強(qiáng)明閃,江靜華,2,宋 丹,3,莊麗娟,馬愛斌,2
(1.河海大學(xué) 力學(xué)與材料學(xué)院,南京210098;2.江蘇省先進(jìn)微納米材料及裝備協(xié)同中心,南京210094;
3.河海大學(xué) 南通海洋與近海工程研究院,南通226300)
鎂合金被譽(yù)為“21世紀(jì)的綠色工程材料”,其具有密度小、比強(qiáng)度和比剛度高、電磁屏蔽性能好、導(dǎo)熱性能好、減震性能高等諸多優(yōu)點(diǎn)[1],因而被廣泛應(yīng)用于電子、汽車、航空、航天等領(lǐng)域[2]。但是,鎂合金標(biāo)準(zhǔn)電極電位較低,化學(xué)穩(wěn)定性較差,容易在介質(zhì)環(huán)境中發(fā)生腐蝕破壞[3-4],嚴(yán)重影響了其工業(yè)應(yīng)用及產(chǎn)業(yè)化。鎂合金構(gòu)件在使用過程中,不僅常暴露于外界介質(zhì)環(huán)境下,還往往受到一定的外加應(yīng)力作用,這使得鎂合金極易發(fā)生應(yīng)力腐蝕開裂(SCC)。鎂合金在工業(yè)、海洋大氣、氯化鈉及鉻酸鉀溶液中均有著明顯的應(yīng)力腐蝕開裂傾向[5-6]。通常評(píng)價(jià)鎂合金應(yīng)力腐蝕開裂的方法主要有恒應(yīng)變率測(cè)試法(constant extension rate test,CERT)、線性應(yīng)力增加測(cè)試 法(linearly increasing stress test,LIST)等[7]。同時(shí),鎂合金與其他金屬件偶接使用時(shí)極易發(fā)生電偶腐蝕[8],因此其應(yīng)力腐蝕開裂往往伴隨著其他的腐蝕形式,這使得對(duì)鎂合金的應(yīng)力腐蝕開裂機(jī)理的認(rèn)知發(fā)生困難。為了進(jìn)一步認(rèn)識(shí)鎂合金應(yīng)力腐蝕開裂的過程和機(jī)理,筆者對(duì)前人的各項(xiàng)研究成果進(jìn)行了綜述,結(jié)合當(dāng)前高強(qiáng)韌超細(xì)晶鎂合金的研發(fā),提出了降低鎂合金應(yīng)力腐蝕開裂敏感性的主要途徑。
近些年來,有關(guān)鎂合金應(yīng)力腐蝕開裂的機(jī)制研究取得一定進(jìn)展。但由于SCC過程復(fù)雜且影響因素眾多,有關(guān)鎂合金應(yīng)力腐蝕開裂的機(jī)制尚難達(dá)成一致認(rèn)識(shí),其中得到較多學(xué)者認(rèn)同的有陽極溶解-應(yīng)力作用機(jī)制和氫致脆化-應(yīng)力作用機(jī)制。
鎂合金應(yīng)力腐蝕開裂的發(fā)生往往包括電化學(xué)、應(yīng)力導(dǎo)致的膜層破裂的過程,形成“大陰極、小陽極”的狀態(tài),從而產(chǎn)生很高的瞬時(shí)電流密度。腐蝕的過程從撕裂的薄膜的滑移臺(tái)階開始,進(jìn)而會(huì)誘發(fā)基面位錯(cuò)以及位錯(cuò)面上點(diǎn)蝕的形成。表面膜由于點(diǎn)蝕作用被穿透[9],陽極溶解就會(huì)加速進(jìn)行,蝕孔中間的材料發(fā)生韌性斷裂。同時(shí)韌性斷裂的金屬材料會(huì)誘發(fā)新的位錯(cuò),從而促使開裂尖端的進(jìn)一步溶解。鎂合金內(nèi)部的殘余應(yīng)力導(dǎo)致基面滑移,劇烈的電化學(xué)腐蝕作用極易使蝕孔產(chǎn)生裂紋形核,外加應(yīng)力的作用促使裂紋擴(kuò)展。M.F.He等[10]研究認(rèn)為,在鎂合金表面形成多層Mg-Al金屬間化合物膜層,在快速冷卻過程中,由于膜層與基體的熱膨脹系數(shù)不同導(dǎo)致膜層裂紋產(chǎn)生,降低其耐蝕性。A.N.Chamos等[11]認(rèn)為,由于腐蝕的作用,AZ31鎂合金表面形成點(diǎn)蝕,產(chǎn)生應(yīng)力集中,促使裂紋的產(chǎn)生及長(zhǎng)大。
在腐蝕電化學(xué)中,鎂合金會(huì)發(fā)生析氫腐蝕[12],基體在應(yīng)力作用下會(huì)產(chǎn)生氫濃度梯度,并在開裂尖端處富集。在較低的應(yīng)變速率下,一旦氫濃度達(dá)到臨界值,氫化物就會(huì)在開裂尖端沉淀,誘發(fā)脆變[13]。大多數(shù)研究表明,氫元素的擴(kuò)散促成了材料的脆化[14-15]。氫元素往往聚集于材料的缺陷處[16-17],造出了材料基體原子鍵的削弱,同時(shí)氫易在第二相處形成氫化物,在外加應(yīng)力的作用下容易發(fā)生開裂[18]。同時(shí),開裂尖端的應(yīng)變集中導(dǎo)致了開裂尖端的塑性變形,阻止形成二次鈍化膜,使開裂尖端一直處于活性狀態(tài)。V.S.Raja等[19]分別在Mg(OH)2飽和的0.01,0.1mol/L NaCl溶液中,研究熱軋Mg-Mn鎂合金時(shí)發(fā)現(xiàn),氯化物破壞了膜層,引起了點(diǎn)蝕和合金的氫脆傾向,裂紋通過點(diǎn)蝕萌生,并在氫的作用下以穿晶形式長(zhǎng)大。C.Jian等[20]以慢應(yīng)變速率在0.1mol/L Na2SO4溶液中研究鎂合金的應(yīng)力腐蝕開裂性能,結(jié)果表明氫脆是引起AZ91鎂合金應(yīng)力腐蝕開裂的主要機(jī)理。R.G.Song等[21]研究發(fā)現(xiàn),ZE41鎂合金在0.01mol/L NaCl溶液中以10-6s-1的應(yīng)變速率拉伸試驗(yàn),具有一定的應(yīng)力腐蝕敏感性,主要是陽極溶解及氫脆的共同作用。
研究表明,純鎂并不發(fā)生應(yīng)力腐蝕開裂,不同合金元素對(duì)鎂合金的應(yīng)力腐蝕開裂敏感性的影響不同。含鋯的鎂合金一般不會(huì)發(fā)生應(yīng)力腐蝕開裂;Mg-Mn系鎂合金一般在潮濕、含氯化物、鉻酸鹽等環(huán)境中才會(huì)發(fā)生應(yīng)力腐蝕開裂。但由于形成的AlMnFe相對(duì)于基體相化學(xué)電極電位更高,AM60鎂合金微觀腐蝕形貌更加局部化;鋅會(huì)誘發(fā)鎂合金的應(yīng)力腐蝕開裂。N.Winzer等[22]研究表明,由于鋅及第二相的聚集作用,影響了氫在基體中的擴(kuò)散速率,AZ91應(yīng)力腐蝕開裂的敏感速率(1.6~12)×10-9m/s要高于AM30(3.6~9.3)×10-10m/s)。鐵在鎂合金中的危害性通常最大,形成的FeAl彌散在晶粒內(nèi)構(gòu)成陰極,在應(yīng)力腐蝕條件下易形成腐蝕電池;鎂合金中鋁含量在1.5%~6%(質(zhì)量分?jǐn)?shù))時(shí),其應(yīng)力腐蝕的敏感性隨鋁含量增加而增加。研究表明第二相在Mg-Al系鎂合金中的穿晶應(yīng)力腐蝕開裂扮演著重要的角色[23]。Mg-Al系及Mg-Al-Zn系鎂合金有著較高的敏感性,由于此合金易形成非連續(xù)的不均勻第二相Mg17Al12,它具有較基體更正的氫過電位,從而充當(dāng)陰極造成基體腐蝕;稀土元素能夠抑制鋁在晶界的偏聚(稀土的團(tuán)聚效應(yīng)使之與稀土形成了稀土化合物),從而降低第二相Mg17Al12的含量,提高鎂合金的應(yīng)力腐蝕開裂抗力。M.B.Kannan等[24]研究發(fā)現(xiàn),稀土元素能夠顯著提高EV31A的抗應(yīng)力腐蝕開裂性能。F.Mert等[25]研究發(fā)現(xiàn),在高壓鑄造鎂合金AM50中添加鈰元素,形成Al11Ce3相,降低了第二相Mg17Al12的含量,同時(shí)凈化了合金,提高了其耐蝕性。由此可見,選擇合適的合金成分,對(duì)降低鎂合金應(yīng)力腐蝕開裂敏感性意義重大。
鎂合金對(duì)不同環(huán)境及環(huán)境中的不同離子的應(yīng)力腐蝕開裂敏感性不同。N.Winzer等[26]發(fā)現(xiàn),AZ91鎂合金在蒸餾水中以3×10-8/s的應(yīng)變率發(fā)生應(yīng)力腐蝕開裂,主要包括MgH2的形核及長(zhǎng)大,臨界應(yīng)力時(shí)MgH2的突然斷裂,以及斷裂后的MgH2的分解等。M.B.Kannan等[27]對(duì)激光焊接的AZ31鎂合金進(jìn)行應(yīng)力腐蝕開裂行為研究表明,在腐蝕環(huán)境和空氣中,材料的失效分別發(fā)生在焊接熔合邊界區(qū)及基體區(qū)。通常實(shí)驗(yàn)室采用3.5%NaCl+2%K2Cr2O7的溶液加速測(cè)試鎂合金的應(yīng)力腐蝕開裂敏感性。Cr2O7-2促使表面的鈍化,Cl-則會(huì)破壞局部鈍化膜,兩者的配比決定了鎂合金表面成膜、膜局部破壞而產(chǎn)生較大腐蝕電流的局部腐蝕的可能性。Cl-加速電化學(xué)的進(jìn)程,在含有Cl-等的腐蝕環(huán)境里,鎂合金表現(xiàn)出明顯的應(yīng)力腐蝕敏感性。一般而言,F(xiàn)-對(duì)鎂合金具有緩蝕作用,高濃度的F-可促進(jìn)修復(fù)破損的膜層,但鎂合金在KHF2溶液中則有應(yīng)力腐蝕開裂傾向。A.Dhanapal等[28]發(fā)現(xiàn),攪拌摩擦焊接的細(xì)晶AZ61A鎂合金在堿性環(huán)境中具有更好的耐蝕性。pH大于12時(shí),鎂合金通常不會(huì)發(fā)生應(yīng)力腐蝕開裂,這是由于鎂合金表面生成的致密的氫氧化物膜的保護(hù)作用。L.Choudhary等[29]研究發(fā)現(xiàn),在低應(yīng)變速率下,AZ91D鎂合金在體液環(huán)境中具有一定的應(yīng)力腐蝕開裂敏感性。
鎂合金在加工制造、焊接、裝配中均會(huì)留有一定的殘余應(yīng)力,殘余應(yīng)力的存在會(huì)降低材料承受的外界載荷,引起裂紋的萌生、擴(kuò)展。一般應(yīng)變集中在開裂尖端處,阻止了開裂尖端處的二次鈍化,促進(jìn)陽極的快速溶解。材料表面存在周向溝痕或疲勞裂紋時(shí),易引起應(yīng)力集中,提高材料的應(yīng)力腐蝕開裂敏感性[30]。高內(nèi)應(yīng)力促使膜層開裂,導(dǎo)致材料表面產(chǎn)生點(diǎn)蝕。裂紋的擴(kuò)展速度與應(yīng)力場(chǎng)強(qiáng)度因子存在著一定的關(guān)系[31]。鎂合金不存在明顯的應(yīng)力門檻值,即在應(yīng)力狀態(tài)下,無論是表面產(chǎn)生點(diǎn)蝕,還是因位錯(cuò)運(yùn)動(dòng)、晶格畸變?cè)斐傻谋砻婺て屏丫鶗?huì)產(chǎn)生應(yīng)力腐蝕開裂傾向。應(yīng)變速率對(duì)鎂合金的應(yīng)力腐蝕開裂也有著較大的影響,不同應(yīng)變速率下對(duì)應(yīng)的機(jī)理亦不相同[32],高應(yīng)變速率對(duì)應(yīng)著AIDE(adsorption induced dislocation emission),中應(yīng)變速率對(duì)應(yīng)著HELP(hydrogen enhanced localized plasticity),低應(yīng)變速率對(duì)應(yīng)著HEDE(hydrogen enhanced decohesion)和DHC(delayed hydride cracking)。應(yīng)變大量集中、堆積于滑移面附近,促使了該位置的鎂的溶解,通常表現(xiàn)為自腐蝕電流的升高、腐蝕速率加快。腐蝕電流的提高破壞了表面膜層,導(dǎo)致局部膜破裂。鎂合金的塑性較差,過大的應(yīng)變速率則導(dǎo)致電化學(xué)作用減弱,鎂合金直接發(fā)生塑性斷裂。
一般而言,鎂合金鍛件比鑄件有著更高的應(yīng)力腐蝕開裂敏感性,快速凝固制件則比鑄件敏感性要小。室溫軋制會(huì)產(chǎn)生較多的殘余應(yīng)力。G.R.Argade等[33]研究發(fā)現(xiàn),通過攪拌摩擦工藝制備的超細(xì)晶AZ31鎂合金在3.5%NaCl溶液中,以10-6s-1的慢應(yīng)變速率拉伸,由于吸氫作用應(yīng)力腐蝕敏感性較高。Y.K.Zhang等[34-35]研究發(fā)現(xiàn),通過激光沖擊工藝在AZ31B鎂合金表面獲得超細(xì)晶結(jié)構(gòu)層,能夠阻滯其應(yīng)力腐蝕開裂的開啟及生長(zhǎng)。P.B.Srinivasan等[36-37]發(fā)現(xiàn)AZ61鎂合金焊縫區(qū)比基體有著更高的應(yīng)力腐蝕敏感性,應(yīng)變率由10-6s-1降至10-7s-1時(shí),其敏感性增大。低溫退火可降低鎂合金制件的殘余應(yīng)力,但往往會(huì)促使材料內(nèi)部氫的聚集,增大氫脆的傾向。雖然鎂合金具有較高的導(dǎo)熱性能,但焊接、熱處理時(shí)若冷卻不均,熱應(yīng)力的作用依然會(huì)在材料內(nèi)留下一定的殘余應(yīng)力。適當(dāng)?shù)臒崽幚頃?huì)均勻和細(xì)化組織,同時(shí)形成均勻彌散分布的金屬間化合物,提高鎂合金抗應(yīng)力腐蝕開裂的能力。
添加有益元素,提高冶金質(zhì)量,降低有害元素的含量,提升鎂合金的純凈度,是應(yīng)對(duì)鎂合金應(yīng)力腐蝕開裂敏感性的最為有效的方式[38-39]。添加鋯元素可以顯著降低鎂合金的應(yīng)力腐蝕開裂敏感性[40],但成本會(huì)隨之上升。加入稀土元素,B.S.Padekar[41]發(fā)現(xiàn),分別在蒸餾水及Mg(OH)2飽和的0.01,0.1mol/L的NaCl溶液中,在慢應(yīng)變速率下EV31A較AZ91E的應(yīng)力腐蝕敏感性更低;在較低的恒拉應(yīng)力載荷下,EV31A具有抗應(yīng)力腐蝕開裂性能。張建新[42]在Mg-5Al-0.8Zn-0.5Mn合金中添加稀土釔元素,獲得具有細(xì)小均勻的平均晶粒尺寸為35μm左右的鑄態(tài)組織,當(dāng)釔含量為1.0%時(shí),合金的耐蝕性較好。Mg-Mn系鎂合金的性能相對(duì)較好,只有在高應(yīng)力或特定環(huán)境下才發(fā)生應(yīng)力腐蝕開裂。Y.l.Cheng等[43]認(rèn)為,AM60鎂合金中錳能形成第二相AlMnFe,降低了鎂合金中有害元素鐵的含量,改善了鎂合金的微觀結(jié)構(gòu),提高了耐蝕性。李肖豐等[44]在AZ61-1.2Y鎂合金添加1%鈣,晶粒得到明顯細(xì)化,組織和成分更加均勻,腐蝕速率較低。
降低鎂合金表面膜層的缺陷,有利于提高其耐蝕性能[45-46]。通常在鎂合金表面形成鍍層、涂層、表面轉(zhuǎn)化膜等[47-48]隔絕外界環(huán)境介質(zhì),以進(jìn)行有效的保護(hù)。在各種鎂合金表面膜層中,鉻酸鹽的防護(hù)性能比較好,但由于高價(jià)鉻對(duì)人體具有一定的毒性,因而其應(yīng)用受到了限制[49]。P.B.Srinivasan等[50]發(fā)現(xiàn)雖然采用等離子體電解氧化不能完全降低AZ61鎂合金焊件應(yīng)力腐蝕開裂敏感性,但卻能有效提高其全面腐蝕和點(diǎn)蝕性能。C.Yan等[51]采用等離子噴涂在AZ91D鎂合金表面制備NiCoCrAlY-Al2O3-ZrO2梯度涂層,該涂層及其層間緊密、致密,微裂紋和孔洞少,自腐蝕電流為1.531×10-7A,顯示了出色的耐蝕性能。J.Choi等[52]研究發(fā)現(xiàn),通過在AZ31鎂合金表面形成含硅的DLC膜,可以提高其腐蝕電位,進(jìn)而提高其耐腐蝕性能,并且隨著DLC膜層的含硅量提高,其耐蝕性能也隨之提高。M.Laleh等[53]對(duì)AZ91D鎂合金進(jìn)行微弧氧化處理,并對(duì)多孔的膜層浸入含鈰溶液中進(jìn)行封孔處理,顯著提高了其耐蝕性能。張璇等[54]將TiO2粉加入已優(yōu)化的Na2SiO4-Na3PO4復(fù)合體系溶液中,對(duì)AZ91D鎂合金表面進(jìn)行了微弧氧化處理。結(jié)果表明,鎂合金表面陶瓷膜變得更加密實(shí),孔洞減少,耐蝕性得到提高。農(nóng)登等[55]將AZ91鎂合金以磷酸鹽-高錳酸鹽為基礎(chǔ)的無鉻轉(zhuǎn)化工藝優(yōu)化試驗(yàn)表明,ZnSO4和NaF的濃度分別為5g/L和1g/L,pH為4時(shí),轉(zhuǎn)化膜的膜層厚度、致密性、結(jié)合力等綜合性能較好,耐蝕性顯著提高。孫術(shù)發(fā)等[56]采用微細(xì)電火花工藝在稀土鎂合金表面獲得變質(zhì)層,試驗(yàn)表明該變質(zhì)層改善了稀土鎂合金的耐蝕性能。張志彬等[57]采用高速電弧噴涂在AZ91鎂合金基體表面分別制備出Al-Ni-Y-Co、Al-Ni-Mm-Fe非晶納米晶復(fù)合涂層,涂層致密,孔隙少,電化學(xué)試驗(yàn)結(jié)果表明,該兩種涂層的耐蝕性均優(yōu)于傳統(tǒng)的Al-RE涂層和AZ91鎂合金基體。王雅萍等[58]在AZ91D鎂合金表面富鎂涂層中添加氧化鈰,發(fā)現(xiàn)能降低AZ91D鎂合金表面的陽極腐蝕電流密度,提高鎂合金的腐蝕電位,有利于富鎂涂層對(duì)鎂合金基體的陰極保護(hù)作用。劉妍等[59]在硼酸鹽電解液中加入適量的對(duì)苯二甲酸,對(duì)AZ91D鎂合金進(jìn)行陽極氧化。氧化膜表面致密、光滑,膜厚度略有降低,與鎂合金基底結(jié)合更為緊密,耐蝕性顯著提高。冒國兵等[60]以堿式碳酸鎳為主鹽,以NaH2PO2為還原劑,在鑄態(tài)AM60B鎂合金表面化學(xué)鍍鎳,在pH 6.5時(shí)得到的鍍鎳層耐蝕性最好,自腐蝕電位最高為-0.9V。
合適的熱處理工藝可以降低鎂合金內(nèi)部的殘余應(yīng)力。降低鎂合金裝配時(shí)產(chǎn)生的裝配應(yīng)力,減少焊接過程中可能產(chǎn)生的焊接殘余熱應(yīng)力,通過低溫退火的辦法來消除殘余應(yīng)力。優(yōu)化結(jié)構(gòu)設(shè)計(jì),避免因應(yīng)力集中而導(dǎo)致膜層破壞引起應(yīng)力腐蝕開裂。包括受載應(yīng)力、制造及裝配應(yīng)力、殘余應(yīng)力等的應(yīng)力之和應(yīng)低于鎂合金屈服應(yīng)力的50%[61-62]。
組織超細(xì)化被公認(rèn)為實(shí)現(xiàn)鎂合金強(qiáng)韌化的有效手段??赏ㄟ^變質(zhì)處理獲得細(xì)化的晶粒組織,采用等通道轉(zhuǎn)角擠壓(equal channel angular pressing,ECAP)等大塑形變形加工工藝獲得整體超細(xì)晶組織[63-64],或?qū)︽V合金表面進(jìn)行納米化等來提高鎂合金的耐蝕性,進(jìn)而降低鎂合金應(yīng)力腐蝕開裂的敏感性。對(duì)于Mg-Al系鎂合金,通??梢圆扇∽冑|(zhì)處理,如加碳變質(zhì)、過熱變質(zhì)及加碳酸鈣變質(zhì)等。朱瓊等[65]研究發(fā)現(xiàn),添加2%RE(Gd,Nd)的AZ80鎂合金經(jīng)擠壓后,析出相阻礙再結(jié)晶晶粒長(zhǎng)大以及粒子激發(fā)形核再結(jié)晶,共同起到了細(xì)化組織的作用。石磊等[66]通過通道螺旋轉(zhuǎn)角擠壓(equal channel helix angular extrusion,ECHE)顯著細(xì)化了AZ31鎂合金晶粒,通過晶粒破碎和動(dòng)態(tài)再結(jié)晶,獲得了均勻的3~5μm晶粒。詹美燕等[67]在350℃對(duì)AZ31鎂合金進(jìn)行累積疊軋焊變形,經(jīng)過3道次變形后獲得了平均尺寸為2.18μm的晶粒,進(jìn)一步增加道次不會(huì)顯著細(xì)化晶粒,但微觀組織會(huì)更加均勻。金亞旭等[68]制備K2Ti6O13/AZ91D鎂基復(fù)合材料,細(xì)化了合金顯微組織,降低了β相體積分?jǐn)?shù),微電偶腐蝕得到抑制,提高了其耐蝕性能。通過熱處理,調(diào)整雜質(zhì)元素的成分偏析及晶界偏析,改變第二相的大小、形狀、數(shù)量、分布等,減少甚至消除第二相的陰極作用,降低晶間腐蝕的傾向,提高鎂合金的抗應(yīng)力腐蝕開裂性能。D.Q.Wan研究發(fā)現(xiàn),Mg-10%Al-3%Ce鎂合金經(jīng)T4熱處理后耐蝕性能顯著提高,但經(jīng)T6熱處理后耐蝕性有所降低。
鎂合金的應(yīng)力腐蝕開裂是機(jī)械-電化學(xué)共同作用的十分復(fù)雜的過程,是鎂合金材料、外界環(huán)境、應(yīng)力共同作用的結(jié)果。合金元素、腐蝕環(huán)境、應(yīng)力應(yīng)變、加工工藝是影響鎂合金應(yīng)力腐蝕開裂敏感性的重要因素。添加稀土元素可細(xì)化晶粒,均勻化組織,提高基體的腐蝕電位;表面處理是應(yīng)對(duì)鎂合金應(yīng)力腐蝕開裂最常見最主要的方式之一,需采取更為合適的工藝以及更為優(yōu)化的工藝參數(shù),改善表面膜層的微觀形貌、提高致密度、降低孔隙率、提高與基體的結(jié)合強(qiáng)度;合適的熱處理配合大塑性變形等組織超細(xì)化加工工藝不僅能降低消除加工留下的殘余應(yīng)力,更能優(yōu)化第二相的大小、數(shù)量、形狀和分布,獲得超細(xì)晶粒和均勻的組織。因此,可通過采取提高鎂合金的成分品質(zhì)、進(jìn)行表面處理、降低及消除應(yīng)力、優(yōu)化組織等單一或綜合措施來提高鎂合金的抗應(yīng)力腐蝕開裂性能。
[1]ZENG R C,KAINER K U,BLAWERT C,et al.Corrosion of an extruded magnesium alloy ZK60component-the role of microstructural features[J].Journal of Alloys and Compounds,2011,509(13):4462-4469.
[2]GUO X W,CHANG J W,HE S M,et al.Investigation of corrosion behaviors of Mg-6Gd-3Y-0.4Zr alloy in NaCl aqueous solutions[J].Electrochimica Acta,2007,52(7):2570-2579.
[3]GAO J C,WU S,QIAO L Y,et al.Corrosion behavior of Mg and Mg-Zn alloys in simulated body fluid[J].Materials Transactions of Nonferrous Metals Society of China,2008,18(3):588-592.
[4]WINZER N,ATRENS A,DIETZEL W,et al.Stress corrosion cracking in magnesium alloys:characterization and prevention[J].Research Summary,2007,59(8):49-53.
[5]WINZER N,XU P,BENDER S,et al.Stress corrosion cracking of gas-tungsten arc welds in continuous-cast AZ31Mg alloy sheet[J].Corrosion Science,2009,51(9):1950-1963.
[6]ATRENS A,WINZER N,DIETZEL W G.Stress corrosion cracking of magnesium alloys[J].Advanced Engineering Materials,2011,13(1/2):11-18.
[7]WINZER N,ATRENS A,DIETZEL W,et al.Comparison of the linearly increasing stress test and the constant extension rate test in the evaluation of transgranular stress corrosion cracking of magnesium[J].Materials Science and Engineering:A,2008,472(1/2):97-106.
[8]XIE S Y,PENG X D,LI J C,et al.Microstructure and corrosion resistance of Mg-5Al-1Sr-2Ca-XY alloy[J].Rare Metal Materials and Engineering,2014,43(1):52-56.
[9]SHAHNEWAZ B M,YOSHIHARU M,TSUTOMU M,et al.Corrosion fatigue behavior of extruded magnesium alloy AZ80-T5in a 5%NaCl environment[J].Engineering Fracture Mechanics,2010,77(10):1567-1576.
[10]HE M F,LIU L,WU Y T,et al.Influence of microstructure on corrosion properties of multilayer Mg-Al intermetallic compound coating[J].Corrosion Science,2011,53(4):1312-1321.
[11]CHAMOS A N,PANTELAKIS S G,SPILIADIS V.Fatigue behaviour of bare and pre-corroded magnesium alloy AZ31[J].Materials and Design,2010,31(9):4130-4137.
[12]CHU C L,HAN X,BAI J,et al.Surface modification of biomedical magnesium alloy wires by micro-arc oxidation[J].Transactions of Nonferrous Metals Society of China,2014,24(4):1058-1064.
[13]WINZER N,ATRENS A,DIETZEL W,et al.Evaluation of the delayed hydride cracking mechanism for transgranular stress corrosion cracking of magnesium alloys[J].Materials Science and Engineering:A,2007,466(1/2):18-31.
[14]SONG R G,DIETZEL W,ZHANG B J,et al.Stress corrosion cracking and hydrogen embrittlement of an Al-Zn-Mg-Cu alloy[J].Acta Materialia,2004,52(16):4727-4743.
[15]BALA S P,LIANG J,BLAWERT C,et al.Environmentally assisted cracking behavior of plasma electrolytic oxidation coated AZ31magnesium alloy[J].Corrosion Engineering Science and Technology,2011,46(6):706-711.
[16]DIETZEL W,PFUFF M,WINZER N.Testing and mesoscale modeling of hydrogen assisted cracking of magnesium[J].Engineering Fracture Mechanics,2010,77(2):257-263.
[17]MARIANO K,MARIANO I,RICARDO M C.Hydrogen embrittlement of magnesium and magnesium alloys:a review[J].Journal of the Electrochemical Society,2013,160(4):168-178.
[18]KANNAN M B,DIETZEL W,RAMAN S R K,et al.Hydrogen-induced-cracking in magnesium alloy under cathodic polarization[J].Scripta Materialia,2007,57(7):579-581.
[19]RAJA V S,PADEKAR B S.Role of chlorides on pitting and hydrogen embrittlement of Mg-Mn wrought alloy[J].Corrosion Science,2013,75:176-183.
[20]CHEN J,WANG J Q,HAN E H,et al.Effect of hydrogen on stress corrosion cracking of magnesium alloy in 0.1MNa2SO4solution[J].Materials Science and Engineering:A,2008,488(1/2):428-434.
[21]SONG R G,YANG F,BLAWERT C,et al.Behavior of stress corrosion cracking in a magnesium alloy[J].Journal of Wuhan University of Technology-Mater,2009,24(1):111-113.
[22]WINZER N,ATRENS A,DIETZEL W,et al.Characterization of stress corrosion cracking(SCC)of Mg-Al alloys[J].Materials Science and Engineering:A,2008,488:339-351.
[23]WINZER N,ATRENS A,SONG G L.A critical review of the stress corrosion cracking(SCC)of magnesium alloy[J].Advanced Engineering Materials,2005,7(8):659-693.
[24]KANNAN M B,DIETZEL W,BLAWERT C,et al.Stress corrosion cracking of rare-earth containing magnesium alloys ZE41,QE22and Elektron 21(EV31A)compared with AZ80[J].Materials Science and Engineering:A,2008,480(1/2):529-539.
[25]MERT F,BLAWERT C,KAINER K U,et al.Influence of cerium additions on the corrosion behaviour of high pressure die cast AM50alloy[J].Corrosion Science,2012,65:145-151.
[26]WINZER N,ATRENS A,DIETZEL W,et al.Fractography of stress corrosion cracking of Mg-Al alloys[J].Metallurgical and Materials Transactions A,2008,39(5):1157-1173.
[27]KANNAN M B,DIETZEL W,BLAWERT C,et al.Stress corrosion cracking behavior of Nd:YAG laser butt welded AZ31Mg sheet[J].Materials Science and Engineering:A,2007,444(1/2):220-226.
[28]DHANAPAL A,BOOPATHY S R,BALASUBRAMANIAN V.Corrosion behaviour of friction stir welded AZ61Amagnesium alloy welds immersed in NaCl solutions[J].Materials Transactions of Nonferrous Metals Society of China,2012,22(4):793-802.
[29]CHOUDHARY L,RAMAN R K S.Magnesium alloys as body implants:Fracture mechanism under dynamic and static loadings in a physiological environment[J].Acta Biomaterialia,2012,8(2):916-923.
[30]KANNAN M B,RAMAN R K S,WITTE F,et al.Influence of circumferential notch and fatigue crack on the mechanical integrity of biodegradable magnesium-based alloy in simulated body fluid[J].Journal of Biomedical Materials Research.Part B:Applied Biomaterials,2011,96B(2):303-309.
[31]PADEKAR B S,RAJA V S,RAMAN R K S.Stress corrosion cracking of a wrought Mg-Mn alloy under plane strain and plane stress conditions[J].Engineering Fracture Mechanics,2013,102:180-193.
[32]WINZER N,ATRENS A,DIETZEL W,et al.Stress corrosion cracking(SCC)in Mg-Al alloys studied u-sing compact specimens[J].Advanced Engineering Materials,2008,10(5):453-458.
[33]ARGADE G R,YUAN W,KANDASAMY K,et al.Stress corrosion cracking susceptibility of ultrafine grained AZ31[J].Journal of Materials Science,2012,47(19):6812-6822.
[34]ZHANG Y K,YOU J,LU J Z,et al.Effects of laser shock processing on stress corrosion cracking susceptibility of AZ31Bmagnesium alloy[J].Surface and Coatings Technology,2010,204(24):3947-3953.
[35]LI X C,ZHANG Y K,CHEN J F,et al.Effect of laser shock processing on stress corrosion cracking behavior of AZ31magnesium alloy at slow strain rate[J].Materials Science and Technology,2013,29(5):626-630.
[36]SRINIVASAN P B,ZETTLER R,BLAWERT C,et al.A study on the effect of plasma electrolytic oxidation on the stress corrosion cracking behavior of a wrought AZ61magnesium alloy and its friction stir weldment[J].Materials Characterization,2009,60(5):389-396.
[37]SRINIVASAN P B,RIEKEHR S,BLAWERT C,et al.Mechanical properties and stress corrosion cracking behavior of AZ31magnesium alloy laser weldments[J].Materials Transactions of Nonferrous Metals Society of China,2011,21(1):1-8.
[38]KANNAN M B,RAMAN R K S.Evaluating the stress corrosion cracking susceptibility of Mg-Al-Zn alloy in modified-simulated body fluid for orthopaedic implant application[J].Scripta Materialia,2008,59(2):175-178.
[39]HUANG Y D,GAN W M,KAINER K U,et al.Role of multi-microalloying by rare earth elements in ductilization of magnesium alloys[J].Journal of Magnesium and Alloys,2014,2(1):1-7.
[40]YU Z H,YAN H G,YIN X Y,et al.Liquation cracking in laser beam welded joint of ZK60magnesium alloy[J].Materials Transactions of Nonferrous Metals Society of China,2012,22(12):2891-2897.
[41]PADEKAR B S,RAMAN R K S,RAJA V S,et al.Stress corrosion cracking of a recent rare-earth containing magnesium alloy,EV31A,and a common Alcontaining alloy,AZ91E[J].Corrosion Science,2013,71:1-9.
[42]張建新,高愛華,郭學(xué)鋒.微量Y對(duì)Mg-5Al-0.8Zn-0.5Mn合金組織性能的影響[J].稀有金屬材料與工程,2012,41(S2):459-462.
[43]CHENG Y L,QIN T W,WANG H M,et al.Com-parison of corrosion behaviors of AZ31,AZ91,AM60 and ZK60magnesium alloys[J].Materials Transactions of Nonferrous Metals Society of China,2009,19(3):517-524.
[44]李肖豐,李全安,陳君,等.Ca含量對(duì)AZ61-1.2Y鎂合金耐蝕性能的影響[J].稀有金屬材料與工程,2011,40(8):1466-1469.
[45]TALTAVULL C,TORRES B,LOPEZ A J,et al.Corrosion behavior of laser surface melted magnesium alloy AZ91D[J].Materials and Design,2014,57:40-50.
[46]杜云慧,張鵬,王玉潔,等.AZ91D表面的交流微弧氧化快速成膜[J].稀有金屬材料與工程,2013,42(11):2410-2415.
[47]SIEBER M,SCHARF I,HRTEL M,et al.Influence of anodic oxide coatings on screwing behavior and susceptibility to stress corrosion cracking of selftapping aluminum screws[J].Materials Science and Engineering Technology,2012,43(7):661-667.
[48]WU H L,CHENG Y L,LI L L,et al.The anodization of ZK60magnesium alloy in alkaline solution containing silicate and the corrosion properties of the anodized films[J].Applied Surface Science,2007,253(24):9387-9394.
[49]SéBASTIEN P B,JéR?ME F,ARNAUD U,et al.Determination of the chemical mechanism of chromate conversion coating on magnesium alloys EV31A[J].Applied Surface Science,2014,298:199-207.
[50]SRINIVASAN P B,BLAWERT C,DIETZEL W.Effect of plasma electrolytic oxidation coating on the stress corrosion cracking behavior of wrought AZ61 magnesium alloy[J].Corrosion Science,2008,50(8):2415-2418.
[51]CHEN Y,WENG Z P,LU S,et al.Microstructure characteristic and properties of plasma sprayed NiCo-CrAlY-Al2O3-ZrO2gradient coating on Mg alloy[J].Rare Metal Materials and Engineering,2013,42(S2):46-49.
[52]CHOI J,NAKAO S,KIM J,et al.Corrosion protection of DLC coatings on magnesium alloy[J].Diamond and Related Materials,2007,6(4/7):1361-1364.
[53]LALEH M,KARGAR F,ROUHAGHDAM A S.Investigation of rare earth sealing of porous micro-arc oxidation coating formed on AZ91Dmagnesium alloy[J].Journal of Rare Earths,2012,30(12):1293-1297.
[54]張璇,邵忠財(cái),齊丹.TiO2粉體對(duì)鎂合金微弧氧化陶瓷膜性能的影響[J].稀有金屬材料與工程,2011,40(S2):495-497.
[55]農(nóng)登,宋東福,戚文軍,等.AZ91鎂合金磷酸鹽-高錳酸鹽轉(zhuǎn)化膜工藝的研究[J].稀有金屬材料與工程,2013,42(5):1062-1066.
[56]孫術(shù)發(fā),狄士春,呂鵬翔,等.稀土鎂合金微細(xì)電火花加工變質(zhì)層微觀結(jié)構(gòu)及性能研究[J].金屬學(xué)報(bào),2013,49(2):251-256.
[57]張志彬,梁秀兵,徐濱士,等.高速電弧噴涂鋁基非晶納米晶復(fù)合涂層的組織及性能[J].稀有金屬材料與工程,2012,41(5):872-876.
[58]王雅萍,趙旭輝,盧向雨,等.添加氧化鈰對(duì)AZ91D鎂合金表面富鎂涂層的保護(hù)作用[J].物理化學(xué)學(xué)報(bào),2012,28(2):407-413.
[59]劉妍,衛(wèi)中領(lǐng),楊富巍,等.硼砂-對(duì)苯二甲酸電解液中AZ91D鎂合金的陽極氧化處理[J].物理化學(xué)學(xué)報(bào),2011,27(10):2385-2392.
[60]冒國兵,孫宇峰,張光勝,等.pH值對(duì)AM60B鎂合金化學(xué)鍍鎳的影響[J].稀有金屬材料與工程,2010,39(11):2039-2043.
[61]WINZER N,ATRENS A,DIETZEL W,et al.Magnesium stress corrosion cracking[J].Materials Transactions of Nonferrous Metals Society of China,2007,17(S1):150-155.
[62]ATRENS A,WINZER N,SONG G L,et al.Stress corrosion cracking and hydrogen diffusion in magnesium[J].Advanced Engineering Materials,2006,8(8):749-751.
[63]ORLOV D,RALSTON K D,BIRBILIS N,et al.Enhanced corrosion resistance of Mg alloy ZK60after processing by integrated extrusion and equal channel angular pressing[J].Acta Materialia,2011,59(15):6176-6186.
[64]韓富銀,王萍,田林海,等.等通道轉(zhuǎn)角擠壓對(duì)耐熱鎂合金AZ61-4Si組織及性能的影響[J].稀有金屬材料與工程,2013,42(7):1497-1501.
[65]朱瓊,房燦峰,李乃樸,等.稀土元素Gd、Nd對(duì)AZ80鎂合金組織和力學(xué)性能的影響[J].稀有金屬材料與工程,2013,42(4):771-775.
[66]石磊,楊合,郭良剛,等.ECHE擠壓對(duì)AZ31鎂合金組織和性能的影響[J].稀有金屬材料與工程,2012,41(11):1955-1959.
[67]詹美燕,李春明,張衛(wèi)文.積疊軋焊AZ31鎂合金微觀組織和織構(gòu)演變的EBSD研究[J].金屬學(xué)報(bào),2012,48(6):709-716.
[68]金亞旭,田玉明,閆時(shí)建,等.K2Ti6O13/AZ91D鎂基復(fù)合材料的組織及耐蝕性能[J].稀有金屬材料與工程,2011,40(7):1211-1215.