趙 敏, 胡劍鋒, 鐘曉媛, 張 強(qiáng), 周 虹, 任萬(wàn)軍*
(1 四川農(nóng)業(yè)大學(xué)農(nóng)學(xué)院, 農(nóng)業(yè)部西南作物生理生態(tài)與耕作重點(diǎn)實(shí)驗(yàn)室,四川溫江 611130;2 四川省農(nóng)業(yè)技術(shù)推廣總站, 四川成都 610041)
不同基因型機(jī)插稻植株氮素積累運(yùn)轉(zhuǎn)特性
趙 敏1, 胡劍鋒1, 鐘曉媛1, 張 強(qiáng)1, 周 虹2, 任萬(wàn)軍1*
(1 四川農(nóng)業(yè)大學(xué)農(nóng)學(xué)院, 農(nóng)業(yè)部西南作物生理生態(tài)與耕作重點(diǎn)實(shí)驗(yàn)室,四川溫江 611130;2 四川省農(nóng)業(yè)技術(shù)推廣總站, 四川成都 610041)
【目的】明確機(jī)械化育插秧?xiàng)l件下不同基因型水稻氮素吸收利用的特點(diǎn),分析提高其氮素吸收利用的途徑。【方法】以3個(gè)中秈中熟雜交稻、 3個(gè)中秈遲熟雜交稻、 4個(gè)粳稻共計(jì)10個(gè)品種為材料,采用隨機(jī)區(qū)組大田試驗(yàn)設(shè)計(jì),測(cè)定不同生育時(shí)期各器官干物重和氮素含量、產(chǎn)量等,研究了不同基因型機(jī)插稻植株氮素積累、分配和運(yùn)轉(zhuǎn)特性的差異及其原因?!窘Y(jié)果】1)育插秧機(jī)械化條件下水稻植株氮素積累符合Logistic曲線(xiàn)增長(zhǎng)規(guī)律。2)整個(gè)生育期機(jī)插稻植株含氮量呈下降趨勢(shì),粳稻植株的含氮量在生長(zhǎng)中期(拔節(jié)期—抽穗期)高于雜交秈稻,而后逐漸降低,到成熟期極顯著低于雜交秈稻,中秈中熟雜交稻因降低緩慢到成熟期植株含氮量最高。3)粳稻植株的終極氮素積累量最低,中秈中熟雜交稻和中秈遲熟雜交稻終極氮素積累量平均比粳稻高23.0%和33.1%。4)中秈中熟雜交稻抽穗期—成熟期氮素積累量最大,在氮素積累上具有后發(fā)優(yōu)勢(shì),且穗部分配率、葉片與莖鞘氮素表觀(guān)轉(zhuǎn)運(yùn)率、氮素籽粒生產(chǎn)效率和氮素轉(zhuǎn)運(yùn)效率均較高,說(shuō)明育插秧機(jī)械化條件下,中秈中熟雜交稻品種的氮素在轉(zhuǎn)運(yùn)和利用上具有高效性。其中,F(xiàn)優(yōu)498的終極氮素積累量高,且具有前期積累快,后期運(yùn)轉(zhuǎn)分配合理等優(yōu)勢(shì)。5)中秈遲熟雜交稻氮素積累出現(xiàn)最大增長(zhǎng)速率較晚,平穩(wěn)持續(xù)增長(zhǎng)時(shí)間較長(zhǎng),終極積累量最大,但氮素積累對(duì)產(chǎn)量的貢獻(xiàn)沒(méi)有優(yōu)勢(shì)。6)粳稻中雜交粳稻69優(yōu)8號(hào)相比其他粳稻品種,氮素積累量大且產(chǎn)量高,也具有氮素轉(zhuǎn)運(yùn)和利用的高效性。【結(jié)論】機(jī)插稻植株氮素積累轉(zhuǎn)運(yùn)特性受不同基因型的顯著影響。本研究采用植株含氮量、終極氮素積累量、百千克籽粒吸氮量等反映機(jī)插稻氮素吸收轉(zhuǎn)運(yùn)特性的指標(biāo)進(jìn)行比較發(fā)現(xiàn),在育插秧機(jī)械化條件下,中秈中熟雜交稻相比中秈遲熟雜交稻和粳稻氮素具有積累轉(zhuǎn)運(yùn)和利用高效性,其中F優(yōu)498在氮素積累、分配并促進(jìn)產(chǎn)量形成方面具有遺傳上的優(yōu)勢(shì)。中秈遲熟雜交稻雖具有氮素積累量潛力,但氮素積累對(duì)水稻產(chǎn)量的貢獻(xiàn)相對(duì)較低。機(jī)插粳稻氮素積累較低,但相比其他粳稻品種機(jī)插雜交粳稻69優(yōu)8號(hào)具有氮素積累量大且產(chǎn)量高的潛力,較適合機(jī)插。
水稻; 機(jī)插; 基因型; 氮素積累; 氮素利用
我國(guó)是世界上主要的產(chǎn)稻國(guó)之一,種植面積約占世界水稻種植面積的1/5[1]。氮素在營(yíng)養(yǎng)器官和生殖器官中的積累、轉(zhuǎn)化和吸收利用對(duì)水稻的生長(zhǎng)發(fā)育、產(chǎn)量和品質(zhì)形成起決定性作用[2-5]。明確不同基因型機(jī)插稻植株氮素的吸收、利用規(guī)律,不僅可以為生產(chǎn)上合理運(yùn)籌氮肥提供重要依據(jù)[2,6],而且是水稻氮素營(yíng)養(yǎng)性狀改良的必要環(huán)節(jié)[7]。不同基因型水稻間的氮效率存在顯著差異[8-11]。Singh等[8]研究發(fā)現(xiàn),不同基因型水稻氮素利用效率及其構(gòu)成因素隨供氮水平的增加而降低的幅度是不同的。單玉華等[9]對(duì)秈稻和粳稻研究表明,秈稻植株的氮素利用效率明顯高于粳稻,且秈稻和粳稻在氮素吸收利用上存在較大差異。陳明霞等[12]和徐陽(yáng)春等[13]研究表明,不同基因型水稻地上部總干物質(zhì)重、氮素積累量、氮素籽粒生產(chǎn)效率均存在基因型差異。董桂春等[14]研究表明,不同生育期類(lèi)型水稻品種的氮素吸收利用存在差異,同一生育期的秈稻品種和粳稻品種在吸氮能力、氮素籽粒生產(chǎn)效率方面也不同。李敏等[15]研究表明,高生產(chǎn)力類(lèi)型水稻品種較中、低生產(chǎn)力類(lèi)型,具有夠苗前氮素積累快,夠苗至拔節(jié)期積累少,拔節(jié)至抽穗期積累穩(wěn),抽穗至成熟期積累多,且抽穗后氮素向籽粒轉(zhuǎn)移量大但不過(guò)量的特點(diǎn)。國(guó)內(nèi)有關(guān)水稻基因型氮素吸收、利用效率的差異雖有一定研究,但主要集中在手插和拋秧方面,有關(guān)育插秧機(jī)械化條件下,特別是以四川為典型代表的雜交中秈稻區(qū),不同基因型水稻品種氮素積累和轉(zhuǎn)化差異的研究尚鮮見(jiàn)報(bào)道。本文以4個(gè)粳稻品種和在西南地區(qū)推廣面積較大的6個(gè)秈型雜交中稻品種為研究對(duì)象,分析不同基因型水稻在機(jī)械化育插秧?xiàng)l件下氮素積累特性,以期為生產(chǎn)上選擇適于機(jī)械化育栽插的水稻品種,同時(shí)為不同基因型水稻品種制定相應(yīng)的栽培技術(shù)提供理論依據(jù)。
1.1 試驗(yàn)地點(diǎn)及條件
試驗(yàn)于2012年在成都郫縣古城鎮(zhèn)花牌村實(shí)施,試驗(yàn)田前作為青菜。土壤主要理化性質(zhì): pH 5.96,有機(jī)質(zhì)45.5 g/kg,全氮0.87 g/kg,速效氮147.2 mg/kg,速效磷54.5 mg/kg,速效鉀65.5 mg/kg。
1.2 試驗(yàn)設(shè)計(jì)
供試品種包括中秈中熟雜交稻(MIHR)、中秈遲熟雜交稻(LIHR)、粳稻(JR)共計(jì)10個(gè)品種,具體見(jiàn)表1。試驗(yàn)采用單因素隨機(jī)區(qū)組設(shè)計(jì),重復(fù)3次。4月13日采用塑盤(pán)旱育秧,將已培肥的床土放入規(guī)格為28 cm×58 cm的塑盤(pán),采用四川川龍拖拉機(jī)制造有限公司生產(chǎn)的一鳴牌全自動(dòng)播種流水線(xiàn)播種,田間苗床育秧,通過(guò)給流水線(xiàn)換條形播種器實(shí)現(xiàn)機(jī)器條播,機(jī)條播規(guī)格為每盤(pán)播種24行。播種前浸種24 h,濾干,不進(jìn)行催芽處理,每個(gè)品種育6盤(pán),播量為50 g/盤(pán),秧齡30 d,2葉1心和移栽前2 d分別追施尿素6 g/m2。用洋馬VP6E型插秧機(jī)移栽,栽插規(guī)格14 cm×30 cm, 插秧機(jī)秧塊取秧面積和送秧速度采用固定值,小區(qū)面積24 m2(10 m×2.4 m),移栽后不補(bǔ)苗。施純氮180 kg/hm2,各時(shí)期施氮比例為基蘗肥 ∶穗肥=6 ∶4,其中,基肥 ∶分蘗肥=7 ∶3,促花肥 ∶?;ǚ?6 ∶4。按N ∶P2O5∶K2O為2 ∶1 ∶2確定磷、鉀肥使用量。磷肥全作基肥,按基肥 ∶穗肥(促花肥)=5 ∶5比例施鉀肥。其他田間管理措施按大面積生產(chǎn)進(jìn)行。
表1 供試水稻組合
1.3 測(cè)定項(xiàng)目與方法
每小區(qū)定點(diǎn)20穴分別于分蘗盛期、拔節(jié)期、孕穗期、抽穗期、灌漿期、成熟期調(diào)查莖蘗數(shù)。按平均莖蘗數(shù)法取樣,每小區(qū)取3穴,取回后去根,分葉片、莖鞘和穗(抽穗后)烘干稱(chēng)重。樣品粉碎后,用萬(wàn)分之一電子天平稱(chēng)取0.2 g樣品,加定氮催化片1片,濃硫酸10 mL,經(jīng)380℃消煮90 min,采用FOSS8400全自動(dòng)凱氏定氮儀測(cè)定其含氮量[16]。
植株含氮量(N content of rice,%)=(單位面積葉片干物重×葉片含氮量+單位面積莖鞘干物重×莖鞘含氮量+單位面積穗干物重×穗含氮量)/單位面積全株地上部(莖、葉和穗)干物重×100;
葉片(莖鞘、穗)氮素積累量(N accumulation, kg/hm2)=各時(shí)期單位面積葉片(莖鞘、穗)干物重×葉片(莖鞘、穗)含氮量;
氮素積累總量(Total N accumulation, kg/hm2)=單位面積地上部各器官(葉片、莖鞘、穗)氮素積累量之和;
葉片(莖鞘)氮素轉(zhuǎn)運(yùn)量(N transferred from leaves, kg/m2)=抽穗期葉片(莖鞘)氮積累量-成熟期葉片(莖鞘)氮積累量;
葉片(莖鞘)氮素表觀(guān)轉(zhuǎn)運(yùn)效率(Apparent N translocation rate of leaves,%) =葉片(莖鞘)氮轉(zhuǎn)運(yùn)量/抽穗期葉片(莖鞘)氮積累量×100;
葉片(莖鞘)氮素轉(zhuǎn)運(yùn)貢獻(xiàn)率(N translocation contribution rate,%)=氮素轉(zhuǎn)運(yùn)量/成熟期穗部氮素積累總量×100;
氮素干物質(zhì)生產(chǎn)效率(N dry matter production efficiency, kg/kg)=成熟期單位面積全株地上部(莖、葉和穗)干物重/成熟期氮素積累總量;
氮素籽粒生產(chǎn)效率(N grain production efficiency, kg/kg)=稻谷產(chǎn)量/成熟期氮素積累總量;
氮素轉(zhuǎn)運(yùn)效率(N translocation efficiency,%)=(抽穗期莖葉氮素積累總量-成熟期莖葉氮素積累總量)/抽穗期莖葉氮素積累總量×100;
百千克籽粒吸氮量(N uptake per 100 kg of grain, kg)=成熟期氮素積累總量/稻谷產(chǎn)量×100。
1.4 統(tǒng)計(jì)分析
運(yùn)用Microsoft Excel處理數(shù)據(jù)。用DPS V 7.05系統(tǒng)軟件分析數(shù)據(jù),用LSD(least significant difference test)進(jìn)行樣本平均數(shù)的差異顯著性比較。
2.1 不同基因型機(jī)插稻植株含氮量的比較
由表2可得出,隨生育進(jìn)程推進(jìn),水稻植株含氮量呈下降趨勢(shì),且下降趨勢(shì)呈先快后慢。在拔節(jié)期、孕穗期、抽穗期這三個(gè)生育時(shí)期,三種水稻類(lèi)型的氮素含量表現(xiàn)為,粳稻>中秈中熟雜交稻>中秈遲熟雜交稻,且三者之間差異達(dá)到顯著或極顯著水平;分蘗期、灌漿期、成熟期中秈中熟雜交稻植株含氮量均最高,粳稻最低且成熟期顯著低于中秈中熟雜交稻和中秈遲熟雜交稻;整個(gè)生育期中秈中熟雜交稻氮素含量均高于中秈遲熟雜交稻,且拔節(jié)期、抽穗期和灌漿期分別高4.50%、11.28%和5.93%。除拔節(jié)期和灌漿期較低外,其他時(shí)期中秈中熟雜交稻中宜香優(yōu)2168的氮素含量均最高,且孕穗期、抽穗期和成熟期極顯著或顯著高于F優(yōu)498和川香優(yōu)3號(hào)。中秈遲熟雜交稻中德香4103的氮素含量除分蘗期和拔節(jié)期較低外均最高,且極顯著高于泰優(yōu)99和Ⅱ優(yōu)498。在粳稻品種中,69優(yōu)8號(hào)的氮素含量在分蘗期、拔節(jié)期、孕穗期、抽穗期4個(gè)生育時(shí)期均最低,且極顯著或顯著低于連粳10號(hào)、W021和徐稻6號(hào)這3個(gè)品種。
表2 不同水稻品種的植株含氮量(%)
注(Note): 同一列不同小、大寫(xiě)字母表示同一品種類(lèi)型下各品種間差異達(dá)到5%和1%顯著水平,平均值后不同小、大字母表示不同品種類(lèi)型間差異達(dá)到5%和1%顯著水平 Values followed by different lowercase and capital letters in a column are significantly different among cultivars, and means followed with different lowercase and capital letters are significantly different among cultivar types at the 5% and 1% levels, respectively.
2.2 不同基因型機(jī)插稻植株氮素積累動(dòng)態(tài)分析
2.2.1 不同基因型機(jī)插稻植株群體氮素積累動(dòng)態(tài) 對(duì)不同基因型全生育期氮素積累動(dòng)態(tài)過(guò)程進(jìn)行l(wèi)ogistic曲線(xiàn)擬合,其中決定系數(shù)R2均大于0.95,表明氮素積累動(dòng)態(tài)較好地符合“S”型曲線(xiàn)。表3和圖1表明,不同水稻類(lèi)型間表現(xiàn)為中秈遲熟雜交稻的平均終極積累量(210.54 kg/hm2)>中秈中熟雜交稻的平均終極積累量(194.57 kg/hm2)>粳稻的平均終極積累量(158.21 kg/hm2),雖然中秈遲熟雜交稻的平均最大速率Vm最小,但出現(xiàn)最大增長(zhǎng)速率較晚,平穩(wěn)持續(xù)增高時(shí)間較長(zhǎng)導(dǎo)致平均終極積累量最大。F優(yōu)498的終極積累量(213.57 kg/hm2) 在中秈中熟雜交稻中最大,比三種類(lèi)型的平均終極積累量分別高出1.44%、9.77%和34.99%,且具有前期積累較快的特點(diǎn);粳稻中69優(yōu)8號(hào)和連粳10號(hào)的終極積累量較大,其出現(xiàn)最大增長(zhǎng)速率也較遲。2.2.2 不同基因型機(jī)插稻群體氮素階段積累量 由表4可得,不同水稻類(lèi)型間,分蘗期前和拔節(jié)期—抽穗期的氮素階段積累量表現(xiàn)為中秈遲熟雜交稻>中秈中熟雜交稻>粳稻,且中秈遲熟雜交稻極顯著高于粳稻,抽穗期—成熟期的氮素階段積累量表現(xiàn)為中秈中熟雜交稻>中秈遲熟雜交稻>粳稻,分蘗期—拔節(jié)期的氮素階段積累量表現(xiàn)為粳稻>中秈遲熟雜交稻>中秈中熟雜交稻。除拔節(jié)期—抽穗期外,其他階段中秈中熟雜交稻中F優(yōu)498的氮素階段積累量均最高,且分別比宜香優(yōu)2168和川香優(yōu)3號(hào)高27.67%、81.69%、121.17%和20.87%、54.36%、186.45%。除拔節(jié)期—抽穗期外,其他階段中秈遲熟雜交稻中泰優(yōu)99的氮素階段積累量均最高,且極顯著或顯著高于Ⅱ優(yōu)498,而拔節(jié)期—抽穗期階段Ⅱ優(yōu)498的氮素積累量最高,且極顯著高于德香4103和泰優(yōu)99,分別比德香4103和泰優(yōu)99高43.47%和73.26%。粳稻中連粳10號(hào)的氮素階段積累量除拔節(jié)期—抽穗期最高外均最低,且分蘗期前顯著低于徐稻6號(hào),分蘗期—拔節(jié)期階段顯著低于其他三個(gè)品種。
圖1 不同基因型機(jī)插秧氮素積累的Logistic回歸方程曲線(xiàn)Fig.1 Logistic equations expressing the days dependent nitrogen accumulation in different rice cultivars
表3 不同水稻品種的植株氮素積累的Logistic模型參數(shù)估值[y=a/(1+be-cx)]
注(Note):R2—決定系數(shù)Decisive coefficients; Vm—氮素積累最快增長(zhǎng)速率The rapidest increase rate in N accumulation[g/(m2·d)]; D—氮素積累量最快增長(zhǎng)速率出現(xiàn)的天數(shù) Days needed for reaching the rapidest increase rate in N accumulation (d).
表4 不同水稻品種的氮素階段積累量 (kg/hm2)
注(Note): 同一列不同小、大寫(xiě)字母表示同一品種類(lèi)型下各品種間差異達(dá)到5%和1%顯著水平,平均值后不同小、大字母表示不同品種類(lèi)型間差異達(dá)到5%和1%顯著水平 Values followed by different lowercase and capital letters in a column are significantly different among cultivars, and means followed with different lowercase and capital letters are significantly different among cultivar types at the 5% and 1% levels.
2.3 不同基因型機(jī)插稻營(yíng)養(yǎng)器官的氮素分配特性
由表5可得,隨生育進(jìn)程,植株總吸氮量在葉片、莖鞘和穗中的分配比例變化幅度均較大,中秈中熟雜交稻、中秈遲熟雜交稻和粳稻的葉片分配比例由拔節(jié)期到成熟期分別下降50.87個(gè)百分點(diǎn)、46.24個(gè)百分點(diǎn)和46.46個(gè)百分點(diǎn),莖鞘分配比例分別下降14.32個(gè)百分點(diǎn)、12.48個(gè)百分點(diǎn)和14.28個(gè)百分點(diǎn),而粳稻由于抽穗期的穗部氮素分配比例只有15.01%,因此其穗部氮素分配比例由抽穗期至成熟期上升幅度最大為45.73個(gè)百分點(diǎn)。莖鞘氮素分配率在拔節(jié)期、抽穗期和成熟期均表現(xiàn)為中秈遲熟雜交稻極顯著或顯著高于中秈中熟雜交稻和粳稻,中秈中熟雜交稻和粳稻之間差異不顯著;穗部氮素分配率在抽穗期和成熟期均表現(xiàn)為中秈中熟雜交稻極顯著或顯著高于中秈遲熟雜交稻和粳稻,中秈遲熟雜交稻和粳稻差異不顯著。中秈中熟雜交稻中宜香優(yōu)2168莖鞘氮素分配率在拔節(jié)期極顯著低于川香優(yōu)3號(hào)和F優(yōu)498,抽穗期極顯著高于川香優(yōu)3號(hào)和F優(yōu)498,成熟期差異不顯著;而F優(yōu)498莖鞘氮素分配率在拔節(jié)期和成熟期均最高,穗部氮素分配率在抽穗期最高且顯著高于宜香優(yōu)2168,成熟期差異不顯著。中秈遲熟雜交稻中Ⅱ優(yōu)498莖鞘氮素分配率在拔節(jié)期、抽穗期和成熟期均極顯著或顯著高于泰優(yōu)99,而德香4103的莖鞘氮素分配率表現(xiàn)為先增大后降低,到成熟期降到最低,但穗部氮素分配率在成熟期最高且顯著高于泰優(yōu)99和Ⅱ優(yōu)498。粳稻中69優(yōu)8號(hào)的葉片氮素分配率在拔節(jié)期、成熟期極顯著或顯著高于連粳10號(hào)、徐稻6號(hào)和W021,且連粳10號(hào)和徐稻6號(hào)在拔節(jié)期極顯著高于W021,連粳10號(hào)和徐稻6號(hào)之間差異不顯著; 69優(yōu)8號(hào)穗部氮素分配率在抽穗期和成熟期均最高,且抽穗期極顯著或顯著高于連粳10號(hào)。
2.4 不同基因型機(jī)插稻營(yíng)養(yǎng)器官的氮素轉(zhuǎn)運(yùn)
由表6可得出,不同品種的葉片氮素轉(zhuǎn)運(yùn)量、氮素表觀(guān)轉(zhuǎn)運(yùn)率及氮素轉(zhuǎn)運(yùn)貢獻(xiàn)率均高于莖鞘氮素轉(zhuǎn)運(yùn)量、氮素表觀(guān)轉(zhuǎn)運(yùn)率及氮素轉(zhuǎn)運(yùn)貢獻(xiàn)率。不同水稻類(lèi)型葉片氮素轉(zhuǎn)運(yùn)量、莖鞘氮素轉(zhuǎn)運(yùn)量和轉(zhuǎn)運(yùn)貢獻(xiàn)率表現(xiàn)為,中秈遲熟雜交稻>中秈中熟雜交稻>粳稻;葉片、莖鞘氮素表觀(guān)轉(zhuǎn)運(yùn)率表現(xiàn)為,中秈中熟雜交稻>粳稻>中秈遲熟雜交稻。中秈中熟雜交稻中F優(yōu)498的莖鞘、葉片氮素轉(zhuǎn)運(yùn)量、轉(zhuǎn)運(yùn)率以及轉(zhuǎn)運(yùn)貢獻(xiàn)率均最低,且顯著或極顯著低于宜香優(yōu)2168。中秈遲熟雜交稻中的莖鞘、葉片氮素轉(zhuǎn)運(yùn)量、轉(zhuǎn)運(yùn)率以及轉(zhuǎn)運(yùn)貢獻(xiàn)率表現(xiàn)為德香4103>Ⅱ優(yōu)498>泰優(yōu)99,但德香4103和Ⅱ優(yōu)498之間均差異不顯著。在粳稻中,雜交粳稻69優(yōu)8號(hào)的莖鞘氮素轉(zhuǎn)運(yùn)量和莖鞘氮素表觀(guān)轉(zhuǎn)運(yùn)率顯著高于連粳10號(hào)和徐稻6號(hào),其他均差異不顯著。
表5 不同水稻品種間植株氮素分配的差異 (%)
注(Note): 同一列不同小、大寫(xiě)字母表示同一品種類(lèi)型下各品種間差異達(dá)到5%和1%顯著水平,平均值后不同小、大字母表示不同品種類(lèi)型間差異達(dá)到5%和1%顯著水平 Values followed by different lowercase and capital letters in a column are significantly different among cultivars, and means followed with different lowercase and capital letters are significantly different among cultivar types at the 5% and 1% levels, respectively.
表6 不同水稻品種間器官氮素轉(zhuǎn)運(yùn)的差異
注(Note): 同一列不同小、大寫(xiě)字母表示同一品種類(lèi)型下各品種間差異達(dá)到5%和1%顯著水平 Values followed by different lowercase and capital letters in a column are significantly different among cultivars at the 5% and 1% levels, respectively.
2.5 不同基因型水稻稻氮素吸收利用效率
由表7可得出,粳稻植株氮素干物質(zhì)生產(chǎn)率極顯著高于中秈中熟雜交稻和中秈遲熟雜交稻,而氮素籽粒生產(chǎn)效率和產(chǎn)量最低,且極顯著低于中秈中熟雜交稻和中秈遲熟雜交稻;中秈中熟雜交稻的氮素籽粒生產(chǎn)效率、氮素轉(zhuǎn)運(yùn)效率和產(chǎn)量均最高,分別比中秈遲熟雜交稻和粳稻高3.69%、14.00%、0.74%和17.33%、7.05%、23.79%,而氮素干物質(zhì)生產(chǎn)率和百千克籽粒吸氮量均最低,且顯著或極顯著低于中秈遲熟雜交稻和粳稻。中秈中熟雜交稻中F優(yōu)498的產(chǎn)量顯著高于宜香優(yōu)2168和川香優(yōu)3號(hào),氮素干物質(zhì)生產(chǎn)率、氮素籽粒生產(chǎn)效率和百千克籽粒吸氮量也較高,但氮素轉(zhuǎn)運(yùn)效率沒(méi)有優(yōu)勢(shì);川香優(yōu)3號(hào)的氮素干物質(zhì)生產(chǎn)率和氮素籽粒生產(chǎn)效率均最高,且顯著高于宜香優(yōu)2168,而百千克籽粒吸氮量和產(chǎn)量最低,且百千克籽粒吸氮量極顯著低于F優(yōu)498和宜香優(yōu)2168。中秈遲熟雜交稻中德香4103的氮素籽粒生產(chǎn)效率和氮素轉(zhuǎn)運(yùn)效率均高于泰優(yōu)99和Ⅱ優(yōu)498,且德香4103的氮素干物質(zhì)生產(chǎn)率和百千克籽粒吸氮量極顯著低于泰優(yōu)99和Ⅱ優(yōu)498。在粳稻中,W021的氮素干物質(zhì)生產(chǎn)率極顯著高于連粳10號(hào)、69優(yōu)8號(hào)和徐稻6號(hào),連粳10號(hào)、69優(yōu)8號(hào)和徐稻6號(hào)之間差異不顯著,且W021的氮素籽粒生產(chǎn)效率顯著高于連粳10號(hào),而百千克籽粒吸氮量顯著或極顯著低于連粳10號(hào)、69優(yōu)8號(hào)和徐稻6號(hào);69優(yōu)8號(hào)的氮素轉(zhuǎn)運(yùn)效率、百千克籽粒吸氮量和產(chǎn)量均最高,且百千克籽粒吸氮量顯著或極顯著高于其他三個(gè)品種。
表7 不同水稻品種的氮素利用效率及產(chǎn)量
注(Note): 同一列不同小、大寫(xiě)字母表示同一品種類(lèi)型下各品種間差異達(dá)到5%和1%顯著水平,平均值后不同小、大字母表示不同品種類(lèi)型間差異達(dá)到5%和1%顯著水平 Values followed by different lowercase and capital letters in a column are significantly different among cultivars, and means followed with different lowercase and capital letters are significantly different among cultivar types at the 5% and 1% levels, respectively.
3.1 機(jī)插稻植株氮素積累轉(zhuǎn)運(yùn)特性
3.2 機(jī)插稻植株氮素積累的品種間差異
Tirol-Padre等[23]研究表明,不同基因型秈稻品種的總氮素積累量不同,且生育期長(zhǎng)的品種總氮素積累量明顯大于生長(zhǎng)期短的品種; Singh等[8]也認(rèn)為生育期長(zhǎng)的品種氮素積累總量大于生育期中等品種。本試驗(yàn)調(diào)查的10個(gè)不同類(lèi)型水稻品種中,粳稻在灌漿前期的平均植株含氮量均較高,但在成熟期極顯著低于中秈中熟雜交稻和中秈遲熟雜交稻。分析其原因,可能與施氮總量及粳稻在特定生態(tài)區(qū)的生長(zhǎng)發(fā)育特性有關(guān)。按雜交秈稻栽培實(shí)際出發(fā),本試驗(yàn)統(tǒng)一施氮180 kg/hm2,可能造成粳稻后期氮積累量不足,且粳稻作為引進(jìn)品種,其平均生育期較雜交稻長(zhǎng),含氮量降低時(shí)間持續(xù)長(zhǎng),降低幅度更大。因此在成熟期粳稻植株含氮量極顯著低于中秈中熟雜交稻和中秈遲熟雜交稻。中秈遲熟雜交稻與中秈中熟雜交稻的終極氮素積累量比粳稻分別高33.08%和22.98%,分蘗期前和拔節(jié)期—抽穗期,中秈遲熟雜交稻氮積累量比中秈中熟雜交稻分別高13.04%和17.35%,比粳稻高73.33%和50.66%,這與殷春淵等[24]研究結(jié)果一致。中秈中熟雜交稻終極氮素積累量較大,氮素籽粒生產(chǎn)效率和氮素轉(zhuǎn)運(yùn)效率也較高,百千克籽粒吸氮量和氮素干物質(zhì)生產(chǎn)率低,這與Ying等[25]研究的氮素利用率也是影響水稻氮素積累的重要原因一致。并且中秈中熟雜交稻葉片、莖鞘氮素表觀(guān)轉(zhuǎn)運(yùn)率和穗部分配率均較高,其高的轉(zhuǎn)運(yùn)率對(duì)水稻植株氮素積累有重要的作用,氮素在穗部的分配率為高產(chǎn)提供了有利條件,中秈中熟雜交稻抽穗期—成熟期氮素積累量最大,在氮素積累上具有后發(fā)優(yōu)勢(shì),生產(chǎn)上應(yīng)注重后期氮肥的施用,提高其氮素在各器官的轉(zhuǎn)化利用,還有利于其產(chǎn)量形成。中秈遲熟雜交稻的氮素終極積累量均高于200 kg/hm2,主要由于生長(zhǎng)日數(shù)多,前期(分蘗期前)和中期(拔節(jié)期—抽穗期)氮素積累量大,總體氮素積累平穩(wěn)持續(xù)增高時(shí)間較長(zhǎng),但百千克籽粒吸氮量最高,氮素積累對(duì)水稻產(chǎn)量的貢獻(xiàn)相對(duì)較低。因此,通過(guò)提高氮素積累量來(lái)促進(jìn)其產(chǎn)量的形成優(yōu)勢(shì)不明顯,施肥上適當(dāng)注重前期和中后期的氮肥施用比例,從而提高氮素積累量和利用率。粳稻氮素終極積累量最低,莖鞘氮素分配率、氮素籽粒生產(chǎn)效率和氮素轉(zhuǎn)運(yùn)效率也低,含氮量和干物質(zhì)生產(chǎn)率高,這與董桂春等[14]研究的粳稻品種氮素干物質(zhì)生產(chǎn)率高一致。中秈中熟雜交稻中F優(yōu)498的終極氮素積累量比三種類(lèi)型的平均終極生長(zhǎng)量分別高出1.44%、9.77%和34.99%,達(dá)到213.57 kg/hm2,拔節(jié)前和抽穗后的氮素積累量都顯著高于其他中秈中熟雜交稻,整個(gè)生育期雖無(wú)含氮量?jī)?yōu)勢(shì),但其返青分蘗快增加生物量的積累和后期營(yíng)養(yǎng)器官較好的進(jìn)行氮素的轉(zhuǎn)運(yùn)對(duì)植株終極氮素積累具有巨大的貢獻(xiàn),并且其穗部器官抽穗期的氮素分配率高,氮素籽粒生產(chǎn)效率也較高,對(duì)產(chǎn)量的形成具有遺傳上的優(yōu)勢(shì)。粳稻中雜交粳稻69優(yōu)8號(hào)80 d以后的生長(zhǎng)速率的不同導(dǎo)致植株氮素終極積累量遠(yuǎn)遠(yuǎn)高于另外三個(gè)品種,且69優(yōu)8號(hào)的穗部積累量在粳稻中也最高。因此,雜交粳稻69優(yōu)8號(hào)相比其他粳稻品種具有氮素積累量大且產(chǎn)量高的潛力,在施肥上利用其機(jī)插的爆發(fā)性生長(zhǎng)點(diǎn)對(duì)其氮素轉(zhuǎn)化利用具有重要意義。
[1] 俞巧鋼, 葉靜, 楊梢娜, 等. 不同施氮量對(duì)單季稻養(yǎng)分吸收及氨揮發(fā)損失的影響[J]. 中國(guó)水稻科學(xué), 2012, 26(4): 487-494. Yu Q G, Ye J, Yang S Netal. Effects of different nitrogen application levels on rice nutrient uptake and ammonium volatilization[J]. Chinese Journal of Rice Science, 2012, 26(4): 487-494.
[2] 凌啟鴻, 張洪程, 戴其根, 等. 水稻精確定量施氮研究[J]. 中國(guó)農(nóng)業(yè)科學(xué), 2005, 38(12): 2457-2467. Ling Q H, Zhang H C, Dai Q Getal. Study on precise and quantitative N application in rice[J]. Scientia Agricultura Sinica, 2005, 38(12): 2457-2467.
[3] Mawaki M, Morita S, Suga Tetal. Effect of shading on root system morphology and grain yield of rice plantsⅠ. An analysis on root length density[J]. Japanese Journal of Crop Science, 1990, 59(1): 89-94.
[4] 唐拴虎, 徐培智, 張發(fā)寶, 等. 一次性全層施用控釋肥對(duì)水稻根系形態(tài)發(fā)育及抗倒伏能力的影響[J]. 植物營(yíng)養(yǎng)與肥料學(xué)報(bào), 2006, 12(1): 63-69. Tang S H, Xu P Z, Zhang F Betal. Influence of single basal application controlled-release fertilizer on morphologic development of root system and lodging resistance of rice[J]. Plant Nutrition and Fertilizer Science, 2006, 12(1): 63-69.
[5] 鄭圣先, 聶軍, 戴平安, 鄭穎俊. 控釋氮肥對(duì)雜交水稻生育后期根系形態(tài)生理特征和衰老的影響[J]. 植物營(yíng)養(yǎng)與肥料學(xué)報(bào), 2006, 12(2): 188-194. Zheng S X, Nie J, Dai P A, Zheng Y J. Effect of controlled release nitrogen fertilizer on the morphological and physiological characteristics and senescence of root system during late growth stages of hybrid rice[J]. Plant Nutrition and Fertilizer Science, 2006, 12(2): 188-194.
[6] 王余龍, 姚友禮, 蔣軍民, 蔡建中. 高產(chǎn)水稻養(yǎng)分吸收規(guī)律及氮素調(diào)控機(jī)理研究[M]. 北京: 中國(guó)農(nóng)業(yè)出版社, 1995. 118-130. Wang Y L, Yao Y L, Jiang J M, Cai J Z. Study on nitrogen regulation mechanism and nutrient assimilate in high yield rice[M]. Beijing: China Agriculture Press, 1995. 118-130.
[7] 吳平, 羅安程, 倪俊建, 章永松. 植物營(yíng)養(yǎng)分子與遺傳研究進(jìn)展. 植物營(yíng)養(yǎng)與肥料學(xué)報(bào), 1996, 2(1): 1-6. Wu P, Luo A C, Ni J J, Zhang Y S. Plant nutrition molecule and genetic study advance[J]. Plant Nutrition and Fertilizer Science, 1996, 2(1): 1-6.
[8] Singh U, Ladha J K, Castillo E Getal. Genotypic variation in nitrogen use efficiency in medium and long duration rice[J]. Field Crops Research, 1998, 58: 35-53.
[9] 單玉華, 王余龍, 山本由德, 等. 常規(guī)秈稻與雜交秈稻氮素利用效率的差異[J]. 江蘇農(nóng)業(yè)研究, 2001, 22(1): 12-15. Shan Y H, Wang Y L, YAMAMOTO Yetal. Genotypic differences of nitrogen use efficiency in various types of indica rice[J]. Jiangsu Agricultural Research, 2001, 22(1): 12-15.
[10] 程建峰, 戴延波, 曹衛(wèi)星, 等. 不同類(lèi)型水稻種質(zhì)氮素營(yíng)養(yǎng)效率的變異分析[J]. 植物營(yíng)養(yǎng)與肥料學(xué)報(bào), 2007, 13(2): 175-183. Cheng J F, Dai T B, Cao W Xetal. Variations of nitrogen nutrition efficiency in different rice germplasm types[J]. Plant Nutrition and Fertilizer Science, 2007, 13(2): 175-183.
[11] 張亞麗, 樊劍波, 段英華, 等. 不同基因型水稻氮利用效率的差異及評(píng)價(jià)[J]. 土壤學(xué)報(bào), 2008, 45(2): 267-273. Zhang Y L, Fan J B, Duan Y Hetal. Variation of nitrogen use efficiency of rice different in genotype and its evaluation[J]. Acta Pedologica Sinica, 2008, 45(2): 267-273.
[12] 陳明霞, 黃見(jiàn)良, 崔克輝, 等. 不同氮效率基因型水稻植株氨揮發(fā)速率及其與氮效率的關(guān)系[J]. 作物學(xué)報(bào), 2010, 36(5): 879-884. Chen M X, Huang J L, Cui K Hetal. Genotypic variation in ammonia volatilization rate of rice shoots and its relationship with nitrogen use efficiency[J]. Acta Agronomica Sinica, 2010, 36(5): 879-884.
[13] 徐陽(yáng)春, 吳小慶, 郭世偉, 沈其榮. 水稻生育后期地上部氨揮發(fā)與氮素利用效率的研究[J]. 植物營(yíng)養(yǎng)與肥料學(xué)報(bào), 2008, 14(2): 207-212. Xu Y C, Wu X Q, Guo S W, Shen Q R. Nitrogen use efficiency and ammonia volatilization from rice shoot in late growth stages[J]. Plant Nutrition and Fertilizer Science, 2008, 14(2): 207-212.
[14] 董桂春, 王熠, 于小鳳, 等. 不同生育期水稻品種氮素吸收利用的差異[J]. 中國(guó)農(nóng)業(yè)科學(xué), 2011, 44(22): 4570-4582. Dong G C, Wang Y, Yu X Fetal. Differences of nitrogen uptake and utilization of conventional rice varieties with different growth duration[J]. Scientia Agricultura Sinica, 2011, 44(22): 4570-4582.
[15] 李敏, 張洪程, 馬群, 等. 不同氮肥群體最高生產(chǎn)力類(lèi)型粳稻品種的氮素吸收利用特性[J]. 中國(guó)水稻科學(xué), 2012, 26(2): 197-204. Li M, Zhang H C, Ma Qetal. Nitrogen absorption and utilization characteristics of japonica rice cultivars with different productivities at their optimum nitrogen levels[J]. Chinese Journal of Rice Science, 2012, 26(2): 197-204.
[16] 鮑士旦, 土壤農(nóng)化分析[M]. 北京: 中國(guó)農(nóng)業(yè)出版社, 2000. 44-49. Bao S D. Soil and agro-chemistry analysis[M]. Beijing: China Agriculture Press, 2000. 44-49.
[17] 胡本泉. 機(jī)插水稻的生育特點(diǎn)及其大田管理技術(shù)[J]. 農(nóng)技服務(wù), 2008, 25(4): 6-10. Hu B Q. Growth characteristics and field management technology of machine-transplanted rice[J]. Agricultural Technical Services, 2008, 25(4): 6-10.
[18] 于林惠. 對(duì)機(jī)插水稻生育特點(diǎn)及管理對(duì)策的初步探討[J]. 中國(guó)農(nóng)機(jī)化, 2002(1): 29-31. Yu L H. Preliminary investigation on growth characteristics of machine-transplanted rice and its management countermeasure[J]. Chinese Agricultural Mechanization, 2002(1): 29-31.
[19] 茅弼華, 王和平, 王志林. 機(jī)插水稻的生育特性和有關(guān)農(nóng)藝技術(shù)[J]. 江蘇農(nóng)業(yè)科學(xué), 2006(3): 27-30. Mao B H, Wang H P, Wang Z L. Growth characteristics of machine-transplanted rice and related agronomic technology[J]. Jiangsu Agricultural Sciences, 2006(3): 27-30.
[20] 胡劍鋒, 張培培, 趙中操, 等. 麥茬長(zhǎng)秧齡條件下氮肥對(duì)機(jī)插水稻氮素利用效率及產(chǎn)量影響的研究[J]. 植物營(yíng)養(yǎng)與肥料學(xué)報(bào), 2011, 17(6): 1318-1326. Hu J F, Zhang P P, Zhao Z Cetal. Effects of nitrogen fertilization on nitrogen use efficiency and yield of machine-transplanted long-age rice seedings[J]. Plant Nutrition and Fertilizer Science, 2011, 17(6): 1318-1326.
[21] 宋智勇, 呂凱, 羅鳳, 練興明. 施氮量對(duì)不同基因型水稻品種氮素吸收利用的影響[J]. 華中農(nóng)業(yè)大學(xué)學(xué)報(bào), 2012, 31(2): 165-170. Song Z Y, Lv K, Luo F, Lian X M. Effect of nitrogen application on nitrogen uptaking and utilization in ten different rice varieties[J]. Journal of Huazhong Agricultural University, 2012, 31(2): 165-170.
[22] 鄧飛, 王麗, 任萬(wàn)軍, 等. 不同生態(tài)條件下栽植方式對(duì)中秈遲熟雜交稻組合Ⅱ優(yōu)498氮素積累與分配的影響[J]. 中國(guó)農(nóng)業(yè)科學(xué), 2012, 45(20): 4310-4325. Deng F, Wang L, Ren W Jetal. Effects of planting methods on nitrogen accumulation and distribution of mid-late indica hybrid rice combination ⅡYou498 under different ecological conditions[J]. Scientia Agricultura Sinica, 2012, 45(20): 4310-4325.
[23] Tirol-Padre A, Ladha J K, Singh Uetal. Grain yield performance of rice genotypes at suboptimal levels of soil N as affected by N uptake and utilization efficiency[J]. Field Crops Research, 1996, 46: 127-143.
[24] 殷春淵, 張慶, 魏海燕, 等. 不同產(chǎn)量類(lèi)型水稻基因型氮素吸收、利用效率的差異[J]. 中國(guó)農(nóng)業(yè)科學(xué), 2010, 43(1): 39-50. Yin C Y, Zhang Q, Wei H Yetal. Differences in nitrogen absorption and use efficiency in rice genotypes with different yield performance[J]. Scientia Agricultura Sinica, 2010, 43(1): 39-50.
[25] Ying J F, Peng S B, Yang G Qetal. Comparison of high-yield rice in tropical and subtropical environmentsⅡ. Nitrogen accumulation and utilization efficiency[J]. Field Crops Research, 1998, 57(1): 85-93.
Differences in N accumulation and translocation in the machine-transplanted rice genotypes
ZHAO Min1, HU Jian-feng1, ZHONG Xiao-yuan1, ZHANG Qiang1, ZHOU Hong2, REN Wan-jun1*
(1CollegeofAgronomy,SichuanAgriculturalUniversity/KeyLaboratoryofCropPhysiology,Ecology,andCultivationinSouthwestChina,Wenjiang611130,China; 2SichuanGeneralPopularizationCentreofAgriculturalTechnique,Chengdu610041,China)
【Objectives】 The experimental objective is to investigate the differences in N uptake and utilization in the machine-transplanted rice genotypes and explore an effective pathway improving uptake and utilization of N in the machine-transplanted rice genotypes.【Methods】 A field experiment was designed in randomized blocks to determine the N content, yields, the characteristics of N accumulation and dry matter weight, distribution and translocation of N in the different machine-transplanted rice genotypes at the growth stages of three medium-maturing varieties, three late-maturing varieties and fourjaponicarice cultivars, and explain the reasons causing the differences in the characteristics mentioned above.【Results】 1) The accumulation dynamics of N in the machine-transplanted rice was exhibited by a logistic curve. 2) N content in the machine-transplanted rice decreased through the growth period. The content of N injaponicarice cultivars was higher than inindicahybrid rice cultivars during jointing-heading, then that was gradually decreased and became lower than inindicahybrid rice cultivars at maturity. The content of N in medium-maturingindicahybrid rice cultivars reached the highest value at maturity stage. 3) The ultimate N uptake in thejaponicarice cultivars was 23.0% lower than in medium-maturingindicahybrid rice cultivars, and 33.1% lower than in late-maturingindicahybrid rice cultivars. 4) Medium-maturingindicahybrid rice cultivars exhibited the highest N accumulation during heading-maturity, and a highly N distribution ratio in the panicle, highly apparent N translocation rate in the leaf and stem-shead with a higher N grain production efficiency and N translocation efficiency, indicating that the accumulation and translocation efficiency of N in the medium-maturingindicahybrid rice cultivars were significantly higher than those in the late-maturingindicahybrid rice cultivars andjaponicarice cultivars under the planting mechanization. Fyou498 from medium-maturingindicahybrid rice showed much higher N uptake than the others, and had an advantage of rapid N accumulation at the early growth stage and reasonable N distribution at the late growth stage. 5) Late-maturingindicahybrid rice cultivars demonstrated the biggest enhancement rate in N accumulation from 84 to 91 d, and a steady N accumulation during the whole growth period, and the highest N uptake, but which was not beneficial to yield formation. 6) Cultivar 69you8 has higher N uptakes and yield than the otherjaponicarice cultivars, and its N accumulation and translocation efficiency was significantly higher under the planting mechanization.【Conclusions】 Different genotypes are significantly different in the characteristics of N accumulation and translocation under machine-transplanting condition. The accumulation and translocation efficiency of N in the medium-maturingindicahybrid rice cultivars is significantly higher than those in the late-maturingindicahybrid rice cultivars andjaponicarice cultivars. Fyou498, a medium-maturingindicahybrid rice cultivar, demonstrates genetic advantages in the N accumulation, distribution and yield formation. Late-maturingindicahybrid rice cultivars have potential in high N accumulation, which, however, does not show good to yield formation. N accumulation in thejaponicarice cultivars is relatively low. Among thejaponicarice cultivars, 69you8 has significantly higher N accumulation and yield under the planting mechanization, showing better suitability for planting mechanization.
rice; transplanting mechanization; genotype; N accumulation; N utilization
2014-01-14 接受日期: 2014-09-16
農(nóng)業(yè)部公益性行業(yè)科研專(zhuān)項(xiàng)(201303129); 國(guó)家糧食豐產(chǎn)科技工程項(xiàng)目(2011BAD16B05, 2013BAD07B13-2); 四川省育種攻關(guān)項(xiàng)目(2011NZ0098)資助。
趙敏(1990—),女,四川江油人,碩士研究生,主要從事水稻機(jī)械化栽培理論及技術(shù)研究。E-mail: 1184374736@qq.com * 通信作者 Tel: 028-86290972,E-mail: rwjun@126.com
S511; S143.1
A
1008-505X(2015)02-0277-11