蔡 艷, 郝明德
(1四川農(nóng)業(yè)大學(xué)資源環(huán)境學(xué)院,四川成都 611130; 2 西北農(nóng)林科技大學(xué)資源環(huán)境學(xué)院,陜西楊凌 712100;3 西北農(nóng)林科技大學(xué)水土保持研究所,陜西楊凌 712100)
輪作模式與周期對(duì)黃土高原旱地小麥產(chǎn)量、養(yǎng)分吸收和土壤肥力的影響
蔡 艷1, 2, 郝明德2, 3*
(1四川農(nóng)業(yè)大學(xué)資源環(huán)境學(xué)院,四川成都 611130; 2 西北農(nóng)林科技大學(xué)資源環(huán)境學(xué)院,陜西楊凌 712100;3 西北農(nóng)林科技大學(xué)水土保持研究所,陜西楊凌 712100)
輪作; 黃土高原; 小麥; 養(yǎng)分吸收; 礦質(zhì)營(yíng)養(yǎng); 土壤肥力
糧草輪作和糧豆輪作是黃土高原旱地區(qū)常見(jiàn)種植方式。黃土高原旱地區(qū)實(shí)行糧草輪作或糧豆輪作可提高土壤剖面供氮能力[3-4],增加有效磷和有效鐵、錳含量[5-6],蔗糖酶、脲酶、堿性磷酸酶和蛋白酶活性也有不同程度的提高[7]。本研究在黃土高原旱地長(zhǎng)期定位試驗(yàn)基礎(chǔ)上,研究糧草長(zhǎng)周期輪作、糧草短周期輪作、糧豆輪作對(duì)小麥產(chǎn)量、養(yǎng)分吸收和土壤肥力的影響,以期為該地區(qū)優(yōu)化種植制度提高糧食產(chǎn)量,增加糧食作物礦質(zhì)養(yǎng)分含量,實(shí)現(xiàn)土壤養(yǎng)分資源平衡管理及可持續(xù)利用提供依據(jù)。
1.1 試驗(yàn)地概況
1.2 試驗(yàn)材料
試驗(yàn)土壤為粘化黑壚土,母質(zhì)是深厚的中壤質(zhì)馬蘭黃土,全剖面土質(zhì)均勻疏松,通透性好,肥力中等。試驗(yàn)開(kāi)始時(shí)耕層土壤有機(jī)質(zhì)10.5 g/kg,全氮0.800 g/kg,堿解氮37.0 mg/kg,全磷0.659 g/kg,有效磷3.00 mg/kg,速效鉀129 mg/kg,pH(H2O) 8.24。供試小麥品種為長(zhǎng)武134,田間管理同大田。
1.3 試驗(yàn)設(shè)計(jì)
長(zhǎng)期定位試驗(yàn)于1984年布置,設(shè)糧草長(zhǎng)周期輪作、糧草短周期輪作和糧豆輪作3種輪作制度,以小麥連作處理(CK)作為對(duì)照,共8個(gè)處理。為保證同一年度取到不同茬口年限小麥及土壤樣品,糧草長(zhǎng)周期輪作設(shè)以下3組種植方式:小麥→小麥→苜?!俎!俎!俎!R鈴薯→小麥(WAT1); 小麥→苜?!俎!俎!俎!R鈴薯→小麥→小麥(WAT2); 苜?!俎!俎!俎!R鈴薯→ 小麥→小麥→小麥(WAT3)。糧草短周期輪作設(shè)以下2組種植方式:小麥+紅豆草→紅豆草→小麥(WST1); 紅豆草→小麥→小麥+紅豆草(WST2)。糧豆輪作設(shè)以下2組種植方式:小麥+糜子→豌豆→小麥(WPT1); 豌豆→小麥→小麥+糜子(WPT2)。
小區(qū)長(zhǎng)10.26 m、 寬6.5 m,面積66.69 m2。每個(gè)處理3次重復(fù),隨機(jī)區(qū)組排列。各處理年施肥量為N 120 kg/hm2,P2O560 kg/hm2,所施氮肥為尿素,磷肥為過(guò)磷酸鈣,皆于作物播前將肥料撒施地表后耕翻入土。
1.4 樣品采集與分析
植物樣品養(yǎng)分含量用H2SO4-H2O2消煮后,凱氏定氮法測(cè)氮,鉬藍(lán)比色法測(cè)磷,火焰光度法測(cè)鉀,原子吸收法測(cè)鐵、錳、銅、鋅[8]。土壤樣品測(cè)定方法:有機(jī)質(zhì)采用重鉻酸鉀外加熱法,全氮采用凱氏定氮法,全磷采用酸融—鉬銻抗比色法,堿解氮采用堿解擴(kuò)散法,有效磷采用Olsen法,速效鉀采用火焰光度法測(cè)定[8]。
1.5 數(shù)據(jù)處理方法
數(shù)據(jù)采用軟件Excel和DPS 6.55進(jìn)行處理和統(tǒng)計(jì)分析。方差分析采用單因素方差分析(ANOVA),最小差數(shù)法(LSD法)進(jìn)行多重比較。
養(yǎng)分收獲指數(shù)(%)= 籽粒養(yǎng)分吸收量 × 100/植株養(yǎng)分吸收總量
2.1 長(zhǎng)期輪作對(duì)黃土高原旱地小麥產(chǎn)量的影響
表1 長(zhǎng)期輪作下黃土高原旱地的小麥產(chǎn)量Table 1 Wheat yield in the long-term rotation in Loess Plateau
注(Note): 同列數(shù)據(jù)后不同字母表示處理間差異達(dá)到5%顯著水平 Values followed by different letters in the same column are significantly different at the 5% level.
2.2 長(zhǎng)期輪作對(duì)黃土高原旱地小麥養(yǎng)分吸收的影響
2.2.1 長(zhǎng)期輪作對(duì)小麥大量元素吸收的影響 輪作可促進(jìn)旱地小麥對(duì)氮磷鉀養(yǎng)分的吸收,且對(duì)氮鉀吸收的影響程度高于磷。糧草長(zhǎng)周期輪作小麥吸氮量最高,平均值為142.6 kg/hm2,比連作小麥高29.28%。糧豆輪作小麥吸鉀量最高,平均值為94.9 kg/hm2,比連作小麥高29.47%(表2)。
苜蓿茬后種植小麥,促進(jìn)了小麥對(duì)土壤氮鉀的吸收,且第三年小麥 > 第二年 >第一年(表2),但苜蓿茬后第一年小麥吸磷量低于連作小麥,生產(chǎn)上應(yīng)注意合理施用磷肥。紅豆草茬后小麥對(duì)氮鉀的吸收量均高于連作小麥,WST1小麥吸氮量稍高于WST2,WST2小麥吸磷量和吸鉀量稍高于WST1,但處理之間差異均不顯著。豌豆茬后小麥各部位對(duì)氮磷鉀的吸收量均表現(xiàn)為WPT2 > WPT1,且種植豌豆后第二年小麥籽粒和植株吸氮量,及秸稈和植株吸鉀量均顯著高于連作小麥。
表2 長(zhǎng)期輪作對(duì)黃土高原旱地小麥大量元素吸收的影響Table 2 Effect of the long-term rotation on wheat uptakes of macronutrients in dryland fields in the Loess Plateau
注(Note): 同列數(shù)據(jù)后不同字母表示處理間差異達(dá)到5%顯著水平 Values followed by different letters in the same column are significantly different at the 5% level.
2.2.2 長(zhǎng)期輪作對(duì)小麥微量元素吸收的影響 輪作系統(tǒng)和茬口年限對(duì)旱地小麥籽粒吸鐵量無(wú)顯著影響,對(duì)小麥秸稈吸鐵量和植株吸鐵量有顯著影響(圖1A)。糧草長(zhǎng)周期輪作中,小麥各部位吸鐵量表現(xiàn)為WAT3 > WAT2 > WAT1,且WAT3顯著高于CK和WAT1。糧草短周期輪作中,小麥各部位吸鐵量表現(xiàn)為WST1 > WST2,WST1小麥秸稈和植物吸鐵量分別比CK高54.74%和50.82%,差異顯著。糧豆輪作中,WPT2小麥秸稈吸鐵量顯著高于WPT1和CK。
糧草輪作對(duì)旱地小麥各部位吸錳量影響程度較小,糧草長(zhǎng)周期輪作、糧草短周期輪作中各茬小麥籽粒、秸稈和植物吸錳量與連作小麥均無(wú)顯著差異(圖1B)。糧豆輪作對(duì)旱地小麥吸錳量影響較大,WPT2小麥籽粒、秸稈和植株吸錳量分別比CK高27.56%、53.21%和44.26%,顯著高于CK,且其秸稈和植株吸錳量顯著高于糧草輪作系統(tǒng)中各茬小麥。
糧草長(zhǎng)周期輪作及茬口年限對(duì)旱地小麥吸銅量影響較大,其他兩種輪作系統(tǒng)影響較小(圖1C)。采取糧草長(zhǎng)周期輪作后,WAT1小麥吸銅量與CK相近,WAT2小麥吸銅量大幅增加,顯著高于CK,WAT3小麥籽粒吸銅量仍顯著高于CK。采取糧草短周期輪作后,WST2秸稈和植株吸銅量比WAT1高約10%,但均與CK差異不顯著。糧豆輪作與連作相比,小麥吸銅量無(wú)顯著差異。
從圖1D可以看出,種植制度和茬口年限對(duì)旱地小麥吸鋅量的影響與銅相似。苜蓿茬后年限越長(zhǎng),小麥對(duì)鋅的吸收量越高,WAT3籽粒、植株吸鋅量均顯著高于CK。紅豆草茬后小麥吸鋅規(guī)律與此相反,WST2小麥籽粒、秸稈、植株吸鋅量均低于WST1,但兩者差異不顯著。豌豆茬后年限越長(zhǎng),小麥各部位對(duì)鋅的吸收量稍有增加,但兩者差異不顯著。
圖1 長(zhǎng)期輪作對(duì)黃土高原旱地小麥微量元素吸收的影響Fig.1 Effect of the long-term rotation on wheat uptake of micronutrients in dryland fields in the Loess Plateau[注(Note): 同一部位柱狀圖上不同字母表示處理間差異達(dá)到5%顯著水平 Different letters above the bar in the same parts mean significant difference at the 5% level.]
表3 長(zhǎng)期輪作對(duì)黃土高原旱地小麥養(yǎng)分收獲指數(shù)的影響(%)Table 3 Effect of the long-term rotation on wheat harvest indexes of nutrients in dryland fields in the Loess Plateau
注(Note): 同列數(shù)據(jù)后不同字母表示處理間差異達(dá)到5%顯著水平 Values followed by different letters in the same column are significantly different at the 5% level.
各種植體系中,茬口年限對(duì)小麥微量元素收獲指數(shù)影響方向和程度均不相同,種植系統(tǒng)間也有一定差異。糧草長(zhǎng)周期輪作中,3年間小麥鐵收獲指數(shù)差異不顯著,但WAT3顯著低于CK;WAT3小麥錳、銅、鋅收獲指數(shù)顯著高于CK,且銅收獲指數(shù)顯著高于WAT1和WAT2。糧草短周期輪作中,WST1鐵收獲指數(shù)顯著低于CK,其它與之相當(dāng);WST2鐵、錳收獲指數(shù)顯著高于WST1,但銅收獲指數(shù)顯著低于WST1。糧豆輪作中,WPT1鐵、錳收獲指數(shù)顯著高于WPT2,兩者銅收獲指數(shù)均顯著高于CK;WPT2鋅收獲指數(shù)顯著高于CK。
2.3 長(zhǎng)期輪作對(duì)黃土高原小麥地耕層土壤肥力性質(zhì)的影響
表4 長(zhǎng)期輪作黃土高原旱地區(qū)小麥地耕層土壤肥力性質(zhì)Table 4 Effect of the long-term rotation on soil fertility of wheat topsoil in dryland fields in the Loess Plateau
3.1 輪作對(duì)土壤肥力和小麥產(chǎn)量的影響
3.2 輪作對(duì)小麥養(yǎng)分吸收的影響
小麥?zhǔn)侵袊?guó)和全球大多數(shù)人主要的食物和礦質(zhì)元素來(lái)源,其礦質(zhì)養(yǎng)分含量和分布對(duì)小麥植株生長(zhǎng)發(fā)育和人體健康的影響已受到廣泛關(guān)注[23-24]。小麥礦質(zhì)養(yǎng)分含量和分布狀況受遺傳基因[25-26]和土壤管理[1,14,27-28]共同影響。
黃土高原旱地區(qū)實(shí)行糧草輪作后,由于豆科植物需磷量高[23],土壤供磷強(qiáng)度減少約30%,導(dǎo)致種植苜蓿和紅豆草后1年小麥吸磷量低于連作小麥。同時(shí)由于豆科植物對(duì)土壤氮素的富集作用[15-16]和鉀素的活化作用[29],輪作條件下小麥氮鉀吸收量高于連作小麥。楊寧等[28]認(rèn)為,旱地小麥和豆科作物輪作增產(chǎn)的重要原因是減少莖葉鉀素在花后的轉(zhuǎn)移,本研究也發(fā)現(xiàn),小麥與苜蓿、紅豆草及豌豆輪作后,鉀素收獲指數(shù)普遍下降,產(chǎn)量卻不同程度增加。
許多醫(yī)學(xué)專家認(rèn)為當(dāng)今人類疾病90%以上與微量元素有關(guān),而糧食作物籽粒中微量元素,特別是鋅、鐵含量較低,生物有效性差是全世界普遍存在的問(wèn)題[30]。黃土高原旱地小麥籽粒鐵、錳、銅、鋅含量比全國(guó)平均水平分別低7.7%、9.2%、42.9%和6.3%[14],通過(guò)一定措施提高小麥籽粒對(duì)微量元素的吸收顯得尤為迫切。本研究表明,輪作使旱地小麥對(duì)微量元素的吸收量增加或差異不顯著,各種植系統(tǒng)及小麥茬口年限對(duì)4種微量元素影響不一,這與豆科植物對(duì)土壤微量元素形態(tài)和有效性的影響不盡相同有很大關(guān)系[6,31]??偟膩?lái)說(shuō),黃土高原旱地區(qū)實(shí)行糧草長(zhǎng)周期輪作有利于促進(jìn)小麥籽粒對(duì)鐵、銅、鋅的吸收,且苜蓿茬后3年小麥 > 2年小麥 > 1年小麥。糧豆輪作可促進(jìn)小麥籽粒對(duì)錳的吸收,且豌豆茬后2年小麥 > 1年小麥。糧草短周期輪作對(duì)小麥籽粒微量元素累積作用不明顯。因此,在黃土高原旱地促進(jìn)小麥對(duì)微量元素吸收的較優(yōu)種植制度為糧草長(zhǎng)周期輪作或糧豆輪作。
1)輪作可不同程度增加旱地小麥產(chǎn)量。糧草短周期輪作有利于提高小麥籽粒產(chǎn)量,糧草長(zhǎng)周期輪作有利于提高小麥秸稈產(chǎn)量和生物產(chǎn)量。種植豆科牧草后2年小麥產(chǎn)量高于1年小麥,至苜蓿茬后3年小麥產(chǎn)量逐漸降低,輪作優(yōu)勢(shì)逐漸減弱。糧豆輪作小麥產(chǎn)量有增加趨勢(shì),但不顯著。
2)輪作可提高旱地小麥對(duì)氮鉀的吸收,糧豆輪作效果最明顯;輪作對(duì)旱地小麥吸磷無(wú)顯著影響。輪作及茬口年限對(duì)小麥大量元素收獲指數(shù)影響較小。
3)糧草長(zhǎng)周期輪作可促進(jìn)旱地小麥對(duì)鐵、銅、鋅的吸收,且苜蓿茬后3年小麥 > 2年小麥 > 1年小麥。糧草短周期輪作可促進(jìn)小麥對(duì)鐵的吸收,且紅豆草茬后1年小麥 > 2年小麥。糧豆輪作可促進(jìn)小麥對(duì)鐵、錳的吸收,且豌豆茬后2年小麥 > 1年小麥。糧草輪作鐵收獲指數(shù)低于連作小麥,糧豆輪作則有利銅向籽粒轉(zhuǎn)移。
4)輪作可提高土壤氮素供應(yīng)潛力和供應(yīng)強(qiáng)度,且糧草短周期作用最明顯。糧草輪作減少了土壤磷的累積和有效磷的供應(yīng)強(qiáng)度,糧豆輪作則剛好相反。
[1] 陳磊, 郝明德, 張少民, 樊虎玲. 黃土高原旱地長(zhǎng)期施肥對(duì)小麥養(yǎng)分吸收和土壤肥力的影響[J]. 植物營(yíng)養(yǎng)與肥料學(xué)報(bào), 2007, 13(2): 230-235. Chen L, Hao M D, Zhang S M, Fan H L. Effects of long-term application of fertilizer on wheat nutrient uptake and soil fertility in Loess Plateau[J]. Plant Nutrition and Fertilizer Science, 2007, 13(2): 230-235.
[2] 何曉雁, 郝明德, 李慧成, 蔡志風(fēng). 黃土高原旱地小麥?zhǔn)┓蕦?duì)產(chǎn)量及水肥利用效率的影響[J]. 植物營(yíng)養(yǎng)與肥料學(xué)報(bào), 2010, 16(6): 1333- 1340. He X Y, Hao M D, Li H C, Cai Z F. Effects of different fertilization on yield of wheat and water and fertilizer use efficiency in the Loess Plateau[J]. Plant Nutrition and Fertilizer Science, 2010, 16(6): 1333-1340.
[3] 李小涵, 王朝輝, 郝明德, 等. 黃土高原旱地種植體系對(duì)土壤水分及有機(jī)氮和礦質(zhì)氮的影響[J]. 中國(guó)農(nóng)業(yè)科學(xué), 2008, 41(9): 2686-2692. Li X H, Wang Z H, Hao M Detal. Effects of cropping systems on soil water, organic N and mineral N in dryland soil on the Loess Plateau[J]. Scientia Agricultura Sinica, 2008, 41(9): 2686-2692.
[4] 劉曉宏, 郝明德, 樊軍. 黃土高原旱區(qū)長(zhǎng)期不同輪作施肥對(duì)土壤供氮能力的影響[J]. 干旱地區(qū)農(nóng)業(yè)研究, 2000, 18(3): 1-7. Liu X H, Hao M D, Fan J. Effects of long-term rotation and fertilization on N-supply by soil in dryland area on loess plateau[J]. Agricultural Research in the Arid Areas, 2000, 18(3): 1-7.
[5] 戚瑞生, 黨廷輝, 楊紹瓊, 等. 長(zhǎng)期輪作與施肥對(duì)農(nóng)田土壤磷素形態(tài)和吸持特性的影響[J]. 土壤學(xué)報(bào), 2012, 49(6): 1136-1146. Qi R S, Dang T H, Yang S Qetal. Forms of soil phosphorus and P adsorption in soils under long-term crop rotation and fertilization systems[J]. Acta Pedologica Sinica, 2012, 49(6): 1136-1146.
[6] 魏孝榮, 郝明德, 邵明安. 黃土高原旱地長(zhǎng)期種植作物對(duì)土壤微量元素形態(tài)和有效性的影響[J]. 生態(tài)學(xué)報(bào), 2005, 25(12): 3196-3203. Wei X R, Hao M D, Shao M A.Effects of long-term cropping on the forms and the availability of micronutrients in dryland soils on the Loess Plateau[J]. Acta Ecologica Sinica, 2005, 25(12): 3196-3203.
[7] 樊軍, 郝明德. 黃土高原旱地輪作與施肥長(zhǎng)期定位試驗(yàn)研究I. 長(zhǎng)期輪作與施肥對(duì)土壤酶活性的影響[J]. 植物營(yíng)養(yǎng)與肥料學(xué)報(bào), 2003, 9(1): 9-13. Fan J, Hao M D.Study on long-term experiment of crop rotation and fertilization in the Loess Plateau Ⅰ.Effect of crop rotation and continuous planting on soil enzyme activities[J]. Plant Nutrition and Fertilizer Science, 2003, 9(1): 9-13.
[8] 鮑士旦. 土壤農(nóng)化分析(第三版)[M]. 北京: 中國(guó)農(nóng)業(yè)出版社, 2008: 30-281. Bao S D. Soil and agricultural chemistry analysis(3rd)[M]. Beijing: China Agricultural Press, 2008: 30-281.
[9] Lupwayi N Z, Rice W A, Clayton G W. Soil microbial diversity and community structure under wheat as influenced by tillage and crop rotation[J]. Soil Biology and Biochemistry, 1998, 30(13): 1733-1741.
[10] Rasmussen P E, Douglas C L, Collins H P, Albrecht S L. Long-term cropping system effects on mineralizable nitrogen in soil[J]. Soil Biology and Biochemistry, 1998, 30(13): 1829-1837.
[11] 黨廷輝. 黃土旱塬區(qū)輪作培肥試驗(yàn)研究[J]. 土壤侵蝕與水土保持學(xué)報(bào),1998(3): 44-47, 66. Dang T H. Influence of crop rotation on soil fertility in arid-highland of Loess Plateau[J]. Journal of Soil Erosion and Soil and Water Conservation, 1998(3): 44-47, 66.
[12] Ahmad T, Hafeez F Y, Mahmood T, Malik K A. Residual effect of nitrogen fixed by mungbean (Vignaradiata) and blackgram (Vignamungo) on subsequent rice and wheat crops[J]. Australian Journal of Experimental Agriculture, 2001, 41(2): 245-248.
[13 ] Kumar K, Goh K M. Management practices of antecedent leguminous and non-leguminous crop residues in relation to winter wheat yields, nitrogen uptake, soil nitrogen mineralization and simple nitrogen balance[J]. European Journal of Agronomy, 2002, 16(4): 295-308.
[14] 李可懿, 王朝輝, 趙護(hù)兵, 等. 黃土高原旱地小麥與豆科綠肥輪作及施氮對(duì)小麥產(chǎn)量和籽粒養(yǎng)分的影響. 干旱地區(qū)農(nóng)業(yè)研究, 2011, 29(2): 110-116,123. Li K Y, Wang Z H, Zhao H Betal. Effect of rotation with legumes and N fertilization on yield and grain nutrient contents of wheat in dryland of the Loess Plateau[J]. Agricultural Research in the Arid Areas, 2011, 29(2): 110-116, 123.
[15] 李兆麗. 紅豆草與紫花苜蓿的培肥效果研究[J]. 草業(yè)科學(xué), 2008, 25(7): 65-68. Li Z L. Study of onobrychis viciaefolia and medicago sativa on yield and soil fertility[J]. Pratacultural Science, 2008, 25(7): 65-68.
[16] 馬生發(fā), 陳紅, 曹宏. 黃土高原溝壑區(qū)利用苜蓿復(fù)耕對(duì)土壤腐殖質(zhì)特性的影響[J]. 水土保持學(xué)報(bào), 2011, 25(1): 229-233. Ma S F, Chen H, Cao H. Study on the utilization methods of the complex cultivated land alfalfa in gully region of the Loess Plateau[J]. Journal of Soil and Water Conservation, 2011, 25(1): 229-233.
[17] 樊軍, 郝明德, 王永功. 旱地長(zhǎng)期輪作施肥對(duì)土壤肥力影響的定位研究[J]. 水土保持研究, 2003, 10(1): 31-36. Fan J, Hao M D, Wang Y G. Effects of rotations and fertilizations on soil fertility on upland of Loess Plateau[J]. Soil and Water Research and Conservation. 2003, 10(1): 31-36.
[18] 王學(xué)春, 李軍, 方新宇, 等. 黃土高原半干旱偏旱區(qū)草糧輪作田土壤水分恢復(fù)效應(yīng)模擬[J]. 應(yīng)用生態(tài)學(xué)報(bào), 2011, 22(1): 105- 113. Wang X C, Li J, Fang X Yetal. Simulation on the restoration effect of soil moisture in alfalfa (Medicagosativa)-grain rotation system in semi-arid and drought-prone regions of Loess Plateau[J]. Chinese Journal of Applied Ecology, 2011, 22(1): 105- 113.
[19] 陳磊, 郝明德, 張少民, 高長(zhǎng)青. 黃土高原旱地施肥對(duì)小麥與苜蓿土壤水分養(yǎng)分含量的影響[J]. 草地學(xué)報(bào), 2007, 15(4): 371-375. Chen L, Hao M D, Zhang S M, Gao C Q. Effect of long-term fertilization on the soil water and nutrient contents of rainfed wheat and alfalfa lands in Loess Plateau[J]. Acta Agrestia Sinica, 2007, 15(4): 371-375.
[20] 王俊, 李鳳民, 賈宇, 王亞軍. 半干旱黃土區(qū)苜蓿草地輪作農(nóng)田土壤氮、磷和有機(jī)質(zhì)變化[J]. 應(yīng)用生態(tài)學(xué)報(bào), 2005, 16(3): 439-444. Wang J, Li F M, Jia Y, Wang Y J. Dynamics of soil nitrogen,phosphorus and organic matter in alfalfa-crop rotated farmland in semiarid area of Northwest China[J]. Chinese Journal of Applied Ecology, 2005, 16(3): 439-444.
[21] 樊虎玲, 郝明德, 李志西. 黃土高原旱地小麥-苜蓿輪作對(duì)小麥品質(zhì)和子粒氨基酸含量的影響[J]. 植物營(yíng)養(yǎng)與肥料學(xué)報(bào), 2007, 13(2): 262-266. Fan H L, Hao M D, Li Z X. Effect of alfalfa-wheat rotation system on the quality and amino acid content of wheat in dryland of Loess Plateau[J]. Plant Nutrition and Fertilizer Science, 2007, 13(2): 262-266.
[22] 蔡艷, 郝明德. 長(zhǎng)期輪作對(duì)黃土高原旱地小麥籽粒 蛋白質(zhì)營(yíng)養(yǎng)品質(zhì)的影響[J]. 應(yīng)用生態(tài)學(xué)報(bào), 2013, 24(5): 1354-1360. Cai Y, Hao M D. Effects of long-term rotation on the nutritional quality of wheat grain protein on dryland of Loess Plateau,Northwest China[J]. Chinese Journal of Applied Ecology, 2013, 24(5): 1354-1360.
[23] 陸景陵. 植物營(yíng)養(yǎng)學(xué)(第二版)[M]. 北京: 中國(guó)農(nóng)業(yè)大學(xué)出版社, 2003: 23-100. Lu J L. Plant nutrition(2nd Edition)[M]. Beijing: China Agricultural University Press, 2003: 23-100.
[24] Welch R M.The impact of mineral nutrients in food crops on global human health[J]. Plant and Soil, 2002, 247: 83-90.
[25] 石榮麗, 鄒春琴, 芮玉奎, 等. ICP-AES測(cè)定中國(guó)小麥微核心種質(zhì)庫(kù)籽粒礦質(zhì)養(yǎng)分含量[J]. 光譜學(xué)與光譜分析, 2009, 29(4): 1104-1107. Shi R L, Zou C Q, Rui Y Ketal. Application of ICP-AES to detecting nutrients in grain of wheat core collection of China[J]. Spectroscopy and Spectral Analysis, 2009, 29(4): 1104-1107.
[26] 魯璐, 季英苗, 李莉蓉, 等. 不同地區(qū)、不同品種(系)小麥鋅、鐵和硒含量分析[J]. 應(yīng)用與環(huán)境生物學(xué)報(bào), 2010, 16(5): 646-649. Lu L, Ji Y M, Li L Retal. Analysis of Fe,Zn and Se contents in different wheat cultivars (lines) planted in different areas[J]. Chinese Journal of Applied Environmental Biology, 2010, 16(5): 646-649.
[27] 攝曉燕, 謝永生, 郝明德, 等. 黃土旱塬長(zhǎng)期施肥對(duì)小麥產(chǎn)量及養(yǎng)分平衡的影響[J]. 干旱地區(qū)農(nóng)業(yè)研究,2009, 27(6): 27-32. She X Y, Xie Y S, Hao M Detal. Effect of long-term fertilization on wheat yield and nutrient balance in dryland of the Loess Plateau[J]. Agricultural Research in the Arid Areas, 2009, 27(6): 27-32.
[28] 楊寧, 趙護(hù)兵, 王朝輝, 等. 豆科作物-小麥輪作方式下旱地小麥花后干物質(zhì)及養(yǎng)分累積、轉(zhuǎn)移與產(chǎn)量的關(guān)系[J]. 生態(tài)學(xué)報(bào), 2012, 32(15): 4827-4835. Yang N, Zhao H B, Wang Z Hetal. Accumulation and translocation of dry matter and nutrients of wheat rotated with legumes and its relation to grain yield in a dryland area[J]. Acta Ecologica Sinica, 2012, 32(15): 4827-4835.
[29] 王大勇, 劉濤, 郭慕萍, 張永清. 豆科植物對(duì)不同深度土壤水分及養(yǎng)分含量的影響[J]. 土壤通報(bào),2013, 44(3): 551-555. Wang D Y, Liu T, Guo M P, Zhang Y Q. Effects of perennial leguminous plants on moisture and nutrients in different soil depths[J]. Chinese Journal of Soil Science, 2013, 44(3): 551-555.
[30] Ghandilyan A, Vreugdenhil D, Aartsa M G M. Progress in the genetic understanding of plant iron and zinc nutrition[J]. Physiologia Plantarum, 2006, 126: 407-417.
[31] 陳利云, 居永霞, 周志宇. 豆科植物根際微量元素含量特征[J]. 土壤通報(bào), 2013, 44(3): 641-646. Chen L Y, Ju Y X, Zhou Z Y. The characteristics of trace element concentrations in the rhizosphere of leguminous plants[J]. Chinese Journal of Soil Science, 2013, 44(3): 641-646.
Effects of rotation model and period on wheat yield,nutrient uptake and soil fertility in the Loess Plateau
CAI Yan1, 2, HAO Ming-de2, 3*
(1CollegeofResourcesandEnvironment,SichuanAgriculturalUniversity,Chengdu611130,China;2CollegeofNaturalResourcesandEnvironment,NorthwestA&FUniversity,Yangling,Shaanxi712100,China;3InstituteofSoilandWaterConservation,NorthwestA&FUniversity,Yangling,Shaanxi712100,China)
【Objectives】Rotations of wheat-alfalfa, wheat-sainfoin and wheat-pea are common cropping systems in the Loess Plateau, northwest China. In this paper, the impacts of different cropping systems on the wheat yields, nutrient uptake and soil fertility were studied using a long-term experiment, in order to compare and recommend the optimum cropping system in this area.【Methods】 The long-term experiment was established in 1984. Eight treatments with triplicates were designed: continuous cropping of wheat(CK), three long-period rotations of wheat-alfalfa treatments: wheat→wheat→alfalfa→alfalfa→alfalfa→ alfalfa→potato→wheat (WAT1), wheat→alfalfa→alfalfa→alfalfa→alfalfa→potato→wheat→wheat (WAT2), and alfalfa→ alfalfa→alfalfa→alfalfa→potato→wheat→wheat→wheat (WAT3); two short-period rotations of wheat-sainfoin: wheat and sainfoin→sainfoin→wheat (WST1), sainfoin→wheat→wheat and sainfoin (WST2); two wheat-pea rotations: wheat and millet →pea→wheat (WPT1), pea→wheat→wheat and millet (WPT2). Plant and soil samples were collected after wheat harvest in June, 2004. Wheat yields, grain and straw nutrient contents and soil fertility were determined. 【Results】 The wheat grain yields in the rotation were 1.47% to 29.66% higher than the control, and the straw biomass were 2.17% to 29.77% higher. The increases were more obvious in wheat-alfalfa rotation and wheat-sainfoin rotation systems. The second year wheat cropping yields after alfalfa or sainfoin were higher than those in the first year, the rotation advantage became weaken in the third year. The long-period rotation of wheat-alfalfa favored absorption of N, K, Fe, Cu and Zn in wheat, and the order was WAT3 > WAT2 > WAT1. The short-period rotation of wheat-sainfoin favored absorption of N, K and Fe in wheat, and WST1 was slightly higher than WST2. The wheat-pea rotation favored absorption of N, K, Fe and Mn in wheat, and WPT2 > WPT1. The rotation model and year after rotated crops affected more on the harvest indexes of microelements than on those of macro-nutrients. The wheat-pea rotation was conducive to the transfer of N, P and Cu to wheat grain. The wheat K harvest indexes of the three rotation systems were lower than those of the continuous cropping of wheat, and the Fe harvest indexes of the wheat-alfalfa rotation and wheat-sainfoin rotation were lower than those of the continuous cropping of wheat. Through rotation, soil total N was increased by 11.54%-20.51%, alkali-hydrolysable N increased by 9.66%-21.56%. The wheat-sainfoin rotation had obvious positive effect on soil organic matter, total N and available K, but negative on soil available P (decreased by 23.97%). The wheat-pea rotation showed obvious positive effect on soil P accumulation with a increase of 45.52% compared to control.【Conclusions】 The rotation mode of 2 to 4 years successive sainfoin→two years continuing wheat is proven to be the optimum rotation mode in the Loess Plateau, in case of attention be paid on increasing phosphate fertilizer application.
crop rotation; Loess Plateau; wheat; nutrient uptake; mineral nutrition; soil fertility
2014-03-17 接受日期: 2014-12-03 網(wǎng)絡(luò)出版日期: 2015-05-08
國(guó)家科技支撐計(jì)劃重大項(xiàng)目(2011BAD31B01);寧夏農(nóng)業(yè)綜合開(kāi)發(fā)科技推廣項(xiàng)目(NTKJ-2013-03-1)資助。
蔡艷(1976—),女,四川達(dá)縣人,博士研究生,主要從事土壤與植物營(yíng)養(yǎng)的研究。E-mail: caiyya@126.com * 通信作者 E-mail:mdhao@ms.iswc.ac.cn
S344.3
A
1008-505X(2015)04-0864-09