李 歡, 王 沖, 汪順義
(1 青島農(nóng)業(yè)大學資源與環(huán)境學院, 山東青島 266109; 2 中國農(nóng)業(yè)大學資源與環(huán)境學院, 北京 100193)
蚯蚓與菌根提高玉米生長和氮磷吸收的互補效應(yīng)
李 歡1, 2, 王 沖2*, 汪順義1
(1 青島農(nóng)業(yè)大學資源與環(huán)境學院, 山東青島 266109; 2 中國農(nóng)業(yè)大學資源與環(huán)境學院, 北京 100193)
【目的】蚯蚓和叢枝菌根真菌處于不同的營養(yǎng)級,但在促進植物生長和提高土壤肥力等方面卻都發(fā)揮著積極作用。研究蚯蚓菌根互作及其對玉米吸收土壤中的氮、磷養(yǎng)分的影響,可為提升土壤生物肥力及促進農(nóng)業(yè)的可持續(xù)發(fā)展提供理論依據(jù)?!痉椒ā勘狙芯坎捎锰镩g盆栽方式,以玉米為供試作物,研究蚯蚓(Eiseniafetida)與叢枝菌根真菌(Glomusintraradices)互作及其對玉米養(yǎng)分吸收的影響。試驗設(shè)置P 25和175 mg/kg兩個水平。每個磷水平進行接種與不接種菌根真菌以及添加與不添加蚯蚓,共8個處理。調(diào)查了玉米生長、養(yǎng)分吸收以及真菌浸染和土壤養(yǎng)分的有效性?!窘Y(jié)果】兩個磷水平下,蚯蚓和菌根在增加玉米地上部和根系生物量方面有顯著正交互作用(P<0.05)。接種菌根真菌的各處理顯著增加了玉米的侵染率及泡囊豐度、根內(nèi)菌絲豐度等菌根指標。同時添加蚯蚓和接種菌根真菌的處理 (AM+E) 顯著提高了菌根的侵染率、菌絲密度、叢枝豐度和根內(nèi)菌絲豐度但是泡囊豐度有所下降。兩種磷水平下,AM+E處理玉米地上部和地下部含氮量和含磷量均顯著高于其他三個處理。在低磷條件下,地上部氮磷總量的增加分別是添加蚯蚓和接菌的作用;而地下部磷總量的增加主要是菌根真菌的作用。在高磷條件下,單加蚯蚓顯著增加玉米氮磷的總量,而接種菌根真菌對玉米氮磷吸收的影響未達顯著性水平。在高磷條件下,單加蚯蚓的處理顯著提高玉米地上地下部生物量 (P<0.05),而單接菌的處理效應(yīng)不顯著,蚯蚓菌根互作通過提高土壤微生物量碳、氮實現(xiàn)對玉米生長和養(yǎng)分吸收的調(diào)控。在低磷條件下,單接菌顯著提高了玉米的生物量 (P<0.05),單加蚯蚓的處理具有增加玉米生物量的趨勢。菌根真菌主要促進玉米對磷的吸收,蚯蚓主要礦化秸稈和土壤中的氮磷養(yǎng)分增加土壤養(yǎng)分的有效性,蚯蚓菌根互作促進了玉米根系對土壤養(yǎng)分的吸收并形成氮磷互補效應(yīng)?!窘Y(jié)論】無論在高磷還是低磷水平下,蚯蚓菌根相互作用都提高了玉米地上地下部生物量、氮磷吸收量同時提高了土壤微生物量碳、氮。蚯蚓菌根相互作用對植物生長的影響取決于土壤養(yǎng)分條件。在高磷條件下 (氮相對不足),蚯蚓菌根互作通過調(diào)控土壤微生物量碳、氮調(diào)控玉米生長和養(yǎng)分吸收。低磷條件下,菌根主要發(fā)揮解磷作用,蚯蚓主要礦化秸稈和土壤中的氮素,蚯蚓和菌根互補調(diào)控土壤中氮、磷,從而促進植物的生長和養(yǎng)分吸收。
叢枝菌根真菌; 蚯蚓; 交互作用; 氮磷互補
土壤生物是地下生態(tài)系統(tǒng)的核心,在土壤有機質(zhì)分解、礦質(zhì)營養(yǎng)循環(huán)、維持及提高土壤肥力方面發(fā)揮著關(guān)鍵作用[1]。蚯蚓通過取食、消化、排泄(蚯蚓糞)、分泌(粘液)和掘穴等活動影響土壤過程的物質(zhì)循環(huán)和能量傳遞,被稱為“生態(tài)系統(tǒng)工程師”[2]。叢枝菌根真菌(AM真菌)與植物形成同生體,一方面從植物那里獲得光合產(chǎn)物供其自身生長,另一方面為植物提供養(yǎng)分,促進植物生長[3]。因此研究植物根系、蚯蚓和AM菌根之間的相互作用對土壤肥力的影響,對于提高作物對土壤養(yǎng)分的吸收與利用、促進土壤健康具有重要意義。
蚯蚓和AM 真菌處于不同的營養(yǎng)級并且不存在直接的捕食與被捕食關(guān)系,但是在促進植物生長、提高土壤肥力等方面都發(fā)揮著積極的作用[4]。在貧瘠的土壤上,蚯蚓可以通過增加養(yǎng)分的有效性而對AM侵染產(chǎn)生積極作用。在沒有施肥(低碳、低氮、低磷)的土壤上,添加熱帶蚯蚓Pontoscolexcorethrurus能夠顯著提高菌根侵染率[5]。Gormsen等[6]研究表明,蚯蚓能夠促進植物的生長,植物生物量的增加為菌根真菌提供更多的碳源,從而利于根外菌絲的發(fā)育。此外,蚯蚓活化土壤中的無機氮以及土壤中的有機氮都會促進菌絲的生長[7-8]。蚯蚓和菌根能夠通過互補的途徑影響植物的生長和養(yǎng)分吸收[9]。
蚯蚓菌根互作大多是在室內(nèi)盆栽條件下進行的,這就忽略了氣候、土壤養(yǎng)分等影響因素[10]。另外,土壤微生物量不僅影響土壤有機碳而且影響土壤養(yǎng)分的有效性[11]。土壤微生物量碳、氮常常作為土壤理化性狀改變的早期預警指標[12]。因此,本試驗充分模擬自然環(huán)境采用田間盆栽的方法研究蚯蚓 (Eiseniafetida) 和菌根真菌 (Glomusintraradices) 交互作用對玉米生長和土壤微生物量的影響,探討了土壤養(yǎng)分有效性、土壤微生物量碳氮的改變對玉米養(yǎng)分吸收的影響。
1.1 試驗地概況
1.2 試驗材料與試驗設(shè)計
試驗所用塑料盆的規(guī)格為220 mm × 250 mm,并將盆子埋入事先挖好的土穴中,盆子的邊緣高出地平面3 cm。每個盆子裝入4.5 kg過2 mm篩的滅菌土并混合8 g小麥秸稈 (相當于每公頃8 t的秸稈還田量)。盆子底部平鋪設(shè)30 μm尼龍網(wǎng)便于水分下滲,同時防止蚯蚓逃逸和植物根系長出。另外用孔徑為2 mm的尼龍網(wǎng)蒙住整個盆口同時在正中間開一個直徑3 cm的小孔,以便于玉米的正常生長。
試驗包括3個因子,各設(shè)2個水平,其中供磷水平設(shè)P 25 和175 mg/kg、菌根真菌設(shè)接種與不接種、蚯蚓設(shè)添加不添加,共8個處理組合。菌種為根內(nèi)球囊霉(Glomusintraradices,BEG141),該菌種引自法國農(nóng)業(yè)科學院。以局部接種的方式接種,接種量為5% (W/W)。赤子愛勝蚓(Eiseniafetida)取自當?shù)仳球攫B(yǎng)殖場。添加蚯蚓前先對蚯蚓進行清腸。具體方法是:將蚯蚓洗凈,放于一底部鋪有吸水紙并有少量水分的培養(yǎng)箱內(nèi)培養(yǎng)24 h,次日取出并洗凈擦干備用。待玉米長到三葉期后,每盆放入三條大小和活性相同的蚯蚓。
1.3 樣品測定
1.4 數(shù)據(jù)分析
用SPSS (10.0) (SPSS Institute, Inc., Cary, NC, USA) 進行數(shù)據(jù)統(tǒng)計分析,方差分析檢驗處理效應(yīng)的顯著性,LSD法比較平均數(shù)間的差異顯著程度。
2.1 不同磷水平下菌根侵染率的變化
不接種菌根真菌 (CK和E) 的處理菌根侵染率都在10%以下,這可能是由于土著AM真菌隨風傳播的影響。無論在高磷 (175 mg/kg) 還是低磷 (25 mg/kg) 條件下,接種菌根真菌的各個處理顯著提高了玉米的侵染率及泡囊豐度、根內(nèi)菌絲豐度(P<0.05)。同時添加蚯蚓和接種菌根真菌的處理 (AM+E) 顯著提高了菌根的侵染率、菌絲密度、叢枝豐度和根內(nèi)菌絲豐度,但泡囊豐度有所下降 (表1)。蚯蚓菌根互作在低磷條件下差異顯著,但在高磷條件下叢枝豐度和菌絲豐度沒有達到統(tǒng)計學上的差異。在高磷條件下,接種菌根真菌處理的叢枝豐度、根內(nèi)菌絲豐度和菌絲密度在添加蚯蚓后沒有顯著性的變化。而在低磷條件下添加蚯蚓后接種菌根真菌的處理侵染率平均增加了17%,菌絲密度增加了70% (表1)。
2.2 蚯蚓菌根互作對玉米生物量和養(yǎng)分吸收的影響
在低磷條件下,單接菌的處理與對照相比顯著提高了玉米地上部和地下部的生物量(P<0.05)。單加蚯蚓的處理與對照相比具有提高玉米生物量的趨勢 (表2)。在高磷條件下,單加蚯蚓的處理顯著提高了玉米地上部和地下部的生物量 (P<0.05)。無論高磷還是低磷條件下,同時添加蚯蚓和菌根的處理,玉米的生物量均顯著高于單接種和對照處理 (P<0.05)。此外,在兩種磷水平下同時添加蚯蚓和菌根處理玉米地上部和地下部含氮量和含磷量均顯著高于其他三個處理 (P<0.05)。在低磷條件下,地上部氮、 磷總量的增加分別是添加蚯蚓、 菌根真菌的作用,而地下部磷總量的增加主要是菌根真菌的作用 (P<0.05)。在高磷條件下,與對照處理相比,單加蚯蚓顯著增加玉米氮、 磷的總量,而在高磷條件下接種菌根真菌對玉米氮、 磷吸收的影響未達顯著性水平。
表1 不同磷水平下菌根侵染率、泡囊豐度、叢枝豐度和菌絲密度Table 1 Root colonization rate, vesicle frequency, arbuscular frequency, hyphae and hyphal density at low and high P level
注(Note): CK—不加蚯蚓和菌根No earthworm and mycorrhizae addition; E—只加蚯蚓Earthworm addition; AM—只接種菌根 Mycorrhizal addition; AM+E—同時添加蚯蚓和菌根 Earthworm and mycorrhizae addition. 同列數(shù)值后不同小寫字母表示處理間差異顯著 Values followed by different small letters in a column are significantly different among treatments at 5% level.
表2 不同磷水平下添加蚯蚓和菌根對玉米地上部和根系生長及養(yǎng)分吸收的影響Table 2 Effect of interaction of earthworms and mycorrhiza on shoot and root dry biomass, N, P content and N/P ratio in maize at low and high P level
注(Note): CK—不加蚯蚓和菌根No earthworm and mycorrhizae addition; E—只加蚯蚓Earthworm addition; AM—只接種菌根 Mycorrhizal addition; AM+E—同時添加蚯蚓和菌根 Earthworm and mycorrhizae addition. 同列數(shù)值后不同小寫字母表示處理間差異顯著 Values followed by different small letters in a column are significantly different among treatments at 5% level.
2.3 蚯蚓和菌根互作對土壤有效磷、無機氮和土壤微生物量碳、氮的影響
無論在高磷還是低磷條件下,同時添加蚯蚓和菌根的處理與對照相比降低了土壤有效磷含量。在兩種磷水平下,單接菌的處理顯著加速了土壤有效磷的耗竭 (P<0.05)。在高磷條件下單加蚯蚓降低土壤有效磷含量,但是在低磷條件下這種影響不顯著 (表3)。在兩種磷水平下,蚯蚓、菌根及同時添加蚯蚓和菌根的處理均顯著降低了土壤硝態(tài)氮含量 (P<0.05)。但各個處理對銨態(tài)氮含量的影響不顯著 (表3)。
與對照相比,其他處理均顯著增加了土壤微生物量碳、氮 (表4)。在高磷條件下,同時添加蚯蚓和菌根真菌的處理土壤微生物量碳、氮最高 (P<0.05)。單加蚯蚓處理土壤微生物量碳、氮顯著高于單接菌的處理 (P<0.05)。而在低磷條件下蚯蚓處理與菌根處理之間對土壤微生物量碳、氮含量無顯著性差異 (表4)。
表3 不同磷水平接種蚯蚓、菌根后土壤速效磷和礦質(zhì)態(tài)氮含量 (mg/kg)Table 3 Soil available P and N concentrations after addition of earthworms and AM fungi under low P and high P supply
注(Note): CK—不加蚯蚓和菌根No earthworm and mycorrhizae addition; E—只加蚯蚓Earthworm addition; AM—只接種菌根 Mycorrhizal addition; AM+E—同時添加蚯蚓和菌根 Earthworm and mycorrhizae addition. 同列數(shù)值后不同小寫字母表示處理間差異顯著 Values followed by different small letters in a column are significantly different among treatments at 5% level.
表4 不同磷水平下添加蚯蚓、菌根后土壤微生物量碳氮含量 (mg/kg)Table 4 Soil microbial biomass carbon and nitrogen after addition of earthworms and AM fungi under low P and high P supply
注(Note): CK—不加蚯蚓和菌根No earthworm and mycorrhizae addition; E—只加蚯蚓Earthworm addition; AM—只接種菌根 Mycorrhizal addition; AM+E—同時添加蚯蚓和菌根 Earthworm and mycorrhizae addition; SMBC—微生物量碳Soil Microbiomass C; SMBN—微生物量氮Soil microbiomass N. 同列數(shù)值后不同小寫字母表示處理間差異顯著 Values followed by different small letters in a column are significantly different among treatments at 5% level.
3.1 蚯蚓對菌根侵染的影響
蚯蚓對土壤養(yǎng)分有效性以及對作物生長的影響取決于土壤中蚯蚓食物來源的數(shù)量和質(zhì)量[15-16]。以往的結(jié)果表明,蚯蚓的掘穴、取食活動會擾動土壤中的菌根菌絲網(wǎng)絡(luò)[17], 并且不利于菌根對植物的侵染[18-19]。本試驗中,添加的秸稈為蚯蚓提供了充足的食物來源,最大限度的降低了蚯蚓對菌根產(chǎn)生的負效應(yīng)。Ortiz-Ceballos等[20]的研究也表明,在沒有添加秸稈的情況下,蚯蚓顯著降低了AM的侵染率,但是當加入秸稈后這種影響便消失。這說明蚯蚓會優(yōu)先選擇有機物質(zhì)為食物來源。另外,菌根侵染率的提高可能與土壤中微生物和蚯蚓的共同作用產(chǎn)生的植物激素有關(guān)[21],植物激素能明顯地刺激菌根侵染。
3.2 蚯蚓菌根互作對玉米生長和養(yǎng)分吸收影響
本試驗嘗試著在自然條件下進行的蚯蚓菌根互作試驗,布置了不同于室內(nèi)盆栽試驗也區(qū)別于大田試驗的田間盆栽試驗。在兩種磷水平下,同時添加蚯蚓和菌根的處理與單接種相比,都顯著提高了玉米的生物量。單接菌的處理顯著增加了植株地上部含磷量 (表2),同時導致土壤中磷的耗竭 (表3)。這表明,在缺磷的條件下,盡管菌根真菌本身會與植物競爭氮素,但是菌根的吸磷作用仍然促進了玉米的生長[22]。在低磷條件下,蚯蚓通過礦化土壤中硝態(tài)氮從而增加了玉米植株的吸氮量 (表2、 表3)。研究表明在低磷條件下,蚯蚓活化的氮素可以降低菌根真菌與植物之間氮素的競爭。因此,蚯蚓菌根增加了土壤中氮磷的有效性同時對玉米生長和養(yǎng)分吸收具有互補效應(yīng)。通過相關(guān)性分析發(fā)現(xiàn),根系生物量和土壤硝態(tài)氮 (P<0.01)、土壤有效磷 (P<0.05 低磷;P<0.01高磷)、土壤微生物量碳 (P<0.01)、氮 (P<0.05 低磷;P<0.01高磷) 具有顯著的正相關(guān)關(guān)系。蚯蚓菌根互作通過調(diào)控土壤養(yǎng)分和微生物量碳氮從而促進地上地下部生長。蚯蚓菌根互作的機理有待于進一步研究,利用15N、33P 等同位素示蹤技術(shù)可能會明確蚯蚓菌根互作機制和途徑。
植物體中的N/P比可作為判斷植物生長的養(yǎng)分供應(yīng)狀況指標,如判斷植物是受氮限制還是受磷限制。Koerselman 和 Meuleman[23]通過研究,發(fā)現(xiàn)當N/P >16時,這個系統(tǒng)是受磷限制的,而當N/P<14時,這個系統(tǒng)是受氮限制的。在氮素缺乏的土壤上蚯蚓能夠大量活化土壤氮[24]。本試驗中單加蚯蚓分別增加了玉米地上部38%和地下部46%的氮含量,而在單接菌的處理中卻沒有顯著差異。在高磷條件下,蚯蚓增加了植物對氮的吸收;雙接種的處理中,蚯蚓通過調(diào)節(jié)土壤的N/P,從而平衡氮磷養(yǎng)分促進玉米的生長。需要進一步調(diào)查了解土壤的過程,比如碳循環(huán)、 氮循環(huán)、 磷循環(huán),有待于進一步挖掘蚯蚓菌根相互作用在高磷條件下對玉米生長的促進作用。
3.3 蚯蚓菌根互作對土壤微生物量碳、氮的影響
土壤微生物量既是土壤有機質(zhì)和土壤養(yǎng)分轉(zhuǎn)化與循環(huán)的動力,又可作為土壤中植物有效養(yǎng)分的儲備庫,其在土壤肥力和植物營養(yǎng)中具有重要作用[25]。土壤微生物量的變化對指示土壤肥力、土壤養(yǎng)分轉(zhuǎn)化、循環(huán)過程具有重要意義[26]。土壤微生物量碳、氮受土壤水分、溫度和土壤養(yǎng)分狀況等的影響[27]。菌根真菌增加土壤微生物生物量主要是由于侵染菌根的寄主植物增加根系分泌物所導致,另外也跟植物生長和土壤結(jié)構(gòu)的變化有關(guān)[28]。Van Aarle[29]等研究發(fā)現(xiàn),石灰性土壤中菌根真菌菌絲促進了細菌活性及微生物量。蚯蚓通過取食和腸道的消化作用對總微生物量產(chǎn)生影響[30]。
蚯蚓和菌根真菌的相互作用通過改變土壤速效磷和土壤硝態(tài)氮濃度與植物地上部和根系生物量來影響土壤微生物生物量碳和氮。本試驗中無論在高磷還是低磷條件下,蚯蚓菌根互作顯著增加了土壤微生物量碳、氮。另一方面,土壤硝態(tài)氮與土壤微生物量碳、氮 (P<0.01) 具有負相關(guān)關(guān)系;土壤有效磷也與土壤微生物量碳 (P<0.01)、氮 (P<0.05 低磷;P<0.01高磷) 負相關(guān)。在高磷條件下 (氮是限制因子),單加蚯蚓的處理土壤微生物量碳、氮顯著高于單接菌的處理,并且土壤微生物量碳、氮和玉米地上地下部生物量呈正相關(guān)關(guān)系 (P<0.01)。這表明,在氮缺乏時蚯蚓通過增加土壤生物量碳、氮來提高植物生物量。在低磷條件下,玉米地上和地下部生物量和土壤微生物量碳呈正相關(guān) (P<0.01),與對照相比單接菌促進了玉米生長和微生物量碳。這可能是因為菌根通過釋放富含豐富碳源的化合物來調(diào)控土壤微生物量碳[31]。土壤微生物C/N 常常用來指示微生物群落的結(jié)構(gòu)和生理狀態(tài)。在低磷條件下,雙接種顯著提高了土壤微生物C/N。
無論在高磷還是低磷水平下,蚯蚓菌根相互作用都提高了玉米地上地下部生物量、氮磷吸收量同時提高了土壤微生物量碳、氮。蚯蚓菌根相互作用對植物生長的影響取決于土壤養(yǎng)分條件。在高磷條件下 (氮相對不足),蚯蚓菌根互作通過調(diào)控土壤微生物量碳、氮調(diào)控玉米生長和養(yǎng)分吸收。低磷條件下,菌根主要發(fā)揮吸磷作用,蚯蚓主要礦化秸稈和土壤中的氮素,蚯蚓菌根互補調(diào)控土壤中氮磷從而影響植物的生長和養(yǎng)分吸收。因此,蚯蚓菌根互作在實際生產(chǎn)特別是在低投入和有機農(nóng)業(yè)生產(chǎn)體系中能夠發(fā)揮積極作用。
[1] Wardle D A. The influence of biotic interactions on soil biodiversity[J]. Ecology Letters, 2006, 9: 870-886.
[2] 張衛(wèi)信, 陳迪馬, 趙燦燦. 蚯蚓在生態(tài)系統(tǒng)中的作用[J]. 生物多樣性, 2007, 15(2): 142-153. Zhang W X, Chen D M, Zhao C C. Functions of earthworm in ecosystem[J]. Biodiversity Science, 2007, 15(2): 142-153.
[3] Hawkins H J, Johansen A, George E. Uptake and transport of organic and inorganic nitrogen by arbuscular mycorrhizal fungi[J]. Plant and Soil, 2000, 226: 175-185.
[4] Wurst S, Dugassa-Gobena D, Langel Retal. Combined effects of earthworms and vesicular-arbuscular mycorrhizas on plant and aphid performance[J]. New Phytologist, 2004, 163: 169-173.
[5] Patron J C, Sanchez P, Brown G Getal. Phosphorus in soil and Brachialis decumbens plants as affected by the geophagous earthworm Pontoscolex corethrurus and P fertilization[J]. Pedobiologia, 1999, 43: 547-556.
[6] Gormsen D, Olsson P A, Hedlund K. The influence of collembolans and earthworms on AM fungal mycelium[J]. Applied Soil Ecology, 2004, 27: 211-220.
[7] Johansen A, Jakobsen I, Jensen E S. Hyphal N transport by a vesicular-arbuscular mycorrhizal fungus associated with cucumber grown at three nitrogen levels[J]. Plant and Soil, 1994, 160: 1-9.
[8] Ravnskov S, Larsen J, Olsson P Aetal. Effects of various organic compounds on growth and phosphorous uptake of an arbuscular mycorrhizal fungus[J]. New Phytologist, 1999, 141: 517-524.
[9] Eisenhauer N, K?nig S, Alexander C Wetal. Impacts of earthworms and arbuscular mycorrhizal fungi (Glomusintraradices) on plant performance are not interrelated[J]. Soil Biology and Biochemistry, 2009, 41: 561-567.
[10] Curry J P, Schmidt O. The feeding ecology of earthworms-a review[J]. Pedobiologia, 2007, 50: 463-477.
[11] Magdoff F, Weil R R. Soil organic matter in sustainable agriculture[M]. Boca Raton: CRC Press, 2004, 15-21.
[12] Jordan D, Kremer R J, Bergfield W Aetal. Evaluation of microbial methods as potential indicators of soil quality in historical agricultural fields[J]. Biology and Fertility of Soils, 1995, 19: 297-302.
[13] Johansen A, Jakobsen I, Jensen E S. Hyphal N transport by a vesicular-arbuscular mycorrhizal fungus associated with cucumber grown at three nitrogen levels[J]. Plant and Soil, 1994, 160: 1-9.
[14] Wangn L G, LI W J, Qiu J Jetal. Effects of biological organic fertilizer on crops growth soil fertility and yield[J].Soil and Fertilizers,2004, (5): 12-16.
[15] Eisenhauer N, Scheu S. Earthworms as drivers of the competition between grasses and legumes[J]. Soil Biology and Biochemistry, 2008, 40: 2650-2659.
[16] Milcu A, Partsch S, Scherber Cetal. Earthworms and legumes control litter decomposition in a plant diversity gradient[J]. Ecology, 2008, 89: 1872-1882.
[17] Tiunov A V, Dobrovolskaya T G. Fungal and bacterial communities inLumbricusterrestrisburrow walls: a laboratory experiment[J]. Pedobiologia, 2002, 46: 595-605.
[18] Tuffen F, Eason W R, Scullion J. The effect of earthworms and arbuscular mycorrhizal fungi on growth of and32P transfer betweenAlliumporrumplants[J]. Soil Biology and Biochemistry, 2002, 34: 1027-1036.
[19] Lawrence B, Fisk M C, Fahey T J. Influence of nonnative earthworms on mycorrhizal colonization of sugar maple (Acersaccharum)[J]. New Phytologist, 2003, 157: 145-153.
[20] Ortiz-Ceballos A I, Fragoso C, Brown G G. Mycorrhizal colonization and nitrogen uptake by maize: combined effect of tropical earthworms and velvetbean mulch[J]. Biology and Fertility of Soils, 2007, 44: 181-186.
[21] Azcón R, Azcon-Aguilar C, Barea J M. Effect of plant hormones present in bacterial cultures on the formation and responses to VA endomycorrhiza[J]. New Phytologist, 1978, 80: 359-364.
[22] Wurst S, Dugassa-Gobena D, Langel Retal. Combined effects of earthworms and vesicular-arbuscular mycorrhizas on plant and aphid performance[J]. New Phytologist, 2004, 163: 169-173.
[23] Koerselman W, Meuleman A F W. The vegetation N: P ratio: a new tool to detect the nature of nutrient limitation[J]. Journal of Applied Ecology, 1996, 33: 1441-1450.
[24] Scheu S. Effects of earthworms on plant growth: patterns and perspectives[J]. Pedobiologia, 2003, 47: 846-856.
[25] Abbott L K, Murphy D V. Soil biological fertility: A key to sustainable land use in agriculture[M]. New York, US: Springer-Verlag New York Inc., 2003. 99-102.
[26] Singh J S, Singh D P, Kashyap A K. A comparative account of the microbial biomass-N and N-mineralization of soils under natural forest, grassland and crop field from dry tropical region, India[J]. Plant Soil and Environment, 2009, 55: 223-230.
[27] Campbell C A, Biederbeck V O, Wen Getal. Seasonal trends in soil biochemical attributes: effects of crop rotations in the semi-arid prairie. Canadian Journal of Soil Science, 1999, 79: 73-84.
[28] Johansson J F, Paul L R, Finlay R D. Microbial interactions in the mycorrhizosphere and their significance for sustainable agriculture[J]. FEMS Microbiology Ecology, 2004, 48: 1-13.
[29] Van Aarle I M, Soderstrom B, Olsson P A. Growth and interactions of arbuscula rmycorrhizal fungi in soils from limestone and acid rock habitats[J]. Soil Biology and Biochemistry, 2003, 35: 1557-1564.
[30] Svensson K, Friberg H. Changes in active microbial biomass by earthworms and grass amendments in agricultural soil[J]. Biology and Fertility of Soils, 2007, 44: 223-228.
[31] Zarea M J, Ghalavand A, Goltapeh E M. Effects of mixed cropping, earthworms (Pheretimasp.), and arbuscular mycorrhizal fungi (Glomusmosseae) on plant yield, mycorrhizal colonization rate, soil microbial biomass, and nitrogenase activity of free-living rhizosphere bacteria[J]. Pedobiologia, 2009, 4: 223-235.
Interaction of earthworms and amfungi on maize growth, and nutrogen and phosphorus uptake
LI Huan1,2, WANG Chong2*, WANG Shun-yi1
(1CollegeofResourcesandEnvironment,ShandongAgriculturalUniversity,Qingdao,Shandong266109,China;2CollegeofResourcesandEnvironmentalSciences,ChinaAgriculturalUniversity,Beijing100193,China)
【Objectives】Earthworms and arbuscular mycorrhizal fungi(AMF) are in different trophic levels, both play same roles in promoting plant growth and soil biological fertility. This research on the effect of interaction of earthworms and amfungi improving plant nutrient uptake could explore the potential for soil biological fertility in the sustainable agricultural system. 【Methods】 A soil buried pot experiment was carried out with maize as tested crop. Two P levels of 25 mg/kg (low) and 175 mg/kg (high) were setup using KH2PO4as P source. With each P level, inoculation of AMF or not, and added earthworms or not were setup. The growth and nutrient uptake by maize were investigated, the availability of soil nutrients were measured. 【Results】 AMF and earthworms interactively increased maize shoot and root biomass at harvest. The AMF treatment significantly enhanced colonization and vesicle frequency, hyphae frequency. The earthworm×AMF treatment clearly improved maize root colonization rate as well as arbuscular frequency, hyphae frequency, and hyphal length density except for vesicle frequency which was reduced. At both P rates, shoot and root N and P contents in the earthworm×AMF treatment were significantly higher than those in other treatments. At low P rate, the increase of shoot N and P contents were by addition of both AMF and earthworms, while that in root P content was mainly by addition of AMF, root N content was not affected by AMF or earthworm treatment. At high P rate, earthworm treatment significantly increased shoot and root N and P contents AMF treatment did not. At high P rate, earthworm and AMF interaction also increased soil microbial biomass C, which possibly improved root N and P contents and indirectly increased the shoot N and P uptake. At low P rate, soil N mobilization by earthworms might have reduced potential N competition by arbuscular mycorrhizal hyphae, resulting in greater plant shoot and root biomass. Earthworms and AMF interactively enhanced soil N and P availability, leading to greater nutrient uptake and plant growth.【Conclusions】 In both high and low P supply levels, the earthworms and AMF have positive interactions on improving the biomass and the N and P uptake of maize, and the soil micro biomass carbon and nitrogen contents. In high P supply (175 mg/kg), the interaction of earthworms and AMF is able to adjust the soil microbiomass C and N content for the growth of maize. In low P supply (25 mg/kg), the AMF mainly involves in the release of P, while earthworms in the mineralization of straw and soil organic N, both the work help each other for the supply of maize growth.
arbuscular mycorrhizal fungi; earthworm; interaction; complementary effect of N and P
2014-06-11 接受日期: 2014-08-19 網(wǎng)絡(luò)出版日期: 2015-06-01
國家自然基金項目(31172037);國家青年科學基金項目(31301854);青島農(nóng)業(yè)大學博士啟動基金(6631314)資助。
李歡(1983—),男,山東青島人,副教授,主要從事土壤生物肥力的研究。E-mail:lihuancomcomcom@163.com * 通信作者 E-mail: wangchong@cau.edu.cn
S154.1
A
1008-505X(2015)04-0920-07