徐澤炎,李玉紅,成 靜,鄭恩金,高大慶,盛安康,陸承平
·論 著·
eha基因調(diào)控遲緩愛德華菌抵抗巨噬細(xì)胞氧化殺菌作用
徐澤炎1,李玉紅2,成 靜1,鄭恩金2,高大慶2,盛安康2,陸承平3
目的 遲緩愛德華菌(E.tarda)能夠在巨噬細(xì)胞內(nèi)生存和繁殖,必須抵抗細(xì)胞產(chǎn)生活性氧的殺菌作用。eha基因是該菌一個重要的轉(zhuǎn)錄調(diào)控基因,本研究探討eha基因調(diào)控E.tarda抵抗巨噬細(xì)胞氧化殺菌的機(jī)制。方法 光鏡觀察野生株和缺失株分別感染RAW264.7巨噬細(xì)胞的過程,及菌落計數(shù)法測定細(xì)菌胞內(nèi)存活數(shù)目;測定細(xì)菌在不同H2O2濃度中的存活率;流式法檢測細(xì)菌感染巨噬細(xì)胞后產(chǎn)生活性氧的細(xì)胞比率;qRT-PCR測定細(xì)菌超氧化物歧化酶基因sodC和過氧化氫酶基因katB的轉(zhuǎn)錄水平。結(jié)果eha基因的缺失,使E.tarda在巨噬細(xì)胞內(nèi)的繁殖速率明顯下降(P<0.05),使該菌在不同H2O2濃度中的存活率顯著降低(P<0.05),使該菌感染細(xì)胞組產(chǎn)生活性氧的細(xì)胞比率升高;qRT-PCR結(jié)果顯示,eha基因的缺失使得該菌的超氧化物歧化酶基因sodC和過氧化氫酶基因katB轉(zhuǎn)錄水平下降。結(jié)論eha基因通過調(diào)控E.tarda菌分解H2O2相關(guān)基因的表達(dá),從而影響該菌分解巨噬細(xì)胞中活性氧的能力和在胞內(nèi)外的存活率。因此,eha基因調(diào)控了E.tarda菌抵抗巨噬細(xì)胞內(nèi)氧化殺菌作用,有助于該菌在巨噬細(xì)胞內(nèi)生存和繁殖。
eha基因;巨噬細(xì)胞;E.tarda;活性氧
遲緩愛德華菌(Edwardsiellatarda,簡稱E.tarda)屬于腸桿菌科愛德華菌屬,分布廣泛,可感染魚類、兩棲類、爬行類、鳥類及哺乳類等。該菌能夠引起多種魚類感染,是水產(chǎn)養(yǎng)殖業(yè)的重要病原體[1]。該菌能夠在巨噬細(xì)胞中生存和繁殖, 必須抵抗細(xì)胞產(chǎn)生活性氧(reactive oxygen species,ROS)的殺菌作用[2-3]。
高大慶等用鳥槍法在E.tarda中發(fā)現(xiàn)的一個溶血調(diào)控基因(Et haemolysin activator gene,簡稱eha),前期的研究表明Eha蛋白是E.tarda菌一個重要的轉(zhuǎn)錄調(diào)控因子[4-5]。本研究發(fā)現(xiàn),和野生株相比,eha缺失株在巨噬細(xì)胞內(nèi)繁殖速率和在不同濃度過氧化氫的存活率明顯下降,并探討eha基因調(diào)控E.tarda抵抗巨噬細(xì)胞氧化殺菌的機(jī)制。
1.1 材料
1.1.1 菌株和培養(yǎng)基 強(qiáng)毒株E.tarda菌ET-13由南京農(nóng)業(yè)大學(xué)陸承平教授惠贈。ET-13的eha缺失株(Δeha)和Δeha互補(bǔ)株(ehaComp)由本室保存。細(xì)菌采用LB(Luria Broth)培養(yǎng)基來培養(yǎng)。
1.1.2 小鼠巨噬細(xì)胞 RAW264.7,巨噬細(xì)胞為上海獸醫(yī)研究所王少輝博士惠贈。胎牛血清(FBS)、胰蛋白酶購自Hyclone公司;DMEM培養(yǎng)液購自Gibco公司。
1.2 方法
1.2.1 細(xì)菌胞內(nèi)存活實驗 以100∶1的感染復(fù)數(shù)MOI(multiplicity of infection) 將對數(shù)期細(xì)菌,加入單層細(xì)胞中,共孵育1 h后,PBS漂洗細(xì)胞3遍,再用含100 μg/mL慶大霉素的細(xì)胞培養(yǎng)液孵育1 h,換含10 μg/mL慶大霉素的細(xì)胞培養(yǎng)液繼續(xù)培養(yǎng)2 h,4 h或6 h;在預(yù)定時間點,用PBS洗細(xì)胞3次,加入含1% Triton X-100的PBS裂解10 min,將裂解產(chǎn)物10倍系列稀釋后,涂在LB瓊脂平板上;37 ℃培養(yǎng)24 h,進(jìn)行菌落記數(shù)(cfu/mL)。每次試驗設(shè)3個平行組,取平均值,并重復(fù)3次;以培養(yǎng)時間為橫坐標(biāo),CFU/mL為縱坐標(biāo),繪制細(xì)菌胞內(nèi)細(xì)菌數(shù)目和時間的曲線。
1.2.2 光鏡下觀察 細(xì)菌感染細(xì)胞的方法同上,收集細(xì)胞;固定細(xì)胞,用姬母薩染液染色細(xì)胞和細(xì)菌。在油鏡下觀察,細(xì)菌被染成紫紅色或紫藍(lán)色,而細(xì)胞質(zhì)則被染成淺紅色。
1.2.3 體外應(yīng)激實驗 按參考文獻(xiàn)[6]的方法檢測各種濃度過氧化氫處理后細(xì)菌的存活率。
1.2.4 巨噬細(xì)胞產(chǎn)生活性氧的檢測 以10∶1 MOI的對數(shù)期細(xì)菌感染RAW264.7細(xì)胞2 h后,將10 μmol/L DCFH-DA的DMEM培養(yǎng)液500 μL懸浮細(xì)胞,37 ℃培養(yǎng)20 min。用流式細(xì)胞儀(激發(fā)波長485 nm,發(fā)射波長530 nm) 檢測細(xì)胞產(chǎn)生活性氧(reactive oxygen species, ROS)的細(xì)胞比率,設(shè)置未添加菌液細(xì)胞的孔為陰性對照。
1.2.5 qRT-PCR 按試劑盒說明書,提取細(xì)菌RNA, RNA逆轉(zhuǎn)錄成cDNA。再以cDNA為模版,用超氧化物歧化酶基因(superoxidedismutaseC,sodC)的引物(F-GACCGCCAGCCAAAGGTCCA,R-GCGAGTCGACTACGCGGACT)和過氧化氫酶基因(catalaseB,katB)的引物(F-ATGCGGGTCGGACGTGCCAG,R- TCCACGGGCCGTAGCGACA)分別擴(kuò)增兩基因,以擴(kuò)增16SrRNA基因(F- TAGGTCGCTTAGGACATCTC,R- AGGGCCGGCTTGGCGACCGT)作為內(nèi)標(biāo)參照,定量檢測各基因的轉(zhuǎn)錄水平。
1.2.6 統(tǒng)計學(xué)分析 細(xì)菌的存活率之間的比較采用t檢驗,以P<0.05為差異有統(tǒng)計學(xué)意義。
2.1 比較E.tarda野生株和eha缺失株在巨噬細(xì)胞內(nèi)存活的差異 從圖1中可以看出,用野生株和eha缺失株分別感染RAW264.7細(xì)胞1 h,高濃度慶大霉素殺胞外菌1 h,再低濃度慶大霉素繼續(xù)培養(yǎng),以抑制胞外菌的繁殖。用1% Triton X-100裂解細(xì)胞,釋放胞內(nèi)細(xì)菌,涂平板進(jìn)行菌落計數(shù)(cfu/mL)。結(jié)果顯示,胞內(nèi)cfu/mL隨培養(yǎng)時間呈上升趨勢,這表明野生株和eha缺失株均可在巨噬細(xì)胞內(nèi)存活并繁殖。和野生株相比,在繼續(xù)培養(yǎng)4 h和6 h時,eha缺失株感染的細(xì)胞內(nèi)細(xì)菌cfu/mL明顯降低(P<0.05),表明eha基因?qū)τ贓.tarda在巨噬細(xì)胞內(nèi)的繁殖起重要的作用?;パa(bǔ)株的變化趨勢介于野生株和eha缺失株之間。
圖1 比較E.tarda菌 ET-13野生株、eha缺失株和互補(bǔ)株在巨噬細(xì)胞內(nèi)細(xì)菌數(shù)目的差異
2.2 光鏡下觀察野生株和eha缺失株在巨噬細(xì)胞內(nèi)存活的差異 圖2 結(jié)果顯示,A和B是未感染細(xì)菌的RAW264.7細(xì)胞;C和D分別是RAW264.7細(xì)胞感染野生株和eha缺失株1 h,慶大霉素處理1 h后,可見胞內(nèi)細(xì)菌;E和F分別是RAW264.7細(xì)胞感染野生株和eha缺失株1 h,慶大霉素處理1 h,再繼續(xù)培養(yǎng)2 h后,可見細(xì)胞內(nèi)細(xì)菌數(shù)量增多;G和H分別是RAW264.7細(xì)胞感染野生株和eha缺失株1 h,慶大霉素處理1 h,再繼續(xù)培養(yǎng)6 h后,野生株在巨噬細(xì)胞內(nèi)的數(shù)量大量增多,明顯多于eha缺失株。
A and B :Uninfected RAW264.7 macrophages; C and D:RAW264.7 Infected with the wild and the Δeha for1 hours , and handled with gentamycin for 1 h; E and F:Incubated for 2 hours after C and D; G and H: Incubated for 6 hours after C and D. The arrows show the intracellular bacteria.
圖2 光鏡下觀察野生株和eha缺失株在巨噬細(xì)胞內(nèi)細(xì)菌數(shù)目的差異(×10 000)
Fig.2 Comparison of the differences of the survival rates of the wild and the Δeha of ET-13 within macrophages under light microscope(×10 00)
2.3 細(xì)菌經(jīng)過氧化氫處理后的存活率 模擬細(xì)菌在巨噬細(xì)胞吞噬溶酶體氧化的環(huán)境,分別用不同濃度1 mmol/L、2 mmol/L、5 mmol/L、10 mmol/L的過氧化氫處理細(xì)菌30 min后,eha缺失株的存活率明顯低于野生株(P<0.05),互補(bǔ)株的存活率介于缺失株和野生株之間,結(jié)果如圖3所示。
圖3 比較ET-13野生株、缺失株和互補(bǔ)株經(jīng)過氧化氫處理后細(xì)菌存活率的差異
Fig.3 Comparison of the differences of survival rates of the wild,the Δeha and the ehaComp of ET-13
2.4 比較E.tarda野生株和eha缺失株刺激巨噬細(xì)胞產(chǎn)生活性氧的差異 收集細(xì)胞,檢測細(xì)胞產(chǎn)生活性氧的細(xì)胞比率。流式結(jié)果如圖4。加熒光探針未感染的細(xì)胞(圖B)中產(chǎn)生活性氧的細(xì)胞比率為23.15%,高于未加熒光探針未感染的細(xì)胞組(圖A),說明感染細(xì)菌后巨噬細(xì)胞產(chǎn)生活性氧的細(xì)胞比率相對未感染的細(xì)胞組高;eha缺失株感染細(xì)胞組(圖D,65.49%)高于野生株組(圖C,55.32%),互補(bǔ)株組(圖E,56.10%)接近野生株組。
2.5 qRT-PCR顯示eha基因?qū).tarda和ROS相關(guān)基因的調(diào)控作用 由StepOnePlus Real-time PCR System Software得出數(shù)據(jù),eha缺失株中超氧化物歧化酶基因sodC和過氧化氫酶基因katG的轉(zhuǎn)錄水平分別為野生株的0.1倍和0.42倍。因此,和野生株相比,Δeha缺失株中sodC 和katB的轉(zhuǎn)錄水平降低,結(jié)果提示E.tarda中eha基因?qū)寡趸嚓P(guān)的基因有正調(diào)控作用。
E.tarda通過消化道粘膜和皮膚傷口感染宿主,被巨噬細(xì)胞等主要的固有免疫細(xì)胞吞噬,可在其中存活和繁殖,最后裂解細(xì)胞質(zhì)膜,釋放進(jìn)入淋巴和血液,并感染全身[2]當(dāng)巨噬細(xì)胞與E.tarda菌接觸后,細(xì)菌表面的多種物質(zhì)可激活巨噬細(xì)胞細(xì)胞膜的NADPH氧化酶,從而引起呼吸爆發(fā),產(chǎn)生反應(yīng)性氧中介物(reactive oxygen intermediate, ROI)或反應(yīng)性氮中介物(reactive nitrogen intermediate,RNI)導(dǎo)致細(xì)菌損傷,如發(fā)生DNA突變、膜蛋白發(fā)生氧化變性失活等,從而殺死細(xì)菌。E.tarda菌產(chǎn)生各種酶分解巨噬細(xì)胞呼吸暴發(fā)產(chǎn)生的活性氧,逃避巨噬細(xì)胞的殺傷作用,達(dá)到在胞內(nèi)存活和增殖的目的,最終導(dǎo)致疾病的發(fā)生[7]。E.tarda產(chǎn)生的過氧化氫酶(Kat B)和超氧化物歧化酶(SodB)可以幫助細(xì)菌將有毒害的氧化物降解為水和氧氣[8]。
A: Uninfected and with no fluorescent probes; B: added by fluorescent probes and uninfected; C: added by fluorescent probes and infected with the wild; D: added by fluorescent probes and infected with the Δeha; E:added by fluorescent probes and infected with the ehaComp.
圖4 比較 ET-13野生株、eha缺失株和互補(bǔ)株感染后巨噬細(xì)胞中產(chǎn)生活性氧細(xì)胞比率的差異
Fig.4 Comparison of the differences of the rate of cells produced ROS by the macrophages infected the wild,the Δeha and the ehaComp of ET-13
本研究表明E.tarda毒力株ET-13野生株和eha缺失株均能夠在巨噬細(xì)胞內(nèi)生存和繁殖,但eha缺失株在胞內(nèi)繁殖速率明顯降低。和野生株相比,其eha缺失株在不同濃度H2O2下生存能力降低,和缺失株產(chǎn)生過氧化氫酶和超氧化物歧化酶的產(chǎn)量減少有關(guān),因此,eha基因可以調(diào)控E.tarda一些基因抵抗巨噬細(xì)胞氧化殺菌作用。
[1]Chen AP,Jiang YL,Qian D et al. Edwardsiellasis[J].China Fisheries,2011,7:49-50.(in Chinese) 陳愛平,江育林,錢冬,等. 遲緩愛德華氏菌病 [J].中國水產(chǎn),2011,7:49-50.
[2]Leung KY, Siame BA, Tenkink BJ,et al.Edwardsiellatarda- Virulence mechanisms of an emerging gastroenteritis pathogen .Microbes Infect, 2012;14(1):26-34. DOI:10.1016/j.micinf. 2011.08.005.
[3]Ishibe K, Osatomi K, Hara K, et al. Comparison of the responses of peritoneal macrophages from Japanese flounder (Paralichthys olivaceus) against high virulent and low virulent strains ofEdwardsiellatarda[J]. Fish Shellfish Immunol,2008,24(2):243-51. DOI:10.1016/j.fsi.2007.11.001.
[4]Gao DQ, Kan B, Lu CP,et al. Primary Analysis and Sequencing the Hemolytic Relative Gene ofEdwardsiellatarda[J].J Genetics Genomics. 2001,25(12):1162-1167.(in Chinese) 高大慶,闞飆,陸承平,等.遲緩愛德華菌溶血相關(guān)基因的測序和初步的功能分析[J].遺傳學(xué)報,2001,25(12):1162-1167.
[5]Gao DQ, Cheng J, Zheng EJ,et al. Eha, a transcriptional regulator of hemolytic activity ofEdwardsiellatarda[J]. FEMS Microbiol Lett 2014,353(2),132-140. DOI:10. 1111/1574 -6968.12420.
[6]Pan HJ, Hao B, Li J,et al, Impact of Cpx on the virulence ofEdwardsiellatarda[J]. Marine Sci, 2013,37(2):17-21. (in Chinese) 潘海建,郝斌,李杰,等. Cpx 對遲緩愛德華氏菌毒力的影響[J].海洋科學(xué),2013,37(2):17-21.
[7]Srinivasa Rao PS, Lim TM, Leung KY. Opsonized virulentEdwardsiellatardastrains are able to adhere to and survive and replicate within fish phagocytes but fail to stimulate reactive oxygen intermediates[J]. Infect Immun,2001,69(9):5689-5697.DOI:10.1128/IAI.69.9.5697.2001.
[8]Cheng S, Zhang M, Sun L. The iron-cofactored superoxide dismutase ofEdwardsiellatardainhibits macrophage-mediated innate immune response [J]. Fish Shellfish Immunol,2010,29(6):972-978. DOI:10.1016/j.fsi. 2010.08.004.
Gao Da-qing,Email: dgao2@yahoo.com
ehagene is required forEdwardsiellatardaoxidative stress resistance in macrophage
XU Ze-yan1,LI Yu-hong2,CHENG Jing1,ZHENG En-jin2,GAO Da-qing2,SHENG An-kang2,LU Cheng-ping3
(1.SchoolofMedicine,JiangsuUniversity,Zhenjiang212000,China; 2.SchoolofMedicine,SoutheastUniversity,Nanjing210009,China; 3.CollegeofVeterinaryMedicine,NanjingAgriculturalUniversity,Nanjing210095,China)
AsEdwardsiellatarda(E.tarda)can survive and replicate in macrophages, it must resist against reactive oxygen species (ROS) produced by the cells. The haemolysin activator gene (eha) is an important transcriptive regulating gene.Our researches studied the mechanism for theehagene how to regulateE.tardato resist oxidation stress in macrophages. After the bacteria have infected RAW264.7 macrophages, bacterial colonies were counted on LB plates. The results of the above experiment and the observation under optical microscope indicated that both the wild and the Δehastrains can survive and multiply within macrophages, and the reproductive rate of the Δehawithin macrophages decreased obviously than that of the wild. The survival rate of the Δehain H2O2was less than that of the wild. After the level of ROS from macrophages infected with bacteria were detected by flow cytometry(FCM), the ROS from the macrophages infected with the Δeha(65.49%) was more than that of the wild (55.32%). The qRT-PCR results showed further that the mutation of theehagene regulated down the expressions of catalase and superoxide dismutase genes inE.tarda. Therefore, the results indicated thatehagene has affected bacterial ability of decomposing ROS in macrophages and survival ability in H2O2,as the gene may control the expressions of catalase and superoxide dismutase genes inE.tarda.
ehagene;macrophage;Edwardsiellatarda; ROS
高大慶,Email:dgao2@yahoo.com
1.江蘇大學(xué)醫(yī)學(xué)院,鎮(zhèn)江 212000; 2.東南大學(xué)醫(yī)學(xué)院,南京 210009; 3.南京農(nóng)業(yè)大學(xué)動物醫(yī)學(xué)院,南京 210095
Supported by the Doctor Inovation Fund of Jiangsu Province(No. CX10B-283z), and the Natural Science Foundation of Jiangsu(No.SBK2015022394)
10.3969/cjz.j.issn.1002-2694.2015.06.001
R378.2
A
1002-2694(2015)06-0497-04
2014-06-11;
2014-11-09
江蘇省博士研究生創(chuàng)新課題基金(No.CX10B-283z)資助和江蘇省自然科學(xué)基金聯(lián)合資助(No.SBK2015022394)