毛 杰,鄭 旭,郝志勇,孫 強,馬曉龍
(1. 浙江大學能源工程學系,杭州 310027;2. 長春軌道客車股份有限公司技術(shù)中心,長春 130000)
基于SAEF方法計算高鐵車內(nèi)全頻噪聲
毛 杰1,鄭 旭1,郝志勇1,孫 強2,馬曉龍2
(1. 浙江大學能源工程學系,杭州 310027;2. 長春軌道客車股份有限公司技術(shù)中心,長春 130000)
提出了統(tǒng)計聲學能量流(statistical acoustic energy flow,SAEF)方法,將不同物理場的激勵耦合后加載到高鐵SAEF模型上,計算車外激勵與車內(nèi)聲場及車內(nèi)聲腔之間的聲能流動,可分析車內(nèi)全頻噪聲.首先,采用剛性多體動力學、快速多極邊界元和大渦模擬提取了350,km/h下的輪軌力/二系懸掛力、輪軌噪聲和空氣動力噪聲,并且這些激勵通過了參考文獻試驗的驗證.其次,搭建了車廂有限元模型,基于多點激勵-多點響應技術(shù)驗證了車廂仿真模態(tài),證明了整體的車廂及區(qū)域的鋁型材-內(nèi)飾組合板的精度,間接保證了基于模態(tài)特性的組合板隔聲量的準確度.最后,搭建了SAEF模型,加載耦合激勵并定義組合板隔聲性能后,計算了350,km/h下、0~4,000,Hz內(nèi)的車內(nèi)噪聲.對比車內(nèi)中心聲腔的仿真與試驗聲壓級,結(jié)果顯示兩者的變化趨勢基本一致,聲壓級總值相差2.6,dB(A),符合工程要求,驗證了SAEF方法應用于高鐵車內(nèi)全頻噪聲研究的可行性.
高速鐵路;全頻噪聲;統(tǒng)計聲學能量流;多物理場耦合激勵
高速列車車內(nèi)聲學仿真研究的工作已有很多,主流方法包括有限元-邊界元(finite element-boundary element,F(xiàn)E-BE)法、有限元-統(tǒng)計能量分析(finite element-statistical energy analysis,F(xiàn)E-SEA)混合法和統(tǒng)計能量分析(SEA).各個方法的理論決定了它們的應用范圍,例如FE-BE、FE-SEA和SEA分別適用于求解大規(guī)模聲學問題的低頻、中頻和高頻噪聲.
肖友剛等[1]采用FE-BE計算了由軌道不平順引起的室內(nèi)低頻噪聲,但未考慮聲激勵和內(nèi)飾件,且由于聲學模型自由度和計算量的限制無法求解中高頻噪聲.Sapena等[2]采用FE-SEA法搭建了駕駛室的中頻聲學模型,將內(nèi)飾件等效為吸聲系數(shù),考慮了機械力與空氣動力噪聲的耦合作用,但忽略了輪軌噪聲以及內(nèi)飾件與白車身之間的約束.劉加利等[3]提取了列車表面壓力脈動,基于SEA理論分析了車內(nèi)中高頻氣動噪聲,但未研究其他激勵下的車內(nèi)噪聲.需要說明的是高速列車白車身通常為具有夾層結(jié)構(gòu)的鋁型材,而SEA子系統(tǒng)為具有夾層屬性的單層板,該建模等效過程存在較大誤差.此外,上述研究未將分析頻域拓寬到全頻,結(jié)果也未與試驗進行對比,很多工作還有待完善.
本文提出了統(tǒng)計聲學能量流(statistical acoustic energy flow,SAEF)方法,考慮了完整的多物理場耦合激勵,重點研究車外激勵與車內(nèi)聲場之間以及車內(nèi)聲腔之間的能量流動,可以快速、準確地預測高鐵車內(nèi)全頻噪聲.
列車高速行駛時,引起車內(nèi)噪聲的激勵源分為機械激勵和聲激勵兩類.機械激勵主要指二系懸掛力,它由輪軌力經(jīng)轉(zhuǎn)向架懸掛系統(tǒng)的衰減產(chǎn)生.聲激勵分為輪軌噪聲、空氣動力噪聲和設備噪聲,由于本文的車廂無受電弓,因此不考慮集電噪聲.
1.1 多體動力學理論
車輪與鋼軌表面由于存在不平順性,即粗糙度,在高速行駛時會產(chǎn)生輪軌力.輪軌力通過列車剛性多體動力學獲取,計算式[4]為
式中:F為垂向輪軌力;ω為圓頻率;R為粗糙度;αW、αC和αR分別為車輪、接觸彈簧和鋼軌的位移導納(力與位移的比值).
1.2 輪軌噪聲
輪軌力作為一對作用力和反作用力,分別激勵車輪和軌道產(chǎn)生振動并輻射噪聲.對于鋼軌的任一位置z,由輪軌力Fm(ω)作用在zm處引起的振動響應[5]為
式中αRT為鋼軌的傳遞位移導納.
車輪噪聲和軌道噪聲通過快速多極邊界元分析(fast multi-pole boundary element analysis,F(xiàn)MBEA)獲取,采用“分塊”原理,可有效求解大規(guī)模聲學問題[6].根據(jù)邊界元理論,已知結(jié)構(gòu)表面振動速度,基于邊界條件可計算表面的聲壓.
1.3 空氣動力噪聲
高鐵的流場速度一般遠小于聲速(1)Ma?,因此在車體表面形成的空氣動力噪聲主要是雙極子聲源,由外表面的空氣壓力脈動引起[7].表面壓力脈動及其引起的空氣動力噪聲分別采用大渦模擬(large-eddy simulation,LES)和間接邊界元分析(indirect boundary element analysis,IBEA)獲?。?/p>
兩個強度均為Q、相距I的單極聲源組成的雙極子聲源在空間聲場任一位置P(r1,θ1)形成的疊加聲壓為
式中:ρ為空氣密度;c為空氣介質(zhì)中的聲速;k為波數(shù),k=ω/c;θ1為P點到聲源中心的連線與極軸的夾角.
1.4 SAEF方法
綜合上述理論可以計算各激勵源,然后用SAEF方法計算車內(nèi)噪聲,其原理如圖1所示.
圖1(a)所示為車外噪聲經(jīng)空氣傳播后在車體表面形成激勵的示意,假設圖中的聲源代表某個車輪.當車輪產(chǎn)生振動并輻射噪聲,聲波開始向空間傳播.根據(jù)聲學原理,均勻理想流體媒介中具有簡諧解的小振幅聲波波動的Helmholtz微分方程為
式中:?2為Laplace算子,?2=?/?x2+?/?y2+?/?z2;p為聲壓.
對于振動結(jié)構(gòu)外場聲輻射問題,邊界條件為Neumann邊界條件(給定?p/?n),即
式中:n為法向單位矢量;β、χ、γ為給定參數(shù).
此外,p還必須滿足Sommerfeld輻射條件,即
式中:r為聲場中的觀察點與聲源表面的距離;j為虛數(shù)單位.
圖1 統(tǒng)計聲學能量流方法原理Fig.1 Principle of statistical acoustic energy flow method
式中A為待定常數(shù),一般是復數(shù).
觀察點對應的徑向質(zhì)點速度為
聲場中任一位置觀察點的聲壓為
將車體簡化為圖1(a)中的正方體,并把正面劃分為Ⅰ~Ⅳ共4個結(jié)構(gòu)子系統(tǒng).聲波經(jīng)空氣傳播后在車體表面形成聲學分布,因此在子系統(tǒng)表面布置一定數(shù)量的聲學觀察點,如Ⅰ表面的1~4號觀察點,它們的聲壓和速度分別表示為pI1、pI2、pI3、pI4和vI1、vI2、vI3、vI4,可分別由式(7)和式(8)獲?。?/p>
觀察點1~4對應子系統(tǒng)Ⅰ的面積為SI1、SI2、SI3和SI4,它們與子系統(tǒng)Ⅰ的面積SI之間的關(guān)系為
式中:T60為混響時間(聲腔內(nèi)聲能量級衰減60,dB所用的時間);f為頻率.
對于一個聲腔子系統(tǒng),除了輸入功率與耗散功率以外,剩下的能量來自于子系統(tǒng)之間的流動功率,如圖1(b)中所示的W12和W21.這種聲功率流動通過聲腔之間的耦合損耗因子η12和η21實現(xiàn),且有
可得子系統(tǒng)Ⅰ表面的車輪噪聲聲功率W1,w,即
式中*表示共軛復數(shù).
同理可得軌道噪聲和空氣動力噪聲在Ⅰ表面的聲功率,將所有聲激勵耦合后得到Ⅰ上的耦合聲功率WI,coup.耦合聲功率經(jīng)Ⅰ的隔聲量STL衰減,在車內(nèi)形成透射聲功率WI,in.WI,coup和WI,in的關(guān)系為
對于車身鋁型材與內(nèi)飾組合板的隔聲量,SEA理論并不是合適的算法,因為無法準確等效鋁型材的夾層屬性,并且忽略了鋁型材與內(nèi)飾件之間的相互約束,因此本文采用聲學有限元法計算組合板的隔聲量(詳見第3.2節(jié)).在入射側(cè)混響聲(1,Pa)的激勵下,可以得到組合板透射側(cè)任一位置x的聲壓p(x),再通過隔聲公式計算組合板的隔聲量,即
式中:Γ為組合板有限元模型的表面;G(x,y)為自由場格林函數(shù);y為Γ上的一點.
至此,車體表面的耦合聲激勵經(jīng)各結(jié)構(gòu)子系統(tǒng)對應的組合板隔聲量衰減,流入到車內(nèi)聲腔子系統(tǒng)的透射聲功率已經(jīng)得到.車內(nèi)各個聲腔子系統(tǒng)之間的聲能流動基于SEA理論計算,以兩個車內(nèi)聲腔子系統(tǒng)為例,如圖1(b)所示.假設聲腔子系統(tǒng)1與子結(jié)構(gòu)子系統(tǒng)Ⅰ相連,即W1,in直接輸入到聲腔1中;聲腔2與聲腔1相連,但不與任何結(jié)構(gòu)子系統(tǒng)相連,即無外界聲能的直接輸入.由于聲腔存在阻尼損耗因子η,具有耗散功率Wi,diss,且有
式中:Ei為第i個聲腔子系統(tǒng)的能量;iη為第i個聲腔子系統(tǒng)存在的阻尼損耗因子.
車內(nèi)聲腔的總阻尼損耗因子通過試驗測取,其計算式為式中:S12和S21分別為聲腔的耦合面積;V1為聲腔1的體積;V2為聲腔2的體積.
當考慮所有結(jié)構(gòu)子系統(tǒng)流入車內(nèi)聲腔的聲功率、以及所有聲腔子系統(tǒng)之間的能量流動關(guān)系后,即可得到車內(nèi)任一聲腔子系統(tǒng)的聲學響應.
2.1 輪軌力與二系懸掛力
如第1節(jié)所述,輪軌力和二系懸掛力可通過剛性多體動力學獲取,車廂的動力學模型及主要剛體參數(shù)分別如圖2和表1、表2所示.
在建模過程中,車身等效為剛性質(zhì)量塊,包括重心位置、質(zhì)量、轉(zhuǎn)動慣量等;轉(zhuǎn)向架等效為輪對、構(gòu)架、抗蛇行減振器、橫向液壓減振器、一系懸掛(鋼簧)、二系懸掛(空簧)等;由于列車搭載試驗在試運營前的京滬線上完成,輪軌粗糙度較小,可以用標準軌道譜簡化.
圖2 車廂剛性多體動力學模型Fig.2 Rigid multi-body dynamic model of the car
表1 車體的剛體參數(shù)Tab.1 Rigid-body parameters of the car body
表2 懸掛彈簧的剛體參數(shù)Tab.2 Rigid-body parameters of the suspension springkN/m
350,km/h下、0~4,000,Hz內(nèi)的垂向輪軌力,如圖3(a)所示.輪對左右側(cè)的輪軌力基本一致,整體隨頻率遞減.在1,000,Hz以下有多個峰值,最大超過7,000,N.列車動力學模型是勻速直線行駛,因此沿著軌道和側(cè)向的力暫不考慮.
輪軌力經(jīng)轉(zhuǎn)向架懸掛系統(tǒng)衰減后,得到空氣彈簧懸掛末端的二系懸掛力,如圖3(b)所示.二系懸掛力在0~200,Hz內(nèi)具有較高的峰值,是車內(nèi)低頻噪聲的主要激勵;在200,Hz以上,二系懸掛力銳減,已不是引起車內(nèi)噪聲的主要因素.考慮到顯示效果,本文只給出了0~200,Hz頻段的結(jié)果.
圖3 前轉(zhuǎn)向架輪軌力和二系懸掛力Fig.3Wheel-rail interaction force and secondary suspension force of the front bogie
2.2 車外噪聲源仿真
車輪噪聲經(jīng)空氣介質(zhì)傳播到車體表面的仿真模型如圖4(a)所示,包括4個輪對(8個車輪)的結(jié)構(gòu)-聲耦合模型和形如車體表面的場點模型.
2.2.6 家鄉(xiāng)經(jīng)濟條件 一般家鄉(xiāng)經(jīng)濟條件對勞動力外出務工意愿既有正向影響,又有負向影響。一方面,較好的家鄉(xiāng)經(jīng)濟條件能夠給農(nóng)村勞動力更寬的視野,使其渴望外出獲得更好的就業(yè)機會;另一方面,較好的家鄉(xiāng)經(jīng)濟條件可能有較好的就業(yè)機會,降低其外出務工意愿。調(diào)查中,經(jīng)濟條件較差的編碼為1,有44名,占22.9%;經(jīng)濟條件一般的編碼為2,有92名,占47.9%;經(jīng)濟條件較好的編碼為3,有56名,占29.2%。
參考蚌埠-徐州試驗路段的軌道結(jié)構(gòu),搭建了板式軌道有限元模型,包括鋼軌、扣件、軌道板、底座和基礎(chǔ)梁體,如圖4(b)所示.固定鋼軌的扣件通常由彈條、預埋鐵座、絕緣軌距塊和橡膠墊板組成,在計算模型中簡化為彈簧-阻尼單元.軌道有限元模型參數(shù)如表3所示.
表3 軌道有限元模型參數(shù)Tab.3 Parameters of the finite element rail model
計算車體表面的非定常壓力脈動所需的全尺寸列車組風洞模型(150,m×18,m×15,m)如圖4(a)所示,包括風洞輪廓、進風口、頭車、三號車、尾車和出風口,其中頭車和尾車的主要作用是保證被試車表面的流場較為順暢,與實際情況相仿.
選取轉(zhuǎn)向架中心區(qū)域的一個聲學觀察點,得到350,km/h時該點的車輪噪聲、軌道噪聲和空氣動力噪聲聲壓級SPL的1/3倍頻程結(jié)果,如圖4(d)所示,最大峰值分別出現(xiàn)在2,000~2,500,Hz(105,dB)、800~1,000,Hz(106,dB)和1,250~1,600,Hz(106,dB)頻段,與Mellet等[8]完成的試驗結(jié)論基本一致.雖然文獻[8]的車型與本文不同,但是頭車的轉(zhuǎn)向架與本文具有很高的相似性和參考價值,證明車外噪聲源仿真模型和結(jié)果的精度.
圖4 車外噪聲源的仿真模型及結(jié)果Fig.4 Simulation models and results of the exterior noise sources
2.3 設備噪聲
設備噪聲集中在車下設備艙.由于艙內(nèi)的聲源特征復雜,有風扇的旋轉(zhuǎn)噪聲、裙板柵欄的空氣動力噪聲、牽引系統(tǒng)的電磁噪聲以及設備的機械噪聲等,因此,本文在搭載試驗時測取了設備噪聲,測點如圖5(a)所示.1~3號傳聲器分別固定在牽引變流器一側(cè)、變流器與冷卻風扇電機之間以及冷卻風扇電機旁邊.各個測點的1/3倍頻程聲壓級結(jié)果如圖5(b)所示.從圖中可以看到,在分析頻段內(nèi),車下設備艙內(nèi)的聲學環(huán)境近似于混響,可以將其簡化成混響激勵作用在艙內(nèi)聲腔子系統(tǒng)上.
圖5 設備噪聲測點及結(jié)果Fig.5 Measuring points and results of the equipment noise
3.1 統(tǒng)計聲學能量流建模
整備車廂有限元模型與SAEF模型之間有密切的關(guān)系.在有限元建模時,將車廂劃分為3個系統(tǒng),分別是白車身、內(nèi)飾件和牽引傳動系統(tǒng).
白車身有限元模型由包含鋁型材截面特征的二維四邊形單元組成.內(nèi)飾件從下而上主要包括隔熱層、瀝水板、吸聲層、地板系統(tǒng)、座椅、門窗、木質(zhì)間壁(洗手間、電氣柜等)、玻璃間壁、側(cè)墻板、行李架和通風系統(tǒng)等.牽引系統(tǒng)重點考慮了轉(zhuǎn)向架,并將車下電氣設備簡化為均布質(zhì)量施加在白車身模型對應的節(jié)點上.整備車廂有限元模型由上述3個系統(tǒng)裝配后得到,如圖6所示.
圖6 整備車廂有限元模型Fig.6 Finite element car model with standard equipment
圖7 車廂統(tǒng)計聲學能量流模型Fig.7 Statistical acoustic energy flow model of the car
3.2 整備車廂隔聲性能
車內(nèi)不同區(qū)域的組合板結(jié)構(gòu)不盡相同,對應的隔聲量也不一樣[8].從圖7(b)中可以看到,白車身結(jié)構(gòu)子系統(tǒng)可以分為3個區(qū)域,分別是地板、側(cè)墻和車頂.在每個斷面上,3個區(qū)域各劃分為3個子系統(tǒng),此外側(cè)墻還包括車窗子系統(tǒng).其中地板和車窗因構(gòu)造復雜且隔聲性能關(guān)鍵,需要重點研究;其他區(qū)域子系統(tǒng)的結(jié)構(gòu)相對簡單,分析難度不大.
選取某個區(qū)域的地板系統(tǒng)為例,它的有限元模型如圖8(a)所示.由于吸音層具有聲學特征,需要將其與地板和瀝水板的接觸面定義為耦合層,與實際情況更加接近.采用聲學有限元法計算板件組合板在0~4,000,Hz中心頻帶內(nèi)的隔聲量,計算模型如圖8(b)所示.
板件的隔聲性能與模態(tài)具有密切的關(guān)系,通常在整體模態(tài)頻率下,板件的隔聲曲線易出現(xiàn)低谷.模態(tài)分析和隔聲試驗可以分別間接和直接驗證板件隔聲性能,但是研究過程中,獲取車體各個區(qū)域的組合板試件是不現(xiàn)實的,所以需要尋找其他方法驗證組合板隔聲量的精度.由于組合板是組成整備車廂的子結(jié)構(gòu),如果整備車廂的有限元模型精度足夠高,就能保證子結(jié)構(gòu)的精度,從而間接證明了子結(jié)構(gòu)隔聲性能的準確度.
圖8 地板組合板結(jié)構(gòu)有限元模型Fig.8 FE model of the floorboard composition structure
整備車廂模態(tài)試驗采用多點激勵-多點響應的測試技術(shù),如圖9(a)所示.試驗過程中,在車體表面等間距布置振動傳感器,測點盡量選取剛度較大的區(qū)域.試驗時將車廂置于水平軌道上,由于轉(zhuǎn)向架空氣彈簧的彈性支撐,車廂近似處于自由邊界,并在車下布置多個激振器激勵車體并測量模態(tài).
整備車廂首階垂向彎曲模態(tài)對于列車具有重要的意義,具體可參考《200,km/h以上速度級鐵道車輛強度設計和試驗鑒定暫行規(guī)定》.仿真與試驗模態(tài)振型如圖9(b)所示,兩者的振型十分一致.由于模態(tài)頻率為企業(yè)的保密內(nèi)容,故本文無法提供,但兩個頻率誤差在10%以內(nèi).綜上,整備車廂有限元模型的精度是足夠高的,可以間接證明各區(qū)域組合板基于模態(tài)特性的隔聲量仿真結(jié)果.
圖9 整備車廂首階垂向彎曲模態(tài)振型的仿真與試驗對比Fig.9 Simulated and measured first-order vertical bending modal shapes of the car
采用圖8(b)的聲學有限元模型計算得到該地板系統(tǒng)在0~4,000,Hz頻段的隔聲量STL,如圖10所示.從圖中可以看到,該地板組合板的隔聲量在總體上隨著頻率的升高而增大,在1,600,Hz和3,150~4,000,Hz中心頻帶內(nèi)出現(xiàn)峰值,隔聲量分別為77.9,dB和80.3,dB;但在200,Hz中心頻率下出現(xiàn)了隔聲量的低谷,因為地板組合板在200,Hz中心頻率下具有整體模態(tài),使該頻率下出現(xiàn)隔聲量低谷.
車窗有限元模型如圖11所示,由內(nèi)外層鋼化玻璃、中間空氣層和周邊的密封橡膠組成.其中,內(nèi)層和外層的鋼化玻璃厚度分別為6,mm和4,mm,空氣層厚度為24,mm.空氣層和玻璃的接觸面定義為流固耦合層.采用聲學有限元法計算得到車窗在0~4,000,Hz中心頻帶內(nèi)的隔聲量,如圖10所示.
圖10 地板組合板和車窗的隔聲量1/3倍頻程結(jié)果Fig.10 Sound transmission losses of the floorboard composition and window in 1/3 octave band
采用同樣的方法得到側(cè)墻上、中、下區(qū)域的組合板的隔聲量結(jié)果,如圖12(a)所示.側(cè)墻各區(qū)域組合板的隔聲量幅值與變化趨勢基本一致.然而,由于3個區(qū)域的鋁型材截面結(jié)構(gòu)相差較大,導致組合板在不同的頻率下具有完全不同的模態(tài)振型,最終使特定頻率下的隔聲量出現(xiàn)差異.
車頂區(qū)域各組合板子系統(tǒng)的隔聲量結(jié)果如圖12(b)所示.曲線特征與側(cè)墻組合板基本一樣.
圖12 側(cè)墻和車頂組合板的隔聲量1/3倍頻程結(jié)果Fig.12Sound transmission loss of the sidewall and roof composition structure in 1/3 octave band
3.3 車內(nèi)聲學響應仿真與試驗對比
將不同區(qū)域組合板的隔聲性能、機械激勵和聲激勵添加到車廂SAEF模型中,效果如圖13所示.
圖13 多物理場耦合激勵加載到統(tǒng)計聲學能量流模型Fig.13 Statistical acoustic energy flow model stimulated by multi-physical field coupling excitation
在開始車內(nèi)噪聲計算之前,還需要基于試驗獲得一組SAEF模型附屬參數(shù),分別是車內(nèi)聲腔的內(nèi)損耗因子、座椅材料的吸聲系數(shù)、客室上方的穿孔通風頂板的隔聲量和客室兩端的玻璃間壁的隔聲量.其中,聲腔的內(nèi)損耗因子可以通過式(14)求得,試驗結(jié)果如圖14(a)所示,總體上隨頻率遞減,并在高頻處穩(wěn)定在一個較小的幅值附近.座椅材料的吸聲系數(shù)通過駐波管測量,結(jié)果如圖14(a)所示;穿孔頂板和玻璃間壁的隔聲量在由混響室和消聲室組合的標準隔聲實驗室測量,結(jié)果如圖14(b)所示.
圖14 統(tǒng)計聲學能量流模型附屬參數(shù)Fig.14 Auxiliary parameters of the SAEF model
計算完成后,得到多物理場激勵耦合作用下的車內(nèi)聲腔子系統(tǒng)的聲學響應.參考《GB/T 12816—2006鐵道客車內(nèi)部噪聲限值及測量方法》,選取車內(nèi)中心、距離地板1.2,m左右的聲腔進行重點研究,得到0~4,000,Hz頻段的聲壓級,與350,km/h下的列車搭載試驗相同位置測點的數(shù)據(jù)對比,結(jié)果如圖15所示.可以看到,在0~4,000,Hz頻段內(nèi),車內(nèi)中心聲腔的仿真與試驗聲壓級曲線的趨勢總體上保持一致.在100,Hz以下頻段,仿真與試驗的誤差較大,因為組合板的隔聲量在低頻段受到邊界條件的影響. 在1,000,Hz中心頻率處,引起仿真與試驗誤差的主要原因是軌道模型在該頻率處的精度不足,使軌道噪聲偏大,進而使車內(nèi)噪聲偏大.在其他頻率處,仿真與試驗的誤差總體控制在3,dB以內(nèi),滿足工程要求.此外,在分析頻段內(nèi),車內(nèi)中心聲腔的仿真與試驗的A計權(quán)聲壓級總值分別為67.6,dB(A)和65.0,dB(A),相差2.6,dB(A).
圖15 多物理場耦合激勵下的車內(nèi)中心聲壓級1/3倍頻程仿真與試驗對比曲線Fig.15Comparison of the 1/3 octave band simulated and measured interior center sound pressure levels under the multi-physical-field coupled excitations
(1) 采用多體動力學、快速多極邊界元和大渦模擬提取了350,km/h下的輪軌力/二系懸掛力、車輪噪聲、軌道噪聲和空氣動力噪聲,對比文獻[9]的試驗結(jié)果發(fā)現(xiàn),仿真與試驗得到的各噪聲源最大聲能頻段一致,對應的聲壓級誤差也較小,驗證了多物理場激勵的準確性.
(2) 搭建了整備車廂有限元模型,同時完成了車廂的模態(tài)試驗,得到首階垂向彎曲模態(tài)的仿真與試驗結(jié)果,兩者的頻率誤差小于10%,且振型高度一致,可以保證模型及組合板隔聲性能的精度.
(3) 基于首次提出的SAEF方法計算了350,km/h時多物理場激勵下的高速列車車內(nèi)全頻噪聲,并對比分析了車內(nèi)中心聲壓級的仿真結(jié)果與搭載試驗結(jié)果,誤差在工程允許范圍內(nèi),證明了SAEF方法的可行性和有效性.
[1] 肖友剛,康志成. 高速列車乘客室內(nèi)輪軌激勵噪聲的貢獻度分析[J]. 華南理工大學學報:自然科學版,2009,37(2):98-101,106. Xiao Yougang,Kang Zhicheng. Acoustic contribution analysis of passenger room of high-speed train under wheel-rail excitation[J]. Journal of South China University of Technology:Natural Science Edition,2009,37(2):98-101,106(in Chinese).
[2] Sapena J,Tabbal A,Jove J,et al. Interior noise prediction in high-speed rolling stock driver’s cab:Focus on structure-borne paths(mechanical and aero sources) [J]. Noise and Vibration Mitigation for Rail Transportation Systems,2012,118(1):445-452.
[3] 劉加利,張繼業(yè),張衛(wèi)華. 高速列車車內(nèi)中高頻氣動噪聲計算方法[J]. 交通運輸工程學報,2011,11(3):55-60. Liu Jiali,Zhang Jiye,Zhang Weihua. Calculation method of interior aerodynamic noises with middle and high frequencies for high-speed train[J]. Journal of Traffic and Transportation Engineering,2011,11(3):55-60(in Chinese).
[4] Thompson D J,Jones C J C. A review of the modelling of wheel/rail noise generation[J]. Journal of Sound and Vibration,2000,231(3):519-536.
[5] Wu Tianxing,Thompson D J. Theoretical investigation of wheel/rail non-linear interaction due to roughness excitation[J]. Vehicle System Dynamics,2000,34(4):261-282.
[6] Liu Yijun,Nishimura N. The fast multipole boundary element method for potential problems:A tutorial[J]. Engineering Analysis with Boundary Elements,2006,30(5):371-381.
[7] Colonius T,Lele S K. Computational aeroacoustics:Progress on nonlinear problems of sound generation[J]. Progress in Aerospace Sciences,2004,40(6):345-416.
[8] 張慶輝,郝志勇,張煥宇,等. 柴油機缸蓋罩隔聲性能與透射噪聲[J]. 天津大學學報:自然科學與工程技術(shù)版,2014,47(9):796-802. Zhang Qinghui,Hao Zhiyong,Zhang Huanyu,et al. Sound insulation performance and transmission noise of engine covers of diesel engine[J]. Journal of Tianjin University:Science and Technology,2014,47(9):796-802(in Chinese).
[9] Mellet C,Letourneaux F,Poisson F,et al. High speed train noise emission:Latest investigation of the aerodynamic/rolling noise contribution [J]. Journal of Sound and Vibration,2006,293(3/4/5):525-546.
(責任編輯:孫立華)
Calculation of Full-Spectrum Interior Noise of High-Speed Train with SAEF Method
Mao Jie1,Zheng Xu1,Hao Zhiyong1,Sun Qiang2,Ma Xiaolong2
(1. Department of Energy Engineering,Zhejiang University,Hangzhou 310027,China;2. Research and Development Center,Changchun Railway Vehicles Company Limited,Changchun 130000,China)
Statistical acoustic energy flow(SAEF)method was proposed to study full-spectrum interior noise of highspeed railway trains(HST),considering multi-physical-field coupling excitations to stimulate the acoustic energy flow between the exterior excitations and interior noise,as well as between the interior acoustic cavities. First of all,rigid multi-body dynamics(RMBD),fast multi-pole boundary element analysis(FMBEA)and large-eddy simulation(LES)were employed to extract the wheel-rail interaction forces/secondary suspension forces,wheel-rail rolling noise and aerodynamic noise at 350,km/h,respectively;and these excitations were validated by references. Second,a finite element(FE)car model was constructed;the precision of the global FE car as well as the local FE aluminum alloy extrusion-trim part composition boards was validated by modal analysis via multi-input and multioutput technology. Thus,the mode-based sound transmission loss(STL)accuracy of any composition board was indirectly ensured. Finally,the SAEF model of the curb car,which was stimulated by the coupled excitation and defined with the given composite board STLs,was constructed to calculate the interior noise in 0~4,000,Hz at 350,km/h. The simulated and measured interior center sound pressure levels(SPL)were compared. The results show that the variation trend of the simulated 1/3,octave band SPL spectrum agrees well with that of the on-line-measured one. The deviation between the simulated and measured overall SPLs is 2.6,dB(A),which was well controlled below the engineering tolerance limit,thus validating the feasibility of SAEF method in the HST full-spectrum interior noise analysis.
high-speed train;full-spectrum noise;statistical acoustic energy flow;multi-physical-field couplingexcitation
TB532
A
0493-2137(2015)11-0960-09
10.11784/tdxbz201404101
2014-04-25;
2014-06-12.
國家高技術(shù)研究發(fā)展計劃(863計劃)資助項目(2011AA11A103).
毛 杰(1987— ),男,博士研究生,maojie1987@zju.edu.cn.
鄭 旭,zhengxu@zju.edu.cn.
時間:2014-07-08. 網(wǎng)絡出版地址:http://www.cnki.net/kcms/doi/10.11784/tdxbz201404101.html.