肌細(xì)胞L型鈣離子通道重塑的研究進(jìn)展

曾國(guó)偉1,劉 波1,趙國(guó)政2,石 菲3

1解放軍95072部隊(duì)門診部,廣西南寧 530021;2解放軍95890部隊(duì),湖北武漢 430030;3第四軍醫(yī)大學(xué) 航空航天生物動(dòng)力學(xué)教研室,陜西西安 710032

血管平滑肌細(xì)胞(vascular smooth muscle cells,VSMCs)表達(dá)多種離子通道,包括各型鈣離子通道,其中L型電壓依賴型鈣離子通道(L-type voltage-dependent calcium channels,LTCC)對(duì)于調(diào)節(jié)微小動(dòng)脈血管張力發(fā)揮著重要作用。高血壓時(shí)動(dòng)脈血管張力異常增高,這種血管張力的變化又會(huì)影響LTCC的功能和表達(dá)。本篇綜述將重點(diǎn)闡述VSMCs上研究較為充分的LTCC。首先,簡(jiǎn)要介紹LTCC在血管功能調(diào)節(jié)方面的作用;其次,討論高血壓時(shí)VSMCs上LTCC功能和表達(dá)變化的最新研究;最后,根據(jù)現(xiàn)有研究闡述LTCC作為高血壓治療靶點(diǎn)的應(yīng)用前景。

高血壓;血管平滑??;L型電壓依賴型鈣離子通道;基因治療

高血壓是心血管和腎疾病發(fā)生、發(fā)展的頭號(hào)危險(xiǎn)因素,且原發(fā)性或特發(fā)性高血壓占全部高血壓人群的95%[1-3]。血壓的調(diào)節(jié)受到兩個(gè)重要的生理參數(shù)的影響:心輸出量(cardiac output,CO)和總外周阻力(total peripheral resistance,TPR)。自主神經(jīng)系統(tǒng)、腎素-血管緊張素系統(tǒng)和醛固酮等血管活性物質(zhì)都可以通過(guò)影響CO和TPR調(diào)節(jié)血壓,從而保證全身各個(gè)臟器的血流量[3-5]。在絕大多數(shù)高血壓患者中,CO保持在正常范圍,而TPR會(huì)由于小動(dòng)脈的異常收縮而升高[6-7]。血管平滑肌細(xì)胞(vascular smooth muscle cells,VSMCs)上表達(dá)的鈣離子通道,特別是L型電壓依賴型的鈣離子通道(L-type voltage-dependent calcium channels,LTCC)是調(diào)節(jié)微小血管直徑的重要因素[8]。在內(nèi)分泌因素或藥理學(xué)因素作用下,VSMCs細(xì)胞膜發(fā)生超極化,導(dǎo)致LTCC的關(guān)閉,從而使得細(xì)胞內(nèi)鈣離子濃度降低,最終導(dǎo)致血管的舒張。研究表明,在高血壓患者及高血壓模型動(dòng)物中發(fā)現(xiàn)VSMCs上LTCC發(fā)生重塑[9]。本文對(duì)VSMCs上LTCC的生理作用,高血壓引起VSMCs上LTCC的變化,以及LTCC作為高血壓治療靶點(diǎn)的應(yīng)用前景進(jìn)行綜述。

1 VSMCs上LTCC的生理作用

VSMCs在細(xì)胞膜和內(nèi)質(zhì)網(wǎng)上表達(dá)多種離子通道用以調(diào)節(jié)細(xì)胞內(nèi)鈣離子濃度、細(xì)胞膜靜息電位和細(xì)胞的收縮性。LTCC是由孔道形成亞基α1和輔助亞基β、α2δ及γ組成的蛋白復(fù)合體。α1亞基由4個(gè)重復(fù)的結(jié)構(gòu)域構(gòu)成,而每個(gè)結(jié)構(gòu)域又有6個(gè)穿膜片段。α1亞基具有電壓敏感性和鈣離子選擇通透性,同時(shí)還可以被特異性的鈣離子通道阻斷劑阻斷。輔助亞基β可以調(diào)節(jié)α1亞基的功能,從而影響整個(gè)通道的特性[10-14]。同樣作為輔助亞基的α2δ和γ研究較少。Bannister等[15]發(fā)現(xiàn),抑制α2δ亞基的表達(dá)能夠引起高血壓大鼠腦動(dòng)脈的舒張,同時(shí)使得LTCC電流減弱,表明α2δ對(duì)于調(diào)節(jié)LTCC功能上的重要作用。

LTCC在去極化刺激時(shí)開放,使得鈣離子內(nèi)流增加,從而引發(fā)VSMCs的收縮和其他鈣離子依賴的反應(yīng)。當(dāng)細(xì)胞內(nèi)鈣離子濃度持續(xù)增高時(shí)會(huì)引起鈣離子依賴的失活,使得LTCC關(guān)閉[16-18]。此通道失活過(guò)程的發(fā)生限制了VSMCs內(nèi)鈣離子的濃度,從而阻止了VSMCs持續(xù)收縮的發(fā)生。鈣離子結(jié)合蛋白(calmodulin,CaM)也是調(diào)節(jié)LTCC功能的重要一環(huán)。CaM的C末端和LTCC細(xì)胞質(zhì)內(nèi)的羧基端相連,啟動(dòng)鈣離子依賴的失活。CaM的氨基末端能夠和LTCC的羧基末端相連,調(diào)節(jié)LTCC的鈣離子依賴的易化[19-21]。

除了鈣離子外,支架蛋白和某些信號(hào)分子也能夠調(diào)節(jié)LTCC[22]。在神經(jīng)元中首先發(fā)現(xiàn),支架蛋白A激酶錨定蛋白(A kinase anchoring protein,AKAP)可以結(jié)合在LTCC α1亞基的多個(gè)位點(diǎn)上[23]。在VSMCs中AKAP 150錨定在蛋白激酶C (protein kinase C,PKC)上,AKAP 150對(duì)LTCC的調(diào)節(jié)需要PKC的參與[24]。VSMCs上LTCC的活性受到許多機(jī)制的調(diào)控,以更好地控制細(xì)胞內(nèi)鈣離子的濃度,從而更好地調(diào)節(jié)血管的張力。

2 高血壓時(shí)VSMCs的LTCC發(fā)生重塑

慢性高血壓時(shí)血管腔內(nèi)的壓力增加,微小血管為適應(yīng)壓力的增加發(fā)生了生物學(xué)和結(jié)構(gòu)性的變化。這種變化的基礎(chǔ)病理生理過(guò)程復(fù)雜,包括血管重塑、內(nèi)皮功能失調(diào)、平滑肌細(xì)胞肥大和細(xì)胞外基質(zhì)成分和功能的改變[25-26]。持續(xù)性高血壓下的這種適應(yīng)性變化使得血管收縮反應(yīng)增加而血管舒張反應(yīng)降低,進(jìn)而發(fā)生血管張力的增加[27-28]。高血壓時(shí),大腦、冠脈和腎小動(dòng)脈血管張力的增加減弱了這些器官對(duì)于血壓波動(dòng)的調(diào)節(jié)能力,使得血管的血管脆性增加[29-30]。更糟糕的是,對(duì)于外周阻力貢獻(xiàn)更大的腸系膜和骨骼肌血管網(wǎng)微小血管張力的增加會(huì)進(jìn)一步加重全身血壓。和脈管系統(tǒng)相似,持續(xù)性的高血壓也會(huì)造成VSMCs上LTCC的重塑。

研究證實(shí),VSMCs LTCC功能的上調(diào)是高血壓的特點(diǎn)。同時(shí)在體實(shí)驗(yàn)也表明,VSMCs上LTCC的數(shù)量和血壓高低存在正性相關(guān)[31-32]。例如,VSMCs上LTCC的電流密度和收縮壓有線性關(guān)系[31]。有趣的是,在收縮壓降低時(shí),VSMCs上LTCC的電流密度也降低[32]。其他電生理研究表明,在新分離得到的VSMCs上LTCC的電流密度增加[33-34]。高血壓時(shí)VSMCs上LTCC功能的上調(diào)主要是因?yàn)榧?xì)胞膜上表達(dá)的LTCC數(shù)量增多。免疫印跡技術(shù)表明,與正常血壓組相比,高血壓組VSMCs上LTCC孔道形成亞基α1表達(dá)上調(diào)[35-36]。

雖然高血壓時(shí)LTCC表達(dá)上調(diào)已經(jīng)明確,但是使得LTCC孔道形成亞基α1表達(dá)增加的機(jī)制還不清楚。有研究表明,自發(fā)性高血壓大鼠的腸系膜動(dòng)脈LTCC轉(zhuǎn)錄水平表達(dá)量比正常對(duì)照組大鼠稍高一點(diǎn),但蛋白水平要比正常對(duì)照組大鼠高出3.4倍以上[36]。同樣,在缺氧誘導(dǎo)新生豬仔肺動(dòng)脈高壓研究中,LTCC蛋白水平的增高顯著,而轉(zhuǎn)錄水平?jīng)]有變化[35]。所以,轉(zhuǎn)錄后水平調(diào)控可能在LTCC表達(dá)上發(fā)揮著更為重要的作用。最近研究發(fā)現(xiàn),miRNA是LTCC轉(zhuǎn)錄后水平的可能調(diào)節(jié)機(jī)制[37]。在上述研究中,miR-328可抑制缺氧誘導(dǎo)的肺動(dòng)脈高壓LTCC的表達(dá),過(guò)表達(dá)miR-328能夠降低小鼠右心室收縮壓和肺動(dòng)脈壁厚度[37]。根據(jù)目前研究得出結(jié)論,在高血壓情況下有多因素參與到上調(diào)VSMCs上LTCC過(guò)程中。

3 VSMCs上LTCC是潛在的抗高血壓治療靶點(diǎn)

現(xiàn)有超過(guò)100種不同種類的藥物在臨床上用于降血壓,但是只有不到1/3的患者能夠?qū)⒀獕嚎刂圃谡K絒38-39]。造成治療效果不好的主要原因是每天多次服藥,甚至是服用多種藥物,使得患者的依從性低[40-41]。

在藥物治療高血壓方面,鈣離子通道是主要的藥物直接作用靶點(diǎn)。鈣離子通道阻斷劑(calcium channel blocker,CCB)在臨床上用于治療高血壓已超過(guò)20年[42]。但由于使用禁忌證和不良反應(yīng),CCB在臨床上的使用已不像之前那樣廣泛。CCB,尤其是非二氫吡啶類的鈣離子通道阻斷劑,由于存在房室結(jié)傳導(dǎo)阻滯和抑制收縮等負(fù)性作用,在心衰患者中應(yīng)慎用[43]。心動(dòng)過(guò)速和水腫是包括二氫吡啶類CCB的常見(jiàn)不良反應(yīng)。在以CCB抗高血壓治療時(shí),常需聯(lián)合其他種類的藥物,通過(guò)協(xié)同效應(yīng)以抵消每個(gè)藥物組分的不良反應(yīng),從而達(dá)到目標(biāo)血壓。CCB引起的反射性心動(dòng)過(guò)速在聯(lián)合β受體阻斷劑之后得到緩解。CCB聯(lián)合血管緊張素受體阻斷劑或者是血管緊張素轉(zhuǎn)換酶抑制劑是常用的多藥聯(lián)合配方。

以降低VSMCs上LTCC異常表達(dá)為目的的基因治療可能成為治療高血壓的新途徑,它有著更好地靶向性。Marsh和Telemaque使用腺病毒運(yùn)載基因治療藥物,降低LTCC功能單位α1亞基的表達(dá)[38,44]。有學(xué)者使用病毒載體運(yùn)載shRNA到帶有血管平滑肌特定啟動(dòng)子的細(xì)胞,成功地降低了LTCC的表達(dá),而對(duì)心肌的LTCC沒(méi)有影響[45]。雖然shRNA作用時(shí)效短,但是這些研究證明其可以靶向降低血管上異常表達(dá)的LTCC,而不影響到心臟LTCC。LTCC在調(diào)節(jié)血壓方面的作用和作為潛在的抗高血壓治療靶點(diǎn)的研究為基因靶向治療高血壓打下了堅(jiān)實(shí)的基礎(chǔ)。

1 Kearney PM, Whelton M, Reynolds K, et al. Global burden of hypertension: analysis of worldwide data[J]. Lancet, 2005, 365(9455): 217-223.

2 Whelton PK. Epidemiology of hypertension[J]. Lancet, 1994, 344(8915):101-106.

3 Guyenet PG. The sympathetic control of blood pressure[J]. Nat Rev Neurosci, 2006, 7(5):335-346.

4 Saper CB. The central autonomic nervous system: conscious visceral perception and autonomic pattern generation[J]. Annu Rev Neurosci, 2002, 25:433-469.

5 Blaustein MP. Endogenous ouabain: role in the pathogenesis of hypertension[J]. Kidney Int, 1996, 49(6):1748-1753.

6 Beevers G, Lip GY, O’brien E. ABC of hypertension - The pathophysiology of hypertension[J]. Br Med J, 2001, 322(7291):912-916.

7 Safar ME, Chau NP, Weiss YA, et al. Control of cardiac output in

essential hypertension[J]. Am J Cardiol, 1976, 38(3):332-336.

8 Nelson MT, Quayle JM. Physiological roles and properties of

potassium channels in arterial smooth muscle[J]. Am J Physiol,1995, 268(4 Pt 1):C799-C822.

9 Cox RH, Rusch NJ. New expression profiles of voltage-gated ion channels in arteries exposed to high blood pressure[J]. Microcirculation, 2002, 9(4): 243-257.

10 Sonkusare S, Palade PT, Marsh JD, et al. Vascular Calcium channels and high blood pressure: pathophysiology and therapeutic implications[J]. Vascul Pharmacol, 2006, 44(3): 131-142.

11 Birnbaumer L, Qin N, Olcese R, et al. Structures and functions of Calcium Channel beta subunits[J]. J Bioenerg Biomembr, 1998,30(4): 357-375.

12 Catterall WA. Structure and regulation of voltage-gated Ca2+ channels[J]. Annu Rev Cell Dev Biol, 2000, 16:521-555.

13 Singer D, Biel M, Lotan I, et al. The roles of the subunits in the function of the Calcium Channel[J]. Science, 1991, 253(527):1553-1557.

14 孫中洋,李東韜.成骨細(xì)胞鉀、鈣離子通道的研究進(jìn)展[J].解放軍醫(yī)學(xué)院學(xué)報(bào),2014,35(2):186-189.

15 Bannister JP, Adebiyi A, Zhao G, et al. Smooth muscle cell alpha2delta-1 subunits are essential for vasoregulation by CaV1.2 channels[J]. Circ Res, 2009, 105(10): 948-955.

16 Eckert R, Ewald D. Residual calcium ions depress activation of calcium-dependent current[J]. Science, 1982, 216(4547):730-733.

17 Ganitkevich VYa, Shuba MF, Smirnov SV. Calcium-dependent inactivation of potential-dependent calcium inward current in an isolated guinea-pig smooth muscle cell[J]. J Physiol, 1987, 392:431-449.

18 Morad M, Soldatov N. Calcium Channel inactivation: Possible role in signal transduction and Ca2+ signaling[J]. Cell Calcium, 2005,38(3/4): 223-231.

19 Peterson BZ, Demaria CD, Adelman JP, et al. Calmodulin is the Ca2+ sensor for Ca2+ -dependent inactivation of L-type Calcium channels[J]. Neuron, 1999, 22(3): 549-558.

20 Van Petegem F, Chatelain FC, Minor DL. Insights into voltage-gated Calcium Channel regulation from the structure of the Ca(V)1.2 IQ domain-Ca2+/calmodulin complex[J]. Nat Struct Mol Biol, 2005,12(12): 1108-1115.

21 Zühlke RD, Pitt GS, Deisseroth K, et al. Calmodulin supports both inactivation and facilitation of L-type Calcium channels[J]. Nature, 1999, 399(6732): 159-162.

22 Dai S, Hall DD, Hell JW. Supramolecular assemblies and localized regulation of voltage-gated ion channels[J]. Physiol Rev, 2009,89(2): 411-452.

23 Gray PC, Johnson BD, Westenbroek RE, et al. Primary structure and function of an A kinase anchoring protein associated with calcium channels[J]. Neuron, 1998, 20(5):1017-1026.

24 Navedo MF, Nieves-Cintron M, Amberg GC, et al. AKAP150 is required for stuttering persistent Ca2+ sparklets and angiotensin II-induced hypertension[J]. Circ Res, 2008, 102(2): e1-e11.

25 Mehta PK, Griendling KK. Angiotensin II cell signaling:physiological and pathological effects in the cardiovascular system[J]. Am J Physiol Cell Physiol, 2007, 292(1): C82-C97.

26 Touyz RM. Intracellular mechanisms involved in vascular remodelling of resistance arteries in hypertension: role of angiotensin II[J]. Exp Physiol, 2005, 90(4): 449-455.

27 Baumbach GL, Heistad DD. Remodeling of cerebral arterioles in chronic hypertension[J]. Hypertension, 1989, 13(6 Pt 2):968-972.

28 Heistad DD, Mayhan WG, Coyle P, et al. Impaired dilatation of cerebral arterioles in chronic hypertension[J]. Blood Vessels,1990, 27(2/5): 258-262.

29 Heistad DD. Protection of the blood-brain barrier during acute and chronic hypertension[J]. Fed Proc, 1984, 43(2):205-209.

30 Hayashi K, Epstein M, Saruta T. Altered myogenic responsiveness of the renal microvasculature in experimental hypertension[J]. J Hypertens, 1996, 14(12):1387-1401.

31 Lozinskaya IM, Cox RH. Effects of age on Ca2+ currents in small mesenteric artery myocytes from Wistar-Kyoto and spontaneously hypertensive rats[J]. Hypertension, 1997, 29(6): 1329-1336.

32 Cox RH, Lozinskaya I, Matsuda K, et al. Ramipril treatment alters Ca(2+) and K(+) channels in small mesenteric arteries from Wistar-Kyoto and spontaneously hypertensive rats[J]. Am J Hypertens, 2002, 15(10 Pt 1): 879-890.

33 Simard JM, Li X, Tewari K. Increase in functional Ca2+ channels in cerebral smooth muscle with renal hypertension[J]. Circ Res,1998, 82(12):1330-1337.

34 Pesic A, Madden JA, Pesic M, et al. High blood pressure upregulates arterial L-type Ca2+ channels - Is membrane depolarization the signal?[J]. Circ Res, 2004, 94(10): e97-e104.

35 Hirenallur-S DK, Haworth ST, Leming JT, et al. Upregulation of vascular Calcium channels in neonatal piglets with hypoxia-induced pulmonary hypertension[J]. Am J Physiol Lung Cell Mol Physiol,2008, 295(5): L915-L924.

36 Pratt PF, Bonnet S, Ludwig LM, et al. Upregulation of L-type Ca2+ channels in mesenteric and skeletal arteries of SHR[J]. Hypertension, 2002, 40(2): 214-219.

37 Guo L, Qiu Z, Wei L, et al. The microRNA-328 regulates hypoxic pulmonary hypertension by targeting at insulin growth factor 1 receptor and L-type calcium channel-α1C [J]. Hypertension, 2012, 59(5):1006-1013.

38 Marsh JD, Telemaque S, Rhee SW, et al. Delivery of ion channel genes to treat cardiovascular diseases[J]. Trans Am Clin Climatol Assoc, 2008, 119:171-182.

39 李丹丹,董蔚,陳韻岱.阿折地平用于治療原發(fā)性輕中度高血壓的臨床試驗(yàn)[J].解放軍醫(yī)學(xué)院學(xué)報(bào),2013(9):977-980.

40 Burnier M. Medication adherence and persistence as the cornerstone of effective anti hypertensive therapy[J]. Am J Hypertens, 2006,19(11): 1190-1196.

41 Frishman WH. Importance of medication adherence in cardiovascular disease and the value of once-daily treatment regimens[J]. Cardiol Rev, 2007, 15(5):257-263.

42 Manolio TA, Cutler JA, Furberg CD, et al. Trends in pharmacologic management of hypertension in the United States[J]. Arch Intern Med, 1995, 155(8): 829-837.

43 Eisenberg MJ, Brox A, Bestawros AN. Calcium channel blockers:an update[J]. Am J Med, 2004, 116(1):35-43.

44 Télémaque S, Sonkusare S, Grain T, et al. Design of mutant beta2 subunits as decoy molecules to reduce the expression of functional Ca2+ channels in cardiac cells[J]. J Pharmacol Exp Ther, 2008,325(1): 37-46.

45 Rhee SW, Stimers JR, Wang W, et al. Vascular smooth musclespecific knockdown of the noncardiac form of the L-type calcium channel by microRNA-based short hairpin RNA as a potential antihypertensive therapy[J]. J Pharmacol Exp Ther, 2009, 329(2):775-782.

L-type calcium channels remodeling in vascular smooth muscle cell promoted by hypertension

ZENG Guowei1, LIU Bo1, ZHAO Guozheng2, SHI Fei31Outpatient Department, Chinese PLA 95072 Unit, Nanning 530021, Guangxi Province, China;2Chinese PLA 95890 Unit, Wuhan 430030, Hubei Province, China;3Teaching and Research Section of Aviation and Aerospace Biomechanics, Fourth Military Medical University, Xi'an 710032, Shaanxi Province, China

LIU Bo. Email: 729518279@qq.com

Vascular smooth muscle cells (VSMCs) can express different types of ion channels, including various calcium channels. The L-type voltage-dependent calcium channels (LTCC) on the plasma membrane of VSMCs plays a pivotal role in modulating the vascular tone of small arteries and arterioles. The abnormally-elevated arterial tone observed in hypertension thus points to an aberrant expression and function of LTCC in the VSMCs. In this short review, the LTCC in VSMCs are focused. First, a brief overview on the physiological role of vascular LTCC in regulating arterial tone is provided, then the current understanding of the expression changes and regulation of LTCC in the vasculature during hypertension are discussed. At last, based on available proof-of-concept studies, the potential therapeutic approaches targeting LTCC in order to restore blood pressure to normotensive levels are described.

hypertension; vascular smooth muscle; L-type voltage-dependent calcium channels; gene therapy

R 329.25

A

2095-5227(2015)02-0190-03

10.3969/j.issn.2095-5227.2015.02.027

時(shí)間:2014-10-15 09:36

http://www.cnki.net/kcms/detail/11.3275.R.20141015.0936.001.html

2014-08-08

國(guó)家自然科學(xué)基金項(xiàng)目(81301681)

Supported by the National Natural Science Foundation of China (81301681)

曾國(guó)偉,男,學(xué)士,主治醫(yī)師。研究方向:老年病學(xué)。Email: 2792586281@qq.com

劉波,男,學(xué)士,醫(yī)師。Email: 729518279@qq.com

猜你喜歡
離子通道亞基平滑肌
電壓門控離子通道參與紫杉醇所致周圍神經(jīng)病變的研究進(jìn)展
蝎毒肽作為Kv1.3離子通道阻滯劑研究進(jìn)展
心臟鈉通道β2亞基轉(zhuǎn)運(yùn)和功能分析
原發(fā)性腎上腺平滑肌肉瘤1例
喉血管平滑肌瘤一例
腸系膜巨大平滑肌瘤1例并文獻(xiàn)回顧
胰島素通過(guò)mTORC2/SGK1途徑上調(diào)肺泡上皮鈉通道α亞基的作用機(jī)制
咽旁巨大平滑肌肉瘤一例MRI表現(xiàn)
疼痛和離子通道
小RNA干擾蛋白酶體亞基α7抑制K562細(xì)胞增殖