向星居, 熊紅亮,*, 袁明磊, 于靖波, 陳柳生, 王智棟
(1. 中國(guó)航天空氣動(dòng)力技術(shù)研究院, 北京 100074; 2. 中國(guó)科學(xué)院化學(xué)研究所, 北京 100190)
快響應(yīng)PSP技術(shù)用于高超聲速圓柱繞流的非定常壓力測(cè)量
向星居1, 熊紅亮1,*, 袁明磊1, 于靖波1, 陳柳生2, 王智棟2
(1. 中國(guó)航天空氣動(dòng)力技術(shù)研究院, 北京 100074; 2. 中國(guó)科學(xué)院化學(xué)研究所, 北京 100190)
壓敏涂料(PSP)技術(shù)是飛行器風(fēng)洞實(shí)驗(yàn)大面積定量測(cè)壓和流動(dòng)顯示的重要工具。為了發(fā)展非定常流動(dòng)壓力測(cè)量和脈沖風(fēng)洞中全局壓力測(cè)量能力,航天空氣動(dòng)力技術(shù)研究院開(kāi)發(fā)了快速響應(yīng)壓敏涂料技術(shù),與中科院化學(xué)所共同合作開(kāi)發(fā)的壓敏涂料采用PtTFPP作為發(fā)光基團(tuán),穩(wěn)定性較強(qiáng),持續(xù)光照下發(fā)光強(qiáng)度衰減為1.5%/h。采用自主研制的靜態(tài)標(biāo)定設(shè)備在標(biāo)定腔內(nèi)測(cè)量不同溫度和壓力條件下20mm×20mm涂料樣片的表面發(fā)光強(qiáng)度來(lái)確定涂料的壓力響應(yīng)特性和Stern-Volmer公式,并設(shè)計(jì)制作了2套快響應(yīng)時(shí)間動(dòng)態(tài)標(biāo)定設(shè)備,測(cè)得涂料典型響應(yīng)時(shí)間在0.2ms。在中國(guó)航天空氣動(dòng)力技術(shù)研究院FD-03高超聲速風(fēng)洞中對(duì)平板圓柱裝置進(jìn)行了Ma=5的PSP試驗(yàn),利用高速相機(jī)采集圖像數(shù)據(jù)后,經(jīng)過(guò)批量數(shù)據(jù)處理,采集頻率為250Hz,得到了間隔時(shí)間4ms的連續(xù)壓力場(chǎng)數(shù)據(jù)。結(jié)合紋影圖像和油流圖對(duì)得到的PSP結(jié)果進(jìn)行了分析,利用同時(shí)采集的測(cè)壓孔數(shù)據(jù)對(duì)PSP結(jié)果進(jìn)行了比較。試驗(yàn)結(jié)果表明,快響應(yīng)PSP技術(shù)可以更詳細(xì)地顯示流場(chǎng)結(jié)構(gòu),并能同時(shí)得到很好的定量壓力數(shù)據(jù)。
快速響應(yīng)PSP技術(shù);快速響應(yīng)標(biāo)定裝置;PSP涂料;高超聲速;非定常流動(dòng)
壓敏涂料(PSP)測(cè)試技術(shù)能夠大面積定量測(cè)量和顯示模型表面壓力分布情況,已廣泛應(yīng)用于生產(chǎn)型風(fēng)洞試驗(yàn)。通常說(shuō)的PSP技術(shù)是指常規(guī)的穩(wěn)態(tài)PSP技術(shù),壓敏涂料的響應(yīng)時(shí)間為1s量級(jí)。為滿(mǎn)足新型飛行器和空氣動(dòng)力學(xué)發(fā)展的需要,快速響應(yīng)PSP技術(shù)發(fā)展起來(lái)。該技術(shù)能滿(mǎn)足非定常風(fēng)洞試驗(yàn)和捕捉大面積壓力脈動(dòng)的需求,對(duì)激波位置,分離點(diǎn)位置,激波邊界層干擾和捕捉飛行器動(dòng)態(tài)氣動(dòng)特性等復(fù)雜空氣動(dòng)力學(xué)現(xiàn)象的研究提供全局壓力分布數(shù)據(jù)和流動(dòng)顯示圖像。
近些年,國(guó)外研究較多的快響應(yīng)壓敏涂料主要有陽(yáng)極氧化鋁(AA-PSP)和超細(xì)陶瓷粉壓敏涂料(UCP-PSP)。AA-PSP是由陽(yáng)極化的鋁質(zhì)材料作為基底。純鋁材料通過(guò)陽(yáng)極化在表面得到蜂窩狀小孔。多孔的表面使得涂料與氧氣接觸面積增大,發(fā)光體直接吸附在多孔表面上,具有較快的響應(yīng)特性,其響應(yīng)時(shí)間在10μs左右。UCP-PSP由易揮發(fā)的有機(jī)化合物與超細(xì)陶瓷粉構(gòu)成,可以通過(guò)噴涂技術(shù)在任何材料的模型表面形成多孔的敏感涂層,其響應(yīng)時(shí)間在100μs左右。美國(guó)、日本、德國(guó)等國(guó)家都展開(kāi)了快速響應(yīng)壓敏涂料的研究工作,取得了大量的研究成果。美國(guó)普度大學(xué)較早開(kāi)展快速響應(yīng)PSP測(cè)試技術(shù)的研究工作。他們?cè)诟叱}沖風(fēng)洞和非定常流動(dòng)測(cè)試方面都做了很多卓有成效的工作,其快速響應(yīng)PSP的采樣頻率可達(dá)到22kHz[1-2]。日本航空航天局、東北大學(xué)和東京大學(xué)對(duì)快響應(yīng)PSP技術(shù)進(jìn)行了大量研究工作,從火箭整流罩非定常壓力測(cè)量[10]到三角翼[11-12]以及高超飛行器[13]的非定常試驗(yàn)都用到了此技術(shù)。德國(guó)宇航中心將快速響應(yīng)PSP技術(shù)應(yīng)用到二維翼型動(dòng)態(tài)壓力測(cè)量[14]和超燃沖壓發(fā)動(dòng)機(jī)進(jìn)氣道[15]的研究中。國(guó)內(nèi)的航空工業(yè)空氣動(dòng)力研究院引進(jìn)美國(guó)ISSI公司的快響應(yīng)PSP技術(shù),目前正處于設(shè)備的應(yīng)用調(diào)試階段。
航天空氣動(dòng)力技術(shù)研究院對(duì)PSP技術(shù)進(jìn)行了多年的研究與應(yīng)用,自主研發(fā)了PSP實(shí)驗(yàn)整套設(shè)備和數(shù)據(jù)處理軟件,掌握了常規(guī)PSP實(shí)驗(yàn)技術(shù)。在此基礎(chǔ)上,與中科院化學(xué)所合作研發(fā)了快響應(yīng)涂料,研制出動(dòng)態(tài)、靜態(tài)標(biāo)定裝置和風(fēng)洞試驗(yàn)設(shè)備。在高超風(fēng)洞中開(kāi)展了一系列試驗(yàn),清晰準(zhǔn)確地捕捉到了激波與邊界層干擾引起激波振蕩的過(guò)程。試驗(yàn)結(jié)果表明自主研發(fā)的快響應(yīng)PSP試驗(yàn)技術(shù)具備了非定常壓力場(chǎng)測(cè)量能力。
壓敏涂料(PSP)技術(shù)的基本原理是壓敏涂料探針?lè)肿拥墓庵掳l(fā)光和氧猝滅效應(yīng)。當(dāng)用適當(dāng)波長(zhǎng)的光照射時(shí),壓敏涂料被激發(fā)出更長(zhǎng)波長(zhǎng)的熒光。由于氧氣分子的對(duì)探針?lè)肿拥摹把踱缧?yīng)”,氧分壓(即當(dāng)?shù)仂o壓)越高熒光減弱得越嚴(yán)重。通過(guò)測(cè)得某處的熒光光強(qiáng)就可得到該處的壓力。按照Stern-Volmer公式來(lái)處理壓強(qiáng)與光強(qiáng)之間的定量關(guān)系:
式中:p和pr分別表示試驗(yàn)壓力和參照壓力,I和Ir分別表示試驗(yàn)光強(qiáng)和參照光強(qiáng)。A和B是壓敏涂料的光強(qiáng)-壓力換算系數(shù),它們由壓敏涂料靜態(tài)標(biāo)定曲線(xiàn)確定。通常用一個(gè)大氣壓下的光強(qiáng)表示參照光強(qiáng)Ir,一個(gè)大氣壓表示參照壓力pr。
PSP涂料由發(fā)光材料和凝結(jié)材料組成,PSP涂料中氧氣擴(kuò)散達(dá)到穩(wěn)態(tài)的響應(yīng)時(shí)間表示為:
式中:h是涂層厚度,D是氧氣擴(kuò)散率。因此,PSP涂料的壓力響應(yīng)時(shí)間隨著PSP涂層厚度增加顯著增加,隨著氧氣擴(kuò)散率的增加而降低。由此可見(jiàn),快速響應(yīng)PSP技術(shù)的關(guān)鍵是降低涂層厚度并增加氧氣擴(kuò)散率。
常規(guī)PSP涂料由PSP發(fā)光基團(tuán)和粘結(jié)劑組成,其響應(yīng)時(shí)間通常在1s量級(jí)左右,無(wú)法用于非定常流動(dòng)的測(cè)量。本文的快響應(yīng)PSP涂料由中國(guó)航天空氣動(dòng)力技術(shù)研究院和中國(guó)科學(xué)院化學(xué)研究所共同研制。涂料的激發(fā)光源為波長(zhǎng)365nm紫外光源,激發(fā)出的熒光發(fā)射波長(zhǎng)區(qū)域?yàn)?00~700nm,如圖1所示。該涂料由聚合物形成多孔性的涂層結(jié)構(gòu),熒光探針?lè)肿影谶@些微孔之中,增大了空氣接觸面積,使得響應(yīng)擴(kuò)散率增加即降低了反應(yīng)時(shí)間。用PtTFPP作為發(fā)光基團(tuán),其穩(wěn)定性較強(qiáng),在持續(xù)光照下發(fā)光強(qiáng)度衰減為1.5%/h。相比AA-PSP只能用于純鋁模型,這種涂料可以很容易地噴涂于各種模型表面,耐用性高,能經(jīng)受住高速氣流沖刷。
圖1 快響應(yīng)PSP涂料的發(fā)射光譜
壓敏涂料靜態(tài)標(biāo)定裝置如圖2所示。壓敏涂料樣片被放置在壓力和溫度分別由真空泵和低溫循環(huán)機(jī)控制的壓力腔內(nèi),在不同壓力和溫度條件下,使用用和風(fēng)洞實(shí)驗(yàn)相同的光源照射,并利用相同的相機(jī)進(jìn)行拍攝得到相應(yīng)的圖像組,對(duì)圖像處理后得到光強(qiáng)-壓力曲線(xiàn)。由于風(fēng)洞實(shí)驗(yàn)過(guò)程采集到的模型表面溫度穩(wěn)定在30℃左右,實(shí)驗(yàn)過(guò)程壓力范圍小于100kPa,因此標(biāo)定的溫度范圍為25℃~35℃,壓力范圍為10~100kPa。壓敏涂料的壓力光強(qiáng)性能曲線(xiàn)如圖3所示。其光強(qiáng)壓力性能曲線(xiàn)是非線(xiàn)性的,可用二次多項(xiàng)式描述其特性。
圖2 PSP靜態(tài)標(biāo)定裝置
圖3 PSP涂料壓力光強(qiáng)對(duì)應(yīng)性能曲線(xiàn)
針對(duì)快響應(yīng)PSP涂料需要非??斓膲毫﹄A躍的要求,研制了2套動(dòng)態(tài)標(biāo)定裝置:電磁閥壓力跳變裝置和脈沖射流動(dòng)態(tài)標(biāo)定裝置。
電磁閥壓力跳變裝置分為3個(gè)主要部分,第一部分是真空腔,樣片放置在真空腔內(nèi),壓力階躍在該部分產(chǎn)生。第二部分是實(shí)驗(yàn)光路,由PSP樣片、紫外光源、濾光片、透鏡、二向色分光鏡和光學(xué)調(diào)整元件組成。為了減少紫外光信號(hào)對(duì)PMT的影響,光路成90°垂直排列。第三部分是光強(qiáng)信號(hào)探測(cè)設(shè)備PMT和高速數(shù)據(jù)采集器,用于探測(cè)PSP涂料輻射出的光強(qiáng)信號(hào)強(qiáng)度以及發(fā)生階躍的時(shí)間,其對(duì)光信號(hào)的響應(yīng)時(shí)間為6ns,對(duì)于測(cè)量壓敏涂料的響應(yīng)時(shí)間來(lái)說(shuō)是最好的探測(cè)設(shè)備。
電磁閥壓力跳變裝置原理圖和實(shí)物如圖4所示。其工作過(guò)程為:在排氣電磁閥控制下,壓力腔的壓力階躍在1ms左右完成,PSP樣片在激發(fā)光源照射下由于壓力階躍產(chǎn)生光強(qiáng)階躍。壓力階躍的時(shí)間被Kulite傳感器記錄下來(lái),光強(qiáng)階躍的時(shí)間被PMT記錄下來(lái)。分析光強(qiáng)階躍的時(shí)間曲線(xiàn),能得到PSP對(duì)壓力變化的響應(yīng)時(shí)間,與Kulite傳感器得到的響應(yīng)過(guò)程跟隨性對(duì)比,如圖5所示。
由于電磁閥動(dòng)態(tài)標(biāo)定裝置本身的壓力跳變過(guò)程大于1ms,因此對(duì)比同時(shí)采集的Kulite壓力傳感器數(shù)據(jù),PSP光強(qiáng)信號(hào)與Kulite壓力信號(hào)雖然幾乎同時(shí)發(fā)生跳變,但不能驗(yàn)證涂料的絕對(duì)響應(yīng)時(shí)間。進(jìn)一步改進(jìn)的脈沖射流動(dòng)態(tài)標(biāo)定裝置如圖6所示,用高壓氮?dú)庾鳛闅庠锤咚贈(zèng)_擊樣片,使樣片表面被氮?dú)獍鼑a(chǎn)生零氧條件從而產(chǎn)生瞬時(shí)脈沖,獲得壓力階躍,脈沖射流裝置能夠產(chǎn)生的壓力階躍時(shí)間低于0.1ms,更適合用來(lái)檢測(cè)涂料的實(shí)際響應(yīng)時(shí)間。
(a) 原理圖
(b) 實(shí)物圖
圖5 電磁閥動(dòng)態(tài)標(biāo)定裝置PSP和Kulite同步跳變
經(jīng)過(guò)不同的動(dòng)態(tài)標(biāo)定裝置測(cè)試檢驗(yàn),不斷改進(jìn)涂料性能,快響應(yīng)PSP涂料的響應(yīng)時(shí)間達(dá)到0.2ms。這個(gè)響應(yīng)時(shí)間已經(jīng)能滿(mǎn)足非定常壓力測(cè)量的需求。典型的PSP壓力階躍信號(hào)如圖7所示。
圖6 脈沖射流動(dòng)態(tài)標(biāo)定裝置
圖7 PSP響應(yīng)時(shí)間達(dá)到0.2ms
PSP試驗(yàn)在航天空氣動(dòng)力技術(shù)研究院FD-03高超聲速風(fēng)洞進(jìn)行,風(fēng)洞噴管截面尺寸為170mm×170mm,Ma=5,p0=1MPa,T0=380K。試驗(yàn)?zāi)P蜑槠桨寮又绷A柱,測(cè)量激波邊界層干擾引起的非定常壓力變化。平板尺寸為330mm×200mm,前緣與噴管出口底板相接。圓柱直徑D=25mm,高度H為25和50mm,噴涂模型如圖8所示。待涂層干燥后清潔風(fēng)洞,連接壓力掃描閥,測(cè)溫傳感器等。調(diào)節(jié)試驗(yàn)光路,用紫外光源在試驗(yàn)段兩側(cè)照射模型,相機(jī)在試驗(yàn)段頂部拍攝,試驗(yàn)方案如圖9所示,風(fēng)洞試驗(yàn)裝置如圖10所示。
試驗(yàn)所用相機(jī)為Photron SA5高速相機(jī),位深為12bit,感光靈敏度為ISO 4000。在分辨率為1024pixel×1024pixel的條件下其采集頻率可達(dá)到7000幀。本次試驗(yàn)分別采集了125幀/s和250幀/s的試驗(yàn)圖像,每次試驗(yàn)都連續(xù)采集500張吹風(fēng)狀態(tài)下的圖像,然后采集50張無(wú)風(fēng)狀態(tài)下的參考圖像。50mm焦距的鏡頭安裝在高速相機(jī)上,將光圈調(diào)到最大以最大程度地接受PSP輻射出的熒光。在鏡頭前安裝650±10nm的帶通濾光片,防止其它波段光線(xiàn)的干擾。試驗(yàn)光源為2個(gè)400W的氙燈紫外光源。
圖8 帶有測(cè)壓孔的平板圓柱模型及噴涂過(guò)的平板表面
圖9 高超圓柱繞流PSP試驗(yàn)方案
圖10 風(fēng)洞試驗(yàn)裝置圖
PSP試驗(yàn)的同時(shí),用一臺(tái)8400型壓力掃描閥測(cè)量80個(gè)測(cè)壓點(diǎn)的壓力,壓力掃描閥精度為±0.05%F.S.。3個(gè)Pt100溫度傳感器用于測(cè)量模型溫度,經(jīng)測(cè)量,實(shí)驗(yàn)過(guò)程中模型溫度保持在25℃~35℃,因此涂料標(biāo)定也在這個(gè)溫度范圍內(nèi)。
風(fēng)洞試驗(yàn)采集的圖像包括在風(fēng)洞停止時(shí)采集的參考圖像和風(fēng)洞運(yùn)行時(shí)采集的試驗(yàn)圖像。所有圖像都減去暗噪聲圖像,所有參考圖像平均為一張參考圖像,吹風(fēng)時(shí)采集的試驗(yàn)圖像保持時(shí)間連續(xù)進(jìn)行批量處理。數(shù)據(jù)處理工作利用圖像處理軟件PSPro完成,該軟件具備的功能包括:圖像去噪,特征點(diǎn)提取,圖像配準(zhǔn),圖像增強(qiáng),偽彩色變換,壓力數(shù)據(jù)計(jì)算,壓力數(shù)據(jù)提取等。圖像處理程序界面如圖11所示。
(a)
(b) 圖11 圖像處理軟件界面Fig.11 Interface of software
由于PSP涂料的光強(qiáng)-壓力性能曲線(xiàn)表現(xiàn)出非線(xiàn)性關(guān)系,壓力數(shù)據(jù)用公式(3)計(jì)算:
PSP試驗(yàn)前進(jìn)行了油流和紋影試驗(yàn),如圖12所示。油流圖顯示了分離線(xiàn)位置。紋影圖上能清晰觀察到分離激波,弓形激波和λ波。這2種測(cè)量方法很好地顯示了定常流場(chǎng)結(jié)構(gòu),圓柱繞流的流場(chǎng)結(jié)構(gòu)如圖13所示。
H50圓柱對(duì)應(yīng)前20ms的非定常PSP測(cè)量結(jié)果如圖13所示。從得到的結(jié)果可以清晰地觀察到高超聲速情況下圓柱繞流激波振蕩的過(guò)程。從風(fēng)洞試驗(yàn)結(jié)果看,PSP快響應(yīng)涂料和風(fēng)洞試驗(yàn)系統(tǒng)能夠適應(yīng)高超聲速風(fēng)洞環(huán)境,壓力場(chǎng)顯示結(jié)果很好。
8400型壓力掃描閥用于靜態(tài)測(cè)壓,本次實(shí)驗(yàn)利用其結(jié)果反應(yīng)PSP試驗(yàn)采集非定常壓力數(shù)據(jù)的能力,實(shí)驗(yàn)中采集了幾組掃描閥靜態(tài)測(cè)壓結(jié)果,取其均值作為單點(diǎn)壓力對(duì)比數(shù)據(jù)。而PSP數(shù)據(jù)能很好地反映出非定常流動(dòng)的過(guò)程。計(jì)算得到的PSP測(cè)壓數(shù)據(jù)與測(cè)壓孔測(cè)量數(shù)據(jù)吻合較好,部分對(duì)比結(jié)果如圖15~18所示。
(a) 油流圖
(b) 紋影圖圖12 油流和紋影圖(Ma=5,H/D=2)Fig.12 Flow fields around the cylinder (Ma=5,H/D=2)
圖13 流場(chǎng)結(jié)構(gòu)示意圖
t=0ms t=4ms
t=8ms t=12ms
t=16ms t=20ms
圖15 測(cè)壓孔與PSP測(cè)壓數(shù)據(jù)對(duì)比截面1
(a) t=0ms
(b) t=4ms
(c) t=8ms
(d) t=12ms
圖17 測(cè)壓孔與PSP測(cè)壓數(shù)據(jù)對(duì)比截面2
(a) t=0ms
(b) t=4ms
(c) t=8ms
(d) t=12ms
介紹了自主研發(fā)的快響應(yīng)PSP涂料和標(biāo)定設(shè)備,經(jīng)過(guò)不斷改進(jìn),快響應(yīng)PSP涂料響應(yīng)時(shí)間達(dá)到0.2ms。通過(guò)在Ma5高超聲速風(fēng)洞中對(duì)圓柱繞流的非定常壓力場(chǎng)測(cè)量,獲得了時(shí)間序列的壓力場(chǎng)數(shù)據(jù),與測(cè)壓孔數(shù)據(jù)相比其空間分辨率高,數(shù)據(jù)量大,能捕捉到流動(dòng)的非定常效應(yīng)。試驗(yàn)驗(yàn)證了PSP涂料和試驗(yàn)系統(tǒng)性能穩(wěn)定,表明快響應(yīng)PSP技術(shù)是研究非定常流場(chǎng)的有力工具。
[1] Gregory James W, Sakaue Hirotaka, Sullivan John P. Unsteady pressure measurements in turbomachinery using porous pressure sensitive paint[R]. AIAA-2002-0084.
[2] Sakaue Hirotaka, Matsumura Shin. Anodized aluminum pressure sensitive paint for short duration testing[R]. AIAA-2002-2908.
[3] Bell J H. Pressure sensitive paint in aerodynamic testing[J]. Experimental Thermal and Fluid Science, 1995, 10: 470-485.
[4] Dietrich Hummel. Review of the second international vortex flow experiment (VFE- 2)[R]. AIAA-2008-377.
[5] Konrath Robert, Klein Christian. PSP and PIV Investigations on the VFE-2 Configuration in Sub-and Transonic Flow[R]. AIAA-2008-379.
[6] Mebarki Y. Pressure sensitive paint evaluation on a supercritical wing at cruise speed[J]. Journal of Visualization, 2001, 4(4): 313-322.
[7] Liu T, Sullivan J P. Pressure and temperature sensitive paints[M]. New York: Springer, 2005.
[8] 李素循. 激波與邊界層主導(dǎo)的復(fù)雜流動(dòng)[M]. 北京: 科學(xué)出版社,2007.
[9] Manokaran K. CFD simulation of flowfield over a large protuberance on a flat plate at high supersonic Mach number[R]. AIAA-2003-1253.
[10] Nakakita Kazuyuki. Unsteady PSP measurement of transonic unsteady flow field around a rocket fairing model[R]. AIAA-2012-2758.
[11] Kameda Masaharu. Unsteady measurement of a transonic delta wing flow by a Novel PSP[R]. AIAA-2008-6418.
[12] Hirose Yuichi, Nagai Hiroki, Asai Keisuke. Unsteady flow measurements of a slender delta wing in wing rock motion[R]. AIAA-2007-124.
[13] Asai Keisuke. Pressure-sensitive paint application to a wing-body model in a hypersonic shock tunnel[R]. AIAA-2002-2911.
[14] Klein C, Henne U. Application of pressure-sensitive paint for determination of dynamic surface pressures on an oscillating 2D profile in transonic flow[R]. AIAA-2008-278.
[15] Hirschen C, Gülhan A, Beck W H. Measurement of flow properties and thrust on scramjet nozzle using pressure-sensitive paint[J]. Journal of Propulsion and Power, 2009, 25(2): 267-280.
[16] Gregory J W, Asai K. A review of pressure-sensitive paint for high-speed and unsteady aerodynamics[J]. Proc IMechE, 2008(222): 249-290.
(編輯:李金勇)
Unsteady pressure measurement around circular cylinder in hypersonic flows using fast response PSP
Xiang Xingju1, Xiong Hongliang1,*, Yuan Minglei1, Yu Jingbo1, Chen Liusheng2, Wang Zhidong2
(1. China Academy of Aerospace Aerodynamics, Beijing 100074, China; 2. Institute of Chemistry, Chinese Academy of Science, Beijing 100190, China)
The fast response Pressure Sensitive Paint (PSP) was studied to develop the capability of making global pressure measurements under unsteady and short duration flow conditions. Fast response PSP is necessary for measuring unsteady flow fields in hypersonic wind tunnels and short-duration wind tunnels. By the use of the fast response PSP, unsteady flow field can be accurately measured. Various PSP formulations are under continuous development in collaboration between CAAA and Institute of Chemistry China Academy of Science. These pressure sensitive paints use PtTFPP as luminophore, which is relatively photo-stable: the decay of luminescent intensity with continuous illumination is 1.5 percent/h. This paint can be sprayable on all kinds of model surfaces. It is durable enough to withstand the aerodynamic forces. With the development of porous PSP, there has been a need for accurate characterization of the response time of PSP. Dynamic calibration methods have been developed to meet this need. Response time of PSP was measured from a step change of pressure created by solenoid valve and pulsating jet. Two dynamic calibration devices were developed to test the response time of PSP. For unsteady calibration the paint was sprayed onto 20 mm × 20 mm aluminum plates. Photo multiplier tube(PMT) was used as the light detector, which is the most critical component in the dynamic calibration device. Several fast response PSP was developed and tested. The typical response time of PSP is 0.2ms. The static calibration system was used to get the relation between the pressure and
luminescence intensity. PSP samples were installed in a pressure chamber in which both the pressure and temperature can be set. The sample was excited by UV light and its photoluminescence was detected by a CCD digital camera. The experiment was conducted at different pressures and temperatures. After data processing, the relationship between the luminescence intensity and pressure can be obtained. To demonstrate the capability of PSP for pressure measurements in hypersonic wind tunnel, a cylinder mounted on a flat plate was tested in a Mach 5 hypersonic wind tunnel. The experiment was conducted in the blow down hypersonic wind tunnel FD-03 of China Academy of Aerospace Aerodynamics (CAAA). The diameter of circular cylinder is 25mm. The pressure on the plate surface was measured by several pressure taps simultaneously. The temperature of the model was detected by a Pt100 temperature sensor in real time. A 200-mm-diameter observation window on the ceiling was used as the optical access. Two 450W xenon lamps with bandpass filter (365±10 nm) were used for excitation light. The emission from the PSP was detected by photron high-speed camera SA5 with 12-bit intensity resolution. A bandpass filter (650±10 nm) was placed in front of the camera lens. The surface pressure distributions were acquired. Unsteady pressure behavior around the cylinder measured by the unsteady PSP was shown clearly. The pressure distribution results were obtained atMa=5, and the unsteady PSP measurement frame rate was 250 frames/s. A detailed pressure distribution pattern of complex flow phenomena including shock wave/shock wave interactions could be clearly measured with PSP. It was confirmed that fast response PSP could be used for quantitative unsteady pressure distribution measurements in hypersonic wind tunnel.
fast response pressure sensitive paint;dynamic-response calibration device;PSP coating; hypersonic;unsteady flows
1672-9897(2015)03-0054-08
10.11729/syltlx20140108
2014-09-25
2015-01-20
XiangXJ,XiongHL,YuanML,etal.UnsteadypressuremeasurementaroundcircularcylinderinhypersonicflowsusingfastresponsePSP.JournalofExperimentsinFluidMechanics, 2015, 29(3): 54-61. 向星居, 熊紅亮, 袁明磊, 等. 快響應(yīng)PSP技術(shù)用于高超聲速圓柱繞流的非定常壓力測(cè)量. 實(shí)驗(yàn)流體力學(xué), 2015, 29(3): 54-61.
V211.7
A
向星居(1984-),男,重慶人,工程師。研究方向:實(shí)驗(yàn)空氣動(dòng)力學(xué)。通信地址: 北京市7201信箱39分箱(100074)。E-mail: 15901287499@126.com
*通信作者 E-mail: xhl0708@sohu.com