丁 忙 王 敏 吳 靚 黃志偉
(東華理工大學(xué)化學(xué)生物與材料科學(xué)學(xué)院,江西 南昌 330013)
?
基于電化學(xué)生物傳感方法檢測(cè)腎上腺素等生物小分子研究進(jìn)展
丁 忙 王 敏 吳 靚 黃志偉
(東華理工大學(xué)化學(xué)生物與材料科學(xué)學(xué)院,江西 南昌 330013)
腎上腺素(EP,adrenaline)是腎上腺分泌的一種非常重要的兒茶酚氨激素和神經(jīng)傳送體。它是由L-苯丙氨酸和L-酪氨酸在人體中自然合成。EP的重要性主要是在哺乳動(dòng)物與人類的中樞神經(jīng)系統(tǒng)中進(jìn)行信息的傳送,因而體內(nèi)EP濃度的變化都會(huì)導(dǎo)致許多的問題。對(duì)EP的定量化檢測(cè)方法不論是食品科學(xué)、生命科學(xué)還是臨床醫(yī)學(xué)都是非常重要的。本文綜述了在近十年中,基于電化學(xué)傳感器伏安測(cè)定腎上腺素及共存生命小分子的研究進(jìn)展,并著重從修飾基底、修飾材料、修飾方法以及表征方法等四個(gè)方面進(jìn)行綜述。
腎上腺素 電化學(xué)傳感器 測(cè)定 進(jìn)展
腎上腺素(EP)是哺乳動(dòng)物中樞神經(jīng)系統(tǒng)中的一種重要的兒茶酚胺類神經(jīng)遞質(zhì),是腎上腺素髓質(zhì)分泌的激素,腎上腺素能使心肌收縮力加強(qiáng)、興奮性增高,傳導(dǎo)加速,心輸出量增多。對(duì)全身各部分血管的作用,不僅有作用強(qiáng)弱的不同,而且還有收縮或舒張的不同。對(duì)皮膚、粘膜和內(nèi)臟(如腎臟)的血管呈現(xiàn)收縮作用;對(duì)冠狀動(dòng)脈和骨骼肌血管呈現(xiàn)擴(kuò)張作用等。腎上腺素代謝的絮亂會(huì)導(dǎo)致某些疾病的發(fā)生。因此,建立一種準(zhǔn)確檢測(cè)生物體液中腎上腺素含量的方法是十分必要的,目前測(cè)定EP的方法有很多種,高效液相色譜法[1]、氣相色譜-質(zhì)譜法[2]、毛細(xì)管電泳法[3]、熒光法[4]、電化學(xué)發(fā)光法[5]、分光光度法[6]以及電化學(xué)分析方法[7]等。電化學(xué)分析法是應(yīng)用電化學(xué)原理和技術(shù),利用化學(xué)電池內(nèi)被分析溶液的組成及含量與其電化學(xué)性質(zhì)的關(guān)系而建立起來的一類分析方法。其特點(diǎn)是選擇性好,靈敏度高,操作方便,設(shè)備簡(jiǎn)單,應(yīng)用范圍廣。
化學(xué)修飾電極[8](chemically modified electrodes,CMEs)是當(dāng)前電化學(xué)、電分析化學(xué)方面十分活躍的研究領(lǐng)域?;瘜W(xué)修飾電極的來源和興起與整個(gè)化學(xué)和其它學(xué)科特別是電化的研究密切相關(guān),而分子水平上進(jìn)行電極修飾的還是嘗試于60~ 70年代初開始的。我國(guó)中科院長(zhǎng)春應(yīng)用化學(xué)研究所董紹俊領(lǐng)導(dǎo)的小組在80年代率先在我國(guó)國(guó)內(nèi)開展了化學(xué)修飾電極的電催化專題研討。
近十年來,正是基于電化學(xué)方法靈敏度高,操作簡(jiǎn)便,響應(yīng)快速,且儀器價(jià)廉等諸多優(yōu)點(diǎn),而采用上文中提到的諸多方法,因儀器設(shè)備昂貴,操作繁瑣等諸多不便,采用電化學(xué)方法對(duì)EP進(jìn)行分析已引起科研工作者的極大興趣[9]。故本文綜述的是采用電化學(xué)方法檢測(cè)EP等生物小分子近十年的研究進(jìn)展,并基于化學(xué)修飾電極中幾個(gè)重要部分:電極材料,修飾物質(zhì)、修飾方法和修飾膜表面表征方法等方面著重進(jìn)行綜述。
在化學(xué)修飾電極中,作為電極三系統(tǒng)中的工作電極,依據(jù)要求選擇,測(cè)定的物質(zhì)、體系以及方法的選擇,修飾基底可以分為很多種類,在對(duì)腎上腺素等生物小分子的測(cè)定中,文獻(xiàn)報(bào)道的主要有:玻碳電極[10](Glassy carbon electrode,GCE)、碳糊電極[9,12-13](Carbon paste electrode,CPE)、絲網(wǎng)印刷電極[14](Screen Printed Electrodes,SPE)、鉛筆石墨電極[15](Pencil graphite electrodes,PGEs)、金電極[16](Gold electrode)、石墨電極[17](Graphite electrode),石蠟電極[18](Paraffin electrode)、點(diǎn)微傳感器[19](Dot micro-sensors)、不銹鋼微電極[20](Stainless steel microelectrodes)和ITO導(dǎo)電玻璃[21]。其中以玻碳電極和碳糊電極及金電極作為修飾基底的較為普遍。
探討了修飾基底的種類,對(duì)基底的修飾同樣也有很多種,本文探討修飾電極的物質(zhì)主要有聚合物,碳納米材料,離子液體以及金屬離子和金屬納米粒子等。
聚合物薄膜修飾電極具有三維空間結(jié)構(gòu),可提供許多有利的勢(shì)場(chǎng),其活性基的濃度高、電化學(xué)響應(yīng)信號(hào)大,十分有利于電催化,而且具有較大的化學(xué)、機(jī)械和電化學(xué)穩(wěn)定性,制備簡(jiǎn)便而被廣泛研究。馬建國(guó)[22]等人研究了腎上腺素在聚氨酯-β-環(huán)糊精修飾電極上的電化學(xué)行為,線性范圍為4.0×10-6~1.5×10-4mol L-1,檢出限達(dá)到2.5×10-7mol L-1。Balamurugan Devads[23]等人研究了聚姜黃素修飾電極電催化氧化腎上腺素與對(duì)乙酰氨基酚,其線性范圍為4.97×10-6~1.5×10-4mol L-1,檢出限達(dá)到5×10-8mol L-1。Yan Wang[24]等人研究了聚?;撬嵬瑫r(shí)檢測(cè)腎上腺素和多巴胺,腎上腺素線性范圍為2.0×10-6~6.0×10-4mol L-1,檢出限為4×10-7mol L-1。
碳納米材料:F.Valentini[20]等人研究了單壁碳納米管修飾電極在抗壞血酸的共存下選擇測(cè)定腎上腺素,線性范圍為2.0×10-6~1.0×10-4mol L-1,檢出限為2.0×10-6mol L-1。Jacobus Frederick[19]等人研究了基于石墨烯的點(diǎn)微傳感器檢測(cè)尿液中的腎上腺素等生物小分子,腎上腺素的線性范圍為1.0×10-5~1.0×10-2mol L-1,檢出限為1.4×10-5mol L-1。
離子液體:Mohammad Mazloum-Ardakani[25]等人研究了BBNBH離子液體修飾碳糊電極同時(shí)檢測(cè)腎上腺素和對(duì)乙酰氨基酚,其中腎上腺素的線性范圍為1.0×10-6~6.0×10-4mol L-1,檢出限為2.0×10-5mol L-1。
金屬納米粒子:Zhousheng Yang[26]等人研究了納米金自組裝修飾玻碳電極在抗壞血酸共存下對(duì)腎上腺素的選擇性測(cè)定,線性范圍為1.0×10-7~5×10-4mol L-1,檢出限為4.0×10-8mol L-1。Bolade O[27]等人研究了納米金自組裝辛酸酞菁電催化檢測(cè)腎上腺素,線性范圍為2.0×10-6~1.0×10-4mol L-1,檢出限為2×10-7mol L-1。Soundappn Thiagarajan[28]等人鈀納米粒子修飾電極在抗壞血酸共存下檢測(cè)兒茶酚類物質(zhì),腎上腺素線性范圍為1.8×10-5~1.8×10-4mol L-1。
金屬氧化物納米粒子:Mohammad Mazloum-Ardakani[29]等人報(bào)道了二氧化鈦納米粒子修飾碳糊電極電化學(xué)催化腎上腺素等生物小分子,其中腎上腺素檢測(cè)線性范圍為2.0×10-6~1.6×10-3mol L-1,檢出限為4×10-7mol L-1。
除了上述較為普遍的電極修飾物質(zhì)之外,有機(jī)大分子修飾電極亦有相關(guān)研究報(bào)道。Wang Ren[30]等人研究了咖啡酸修飾電極對(duì)腎上腺素、抗壞血酸和尿酸伏安測(cè)定,腎上腺素檢測(cè)線性范圍為2.0×10-6~8.0×10-5mol L-1,檢出限為2×10-7mol L-1。
此外,多種物質(zhì)基于物質(zhì)之間的協(xié)同靜電等作用而進(jìn)行摻雜修飾,有機(jī)染料分子摻雜碳納米材料亦是近年來化學(xué)修飾電極熱門,亦是化學(xué)修飾電極的趨勢(shì)。Prerna Pradhan[9]等人研究了電聚合布魯士藍(lán)摻雜氧化多壁碳納米管修飾碳糊電極及其在藥物與生物樣品中腎上腺素的伏安測(cè)定。線性范圍為8.0×10-7~9.0×10-6mol L-1,1.0×10-5~1.0×10-4mol L-1,檢出限為8×10-7mol L-1。Ying Li,M[31]等人研究了聚堿性紅9摻雜功能化多壁碳納米管作為復(fù)合膜測(cè)定腎上腺素等神經(jīng)遞質(zhì),其中腎上腺素檢出限為7×10-6mol L-1。Tony Thomas[12]等人研究了多壁碳納米管摻雜十二烷基硫酸鈉修飾碳糊電極伏安測(cè)定腎上腺素。線性范圍為1.0×10-7~1.0×10-4mol L-1,檢出限為4.5×10-8mol L-1。Luiz C.S[32]等人報(bào)道了氧化鎳納米粒子和碳納米管摻雜磷酸二鯨蠟酯對(duì)人體體液中腎上腺素及多巴胺伏安檢測(cè)。其中腎上腺素檢測(cè)線性范圍為7.0×10-8~4.8×10-6mol L-1,檢出限為5×10-8mol L-1。Fernando H[33]等人報(bào)道了SiO2復(fù)合氧化石墨烯摻雜銀納米粒子共同檢測(cè)腎上腺素與多巴胺,腎上腺素檢測(cè)線性范圍為2.0×10-6~8.0×10-5mol L-1,檢出限為2.7×10-7mol L-1。
由此得知,復(fù)合摻雜修飾電極相比單物質(zhì)修飾電極,進(jìn)行檢測(cè)腎上腺素所得線性范圍更寬,檢出限更小,進(jìn)而研究的更為廣泛。
3修飾方法
在上文中本文綜述了修飾基底與修飾材料的總類,修飾方法的選擇對(duì)于化學(xué)修飾電極的性能也是非常重要的一部分,不同的修飾物質(zhì)有其對(duì)應(yīng)的修飾方法,基于電化學(xué)傳感器伏安測(cè)定腎上腺素中的文獻(xiàn)報(bào)道中,所用的修飾方法主要有共價(jià)鍵組合法[16]、雙層修飾法[34]、滴涂法[35][36]、自組裝方法[27]、電化學(xué)聚合法[37]、LB技術(shù)[11]、電沉積方法[38]等等。
4表征方法
討論了修飾基底、修飾物質(zhì)和修飾方法之后,修飾電極復(fù)合薄膜對(duì)檢測(cè)物質(zhì)的電化學(xué)性能是研究電化學(xué)傳感器一個(gè)重要部分,本文中提到的電化學(xué)方法主要有,循環(huán)伏安法[34](Cyclic voltammetry,CV)、示差脈沖伏安法[39](Differential pulse voltammetry,DPV)、方波伏安法[40](Square wave voltammetry,SWV)、線性掃描伏安法[41](Linear sweep voltammetry,LSV)、計(jì)時(shí)電流法[10](Chronoamperometry,CA)、電化學(xué)阻抗法[42](Electrochemical Impedance Spectroscopy,EIS)等。
修飾材料與修飾基底表面的結(jié)構(gòu)對(duì)電化學(xué)活性起著很重要的作用,探討修飾電極的表面形貌很有意義,現(xiàn)有的表征方法主要有:掃描電子顯微鏡[41](Scanning electron microscopy,SEM),掃描電化學(xué)顯微鏡[43](Scanning electrochemical microscopy,SECM),投射電子顯微鏡[44](Transmission electron microscopy,TEM),原子力顯微鏡[19](Atomic force microscopy,AFM),能量色散型X射線[9][12](Energy dispersive X-ray,EDX),X-射線衍射光譜[33](X-ray diffraction spectrum,XRD),X射線光電子能譜[35](X-ray photoelectron spectroscopy,XPS)等。
本文綜述了近十年,基于電化學(xué)傳感器伏安測(cè)定腎上腺素等生命小分子的報(bào)道研究,并從修飾基底、修飾物質(zhì)、修飾方法以及表征方法四個(gè)方面進(jìn)行論述。本人在工作中通過采用滴涂法和二步法電聚合方法制備了石墨烯摻雜聚燦爛甲酚藍(lán),并采用循環(huán)伏安法和示差脈沖伏安法以及電交流阻抗法研究探討該復(fù)合膜的電化學(xué)性能以及對(duì)腎上腺素和共存物質(zhì)的電催化響應(yīng)行為。在這一工作中,電極修飾物的表征方法,以及物質(zhì)修飾過程的表征,也是我們實(shí)驗(yàn)研究過程的一個(gè)難題,在接下來的工作中,將借助質(zhì)譜的方法來研究,修飾物在電極表面形成的結(jié)構(gòu)。
[1]M.A.Fotopoulou and P.C.Ioannou.Post-column terbium complexation and sensitized fluorescence detection for the determination of norepinephrine,epinephrine and dopamine using high-performance liquid chromatography[J].Anal Chim Acta,2002,462(2):179-185.
[2]J.Zamecnik.Quantitation of epinephrine,norepinephrine,dopamine,metanephrine and normetanephrine in human plasma using negative ion chemical ionization GC-MS[J].Canadian Journal of Analytical Sciences and Spectroscopy,1997,42(4):106-112.
[3]S.Wei,G.Song and J.Lin.Separation and determination of norepinephrine,epinephrine and isoprinaline enantiomers by capillary electrophoresis in pharmaceutical formulation and human serum[J].J Chromatogr A,2005,1098(1):166-171.
[4]C.E.Cardoso,R.O.R.Martins,C.u.A.S.Telles and R.Q.Aucelio.Sequential Determination of Hydrocortisone and Epinephrine in Pharmaceutical Formulations via Photochemically Enhanced Fluorescence[J].Microchimica Acta,2004,146(1):79-84.
[5]Y.Su,J.Wang and G.Chen.Determination of epinephrine based on its enhancement for electrochemiluminescence of lucigenin[J].Talanta,2005,65(2):531-536.
[6]P.Solich,C.K.Polydorou,M.Koupparis and C.Efstathiou.Automated flow-injection spectrophotometric determination of catecholamines(epinephrine and isoproterenol)in pharmaceutical formulations based on ferrous complex formation[J].Journal of pharmaceutical and biomedical analysis,2000,22(5):781-789.
[7]F.Valentini,E.Ciambella,V.Conte,L.Sabatini,N.Ditaranto,F(xiàn).Cataldo,G.Palleschi,M.Bonchio,F(xiàn).Giacalone,Z.Syrgiannis and M.Prato.Highly selective detection of Epinephrine at oxidized Single-Wall Carbon Nanohorns modified Screen Printed Electrodes(SPEs)[J].Biosens Bioelectron,2014,59 94-98.
[8]董紹俊,車廣禮 and 謝遠(yuǎn)武,化學(xué)修飾電極,科學(xué)出版社,北京,2003,p.273.
[9]P.Pradhan,R.J.Mascarenhas,T.Thomas,I.N.N.Namboothiri,O.J.DSouza and Z.Mekhalif.Electropolymerization of bromothymol blue on carbon paste electrode bulk modified with oxidized multiwall carbon nanotubes and its application in amperometric sensing of epinephrine in pharmaceutical and biological samples[J].J Electroanal Chem,2014,732 30-37.
[10]A.A.Ensafi,B.Rezaei,S.Z.M.Zare and M.Taei.Simultaneous determination of ascorbic acid,epinephrine,and uric acid by differential pulse voltammetry using poly(3,3′-bis[N,N-bis(carboxymethyl)aminomethyl]-o-cresolsulfonephthalein)modified glassy carbon electrode[J].Sensor Actuat B-Chem,2010,150(1):321-329.
[11]L.Zou,Y.Li and B.Ye.Voltammetric sensing of guanine and adenine using a glassy carbon electrode modified with a tetraoxocalix[2]arene[2]triazine Langmuir-Blodgett film[J].Microchimica Acta,2011,173(3-4):285-291.
[12]T.Thomas,R.J.Mascarenhas,D.S.OJ,S.D etriche,Z.Mekhalif and P.Martis.Pristine multi-walled carbon nanotubes/SDS modified carbon paste electrode as an amperometric sensor for epinephrine[J].Talanta,2014,125 352-360.
[13]M.Mazloum Ardakani,S.H.Ahmadi,Z.S.Mahmoudabadi,A.Khoshroo and K.T.Heydar.Electrochemical and catalytic investigations of epinephrine,acetaminophen and folic acid at the surface of titanium dioxide nanoparticle-modified carbon paste electrode[J].Ionics,2014,20(12):1757-1765.
[14]Y.Wang,S.Wang,L.Tao,Q.Min,J.Xiang,Q.Wang,J.Xie,Y.Yue,S.Wu,X.Li and H.Ding.A disposable electrochemical sensor for simultaneous determination of norepinephrine and serotonin in rat cerebrospinal fluid based on MWNTs-ZnO/chitosan composites modified screen-printed electrode[J].Biosens Bioelectron,2014,65 31-38.
[15]R.N.Goyal and S.Bishnoi.Simultaneous determination of epinephrine and norepinephrine in human blood plasma and urine samples using nanotubes modified edge plane pyrolytic graphite electrode[J].Talanta,2011,84(1):78-83.
[16]Z.Moghadam,S.M.Ghoreishi,M.Behpour and M.Motaghedifard.A Highly Sensitive Nanostructure-Based Surface Covalently Modification of Gold for Electrochemical Sensing of Epinephrine in Presence of Uric Acid and Acetaminophen[J].J Electrochem Soc,2012,160(2):H126-H131.
[17]N.F.Atta,S.M.Ali,E.H.El-Ads and A.Galal.The Electrochemistry and Determination of Some Neurotransmitters at SrPdO3 Modified Graphite Electrode[J].J Electrochem Soc,2013,160(7):G3144-G3151.
[18]F.C.Moraes,D.L.C.Golinelli,L.H.Mascaro and S.A.S.Machado.Determination of epinephrine in urine using multi-walled carbon nanotube modified with cobalt phthalocyanine in a paraffin composite electrode[J].Sensor Actuat B-Chem,2010,148(2):492-497.
[19]J.F.Van Staden,R.Georgescu,R.I.Stefan van Staden and I.Calinescu.Graphene Based Dot Microsensors Used for the Screening of Urine for Adenine,Guanine and Epinephrine[J].J Electrochem Soc,2013,161(2):B3014-B3022.
[20]F.Valentini,G.Palleschi,E.L.Morales,S.Orlanducci,E.Tamburri and M.L.Terranova.Functionalized Single-Walled Carbon Nanotubes Modified Microsensors for the Selective Response of Epinephrine in Presence of Ascorbic Acid[J].Electroanalysis,2007,19(7-8):859-869.
[21]R.N.Goyal and B.Agrawal.Ag ion irradiated based sensor for the electrochemical determination of epinephrine and 5-hydroxytryptamine in human biological fluids[J].Anal Chim Acta,2012,743 33-40.
[22]馬建國(guó),彭道鋒,康文and包道龍.腎上腺素在聚氨基-β-環(huán)糊精修飾電極上的電化學(xué)行為[J].理化檢驗(yàn),2007,(01):1-4.
[23]B.Devadas,M.Rajkumar and S.M.Chen.Electropolymerization of curcumin on glassy carbon electrode and its electrocatalytic application for the voltammetric determination of epinephrine and p-acetoaminophenol[J].Colloids Surf B Biointerfaces,2014,116 674-680.
[24]Y.Wang and Z.Z.Chen.A novel poly(taurine)modified glassy carbon electrode for the simultaneous determination of epinephrine and dopamine[J].Colloid Surface B,2009,74(1):322-327.
[25]M.Mazloum Ardakani,H.Beitollahi,M.A.Mohseni,A.Benvidi,H.Naeimi,M.Nejati Barzoki and N.Taghavinia.Simultaneous determination of epinephrine and acetaminophen concentrations using a novel carbon paste electrode prepared with 2,2'-[1,2 butanediylbis(nitriloethylidyne)]-bis-hydroquinone and TiO2nanoparticles[J].Colloids Surf B Biointerfaces,2010,76(1):82-87.
[26]Z.Yang,G.Hu,X.Chen,J.Zhao and G.Zhao.The nano-Au self-assembled glassy carbon electrode for selective determination of epinephrine in the presence of ascorbic acid[J].Colloids Surf B Biointerfaces,2007,54(2):230-235.
[27]B.O.Agboola and K.I.Ozoemena.Efficient Electrocatalytic Detection of Epinephrine at Gold Electrodes Modified with Self-Assembled Metallo-Octacarboxyphthalocyanine Complexes[J].Electroanalysis,2008,20(15):1696-1707.
[28]S.Thiagarajan,R.F.Yang and S.M.Chen.Palladium nanoparticles modified electrode for the selective detection of catecholamine neurotransmitters in presence of ascorbic acid[J].Bioelectrochemistry,2009,75(2):163-169.
[29]M.Mazloum Ardakani,A.Talebi,H.Naeimi and M.A.Sheikh Mohseni.Electrocatalysis of epinephrine by TiO2nanoparticles and 2,2 '-[1,7-hepthandiylbis(nitriloethylidyne)]-bis-hydroquinone modified carbon paste electrode[J].Analytical Methods,2011,3(10):2328-2333.
[30]W.Ren,H.Q.Luo and N.B.Li.Simultaneous voltammetric measurement of ascorbic acid,epinephrine and uric acid at a glassy carbon electrode modified with caffeic acid[J].Biosens Bioelectron,2006,21(7):1086-1092.
[31]Y.Li,M.A.Ali,S.M.Chen,S.Y.Yang,B.S.Lou and F.M.Al Hemaid.Poly(basic red 9)doped functionalized multi-walled carbon nanotubes as composite films for neurotransmitters biosensors[J].Colloid Surface B 2014,118 133-139.
[32]L.C.Figueiredo Filho,T.A.Silva,F(xiàn).C.Vicentini and O.Fatibello Filho.Simultaneous voltammetric determination of dopamine and epinephrine in human body fluid samples using a glassy carbon electrode modified with nickel oxide nanoparticles and carbon nanotubes within a dihexadecylphosphate film[J].Analyst,2014,139(11):2842-2849.
[33]T.C.C.Fernando H.Cincotto,Anderson M.Campos,and R.L.a.S.e.A.S.Machado.Simultaneous determination of epinephrine and dopamine by electrochemical reduction on the hybrid material SiO2/graphene oxide decorated with Ag nanoparticles[J].Analyst,2014,139 4634.
[34]G.R.Xu,X.h.Qi,F(xiàn).Yang,J.J.Lee,M.L.Xu,Y.P.Zhang and S.Kim.Double Modification of Electrode Surface for the Selective Detection of Epinephrine and Its Application to Flow Injection Amperometric Analysis[J].Electroanalysis,2009.
[35]T.C.C.Fernando H.Cincotto,Anderson M.Campos,and R.L.a.S.A.S.Machado.Simultaneous determination of epinephrine and dopamine by electrochemical reduction on the hybrid material SiO2/graphene oxide decorated with Ag nanoparticles[J].Analyst,2014,139 4636.
[36]P.S.Dorraji and F.Jalali.Novel sensitive electrochemical sensor for simultaneous determination of epinephrine and uric acid by using a nanocomposite of MWCNTs-chitosan and gold nanoparticles attached to thioglycolic acid[J].Sensor Actuat B-Chem,2014,200 251-258.
[37]G.J.W.Cheng,Y.Zhang z.Electrochemical Characteristics of Poly(o-Aminobenzoic Acid)Modified Glassy-Carbon Electrode and Its Electrocatalytic Activity towards Oxidation of Epinephrine[J].Russ J Electrochem,2005,41(9):1059-1065.
[38]N.F.Atta,M.F.El-Kady and A.Galal.Simultaneous determination of catecholamines,uric acid and ascorbic acid at physiological levels using poly(N-methylpyrrole)/Pd-nanoclusters sensor[J].Anal Biochem,2010,400(1):78-88.
[39]S.Shahrokhian,M.Ghalkhani and M.K.Amini.Application of carbon-paste electrode modified with iron phthalocyanine for voltammetric determination of epinephrine in the presence of ascorbic acid and uric acid[J].Sensor Actuat B-Chem,2009,137(2):669-675.
[40]H.K.M.Hadi Beitollahi,and Hojatollah Khabazzade.Nanomolar and Selective Determination of Epinephrine in the Presence of Norepinephrine Using Carbon Paste Electrode Modified with Carbon Nanotubes and Novel 2-(4-Oxo-3-phenyl-3,4-dihydro-quinazolinyl)-N-phenyl-hydrazinecarbothioamide [J].Anal Chem,2008,80 9848-9851.
[41]N.F.Atta,A.Galal and E.H.El Ads.A novel sensor of cysteine self-assembled monolayers over gold nanoparticles for the selective determination of epinephrine in presence of sodium dodecyl sulfate[J].Analyst,2012,137(11):2658-2668.
[42]L.Zou,Y.Li,S.Cao and B.Ye.Gold nanoparticles/polyaniline Langmuir-Blodgett Film modified glassy carbon electrode as voltammetric sensor for detection of epinephrine and uric acid[J].Talanta,2013,117 333-337.
[43]Y.Umasankar,S.Thiagarajan and S.M.Chen.Nanocomposite of functionalized multiwall carbon nanotubes with nafion,nano platinum,and nano gold biosensing film for simultaneous determination of ascorbic acid,epinephrine,and uric acid[J].Anal Biochem,2007,365(1):122-131.
[44]F.Cui and X.Zhang.Electrochemical sensor for epinephrine based on a glassy carbon electrode modified with graphene/gold nanocomposites[J].J Electroanal Chem,2012,669 35-41.
The Research Progress of Determination of Epinephrine Biological Small Molecules Based on the Electrochemical Biosensing
DING Mang WANG Min WU Liang HUANG Zhi-wei
(CollegeofChemistry,BiologyandMaterialScience,EastChinaUniversityofTechnology,JiangxiNanchang330013)
Epinephrine(EP,adrenaline)is an important catecholamine neurotransmitters released by the adrenal medulla endocrine,gradually synthesized by L-phenylalanine and L-tyrosine in human system.Its importance lies in the transmission of information among the mammalian and humans central nervous system.Hence,changes in concentration of EP in the body can result in many problems.Therefore,development of a simple method for EP determination and quantification is of great importance for food science,life science and clinical medicine.In this paper,the research progress of determination of EP and the coexistence biological small molecules based on the electrochemical biosensing has been reviewed,and will mainly review the following four aspects:the modified substrate,modified material,modification method as well as the characterization.
Epinephrine;Electrochemical biosensor;Determination;Progress