李立清 劉颯 梁鑫 劉崢
摘要:采用微波高溫燒結(jié)爐分別在600 ℃,700 ℃和800 ℃下對商業(yè)活性炭進行改性,利用比表面積及孔徑分析儀、Boehm滴定、傅立葉變換紅外光譜比較分析活性炭的比表面積和孔結(jié)構(gòu)、表面官能團等物化性質(zhì).以1,2二氯乙烷為吸附質(zhì)進行固定床吸附實驗.研究表明:改性后活性炭表面酸性基團減少,堿性基團隨溫度升高增多;比表面積、孔容減小,微孔比表面積增加;活性炭對1,2二氯乙烷的吸附量排序為:AC800 > AC700 > AC600 > AC0;灰色關聯(lián)度分析結(jié)果表明:改性活性炭的物理結(jié)構(gòu)特性對吸附量的影響大于表面基團;DR模型和動力學模型擬合結(jié)果都表明活性炭對1,2二氯乙烷的吸附主要為物理吸附.
關鍵詞:微波改性;活性炭;吸附;1,2二氯乙烷;灰色關聯(lián)
中圖分類號:O613.71 文獻標識碼:A
Abstract:Activated carbon (AC) was modified with microwave irradiation heating at 600, 700 and 800 °C respectively. The physicochemical properties of the activated carbon were characterized by using Boehm titration, Fourier transformed infrared spectroscopy and Specific surface area and pore size analyzer. Fixedbed adsorption experiments were conducted by using 1,2dichloroethane as the adsorbate. The results show that, after microwave modification, the surface acidic functional groups of activated carbon decrease and the surface basic functional groups increase with the increase of temperature. The specific surface area and total pore volume of activated carbon decrease, while the micropore specific surface area increases. The order of the adsorption capacity for 1,2dichloroethane is AC800 > AC700 > AC600 > AC0.The results of the grey relativity analysis show that the physical properties of the modified activated carbon have a larger effect on the adsorption capacity than the surface functional groups. The fitting results of DR model and kinetics equation illustrate that it is a physical adsorption process for activated carbon.
Key words:microwave modification; activated carbon; adsorption; 1,2dichloroethane; grey relativity analysis
1,2二氯乙烷主要用于有機合成、金屬清洗、塑料粘接等領域,常溫下極易揮發(fā)同時具有刺激性,人類長期接觸會引起急慢性中毒[1].活性炭因孔隙結(jié)構(gòu)豐富,比表面積巨大的特點,成為優(yōu)良的吸附劑[2-3].
微波加熱在整個物體內(nèi)同時進行,溫度均勻且梯度小,相對于傳統(tǒng)加熱方式具有快速、便宜、高效特點[4].近年來微波加熱被用于改變活性炭物化性質(zhì),以提高其吸附能力.楊斌武等[5]采用微波改性活性炭進行脫硫?qū)嶒灒l(fā)現(xiàn)改性后活性炭比表面積未發(fā)生明顯地變化,總孔容略有減小,表面堿性基團數(shù)量和N元素含量明顯增加.Liu Qingsong等[6]研究了微波改性活性炭對水溶液中亞甲基藍的吸附,發(fā)現(xiàn)改性后活性炭的酸性基團消失,堿性基團增加,同時吸附速率和吸附量都有顯著提高.Huang Lihui等[7]對微波改性活性炭去除水中的對稱土霉素進行了研究(又稱土霉素),發(fā)現(xiàn)微波改性使活性炭具有更大的微孔孔容,能顯著提高活性炭的吸附能力.Hejazifar M等[8]通過微波改性活性炭對水溶液中龍膽紫的去除實驗,發(fā)現(xiàn)改性活性炭的吸附能力是商業(yè)活性炭的兩倍多.目前的研究局限于微波改性活性炭對硫氧化物和水溶液中污染物的去除,很少有學者研究微波改性對活性炭吸附有機氣體的影響.
本研究采用微波高溫燒結(jié)爐分別在600 ℃,700 ℃、800 ℃對商業(yè)活性炭進行改性,分析不同改性條件對活性炭物化性質(zhì)的影響;通過活性炭對1,2二氯乙烷的吸附實驗,進行吸附平衡分析,從灰色關聯(lián)角度分析活性炭的物化性質(zhì)對1,2二氯乙烷吸附量的影響,同時進行吸附動力學分析.
1實驗與方法
1.1活性炭制備
預處理:用電子天平(JA1203N,上海精密科學儀器有限公司)稱取商業(yè)活性炭(河南長葛利民活性炭有限公司RS5型)200 g,置于盛有500 mL去離子水的燒杯中,用電子萬用爐(北京市永光明醫(yī)療儀器廠)煮沸30 min并輕輕攪拌,再用去離子水洗滌至上層液清亮,濾出后置于真空干燥箱(DZF型,北京市永光明醫(yī)療儀器廠),在110 ℃恒溫干燥24 h,該樣品記為AC0.
微波改性:用微波高溫燒結(jié)爐(WZ3/2.45型,長沙隆泰科技有限公司),在微波頻率2.45 GHz,氮氣流量600 mL·min-1的氣氛下,選取600 ℃,700 ℃,800 ℃ 3個溫度對10 g AC0分別加熱30 min,冷卻后置于真空干燥箱中,在110 ℃恒溫干燥24 h,所得樣品分別記為AC600,AC700,AC800.
1.2活性炭表征
結(jié)構(gòu)特性表征:測試計算活性炭的比表面積及孔容.采用低溫氮氣吸附法,利用比表面積及孔徑分析儀SA3100(BECKMAN COULTER,USA)測定77 K時氮氣在活性炭上的吸附等溫線.采用BET法計算比表面積;Tplot法計算微孔比表面積和微孔孔容;BJH法得到中孔孔容、大孔孔容;在相對壓力0.981 4時,將液氮吸附量換算成液氮體積得到總孔容.
表面基團表征:采用Boehm滴定法測出活性炭表面的酸性基團、堿性基團、羧基和酚羥基的數(shù)量.采用NEXUS670傅立葉變換紅外光譜儀(Nicolet,USA)對炭樣表面的基團進行分析.
1.3吸附實驗
圖1為固定床吸附裝置,該裝置由配氣系統(tǒng)、固定吸附床、恒溫系統(tǒng)(恒溫水箱,DC1015,上海天平儀器公司)和測試系統(tǒng)(氣相色譜儀,SP6890型,山東魯能瑞虹化學儀器公司)組成.在真空泵的作用下,空氣經(jīng)硅膠干燥器,一部分穿過微型噴淋區(qū)和恒溫區(qū)得到飽和有機蒸汽,一部分進入混合箱,與飽和有機蒸汽充分混合.通過閥門調(diào)節(jié)干燥空氣含量,改變被吸附氣體的濃度.混合氣體經(jīng)真空泵進入裝有活性炭的石英管吸附柱(內(nèi)徑1.1 cm,高16 cm),通過恒溫水箱控制吸附柱溫度.吸附柱進氣濃度和出氣濃度利用氣相色譜儀監(jiān)測,當出氣濃度與進氣濃度相同,并保持30 min以上時,視為達到平衡狀態(tài)[9-10].實驗分別取4種活性炭4 g,在吸附溫度10 ℃,選取1,2二氯乙烷(分析純AR,純度≥99.0%,上海山浦化工有限公司)5個濃度4.51,10.31,15.15,51.85和103.36 g·m-3,測試4種活性炭的飽和吸附量,進而得出等溫吸附曲線;同時在濃度5 000×106(22.1 g·m-3)時,測試活性炭的動態(tài)吸附量,測試時間120 min.
① 干燥器;② 有機氣體發(fā)生器;③ 流量計;
④ 混合器;⑤ 真空泵;⑥ 固定吸附床;⑦ 恒溫水箱;
⑧ 氣相色譜儀;⑨ 尾氣處理
2結(jié)果與討論
2.1改性對活性炭的影響
2.1.1結(jié)構(gòu)特性
活性炭的孔結(jié)構(gòu)參數(shù)見表1,比較表中數(shù)據(jù)可知:改性后活性炭的比表面積、總孔容、中孔孔容、大孔孔容都有所減小;微孔比表面積都增大;微孔孔容隨改性溫度升高逐漸減小,在600 ℃和700 ℃時高于原始活性炭,這是由于微波輻照后許多閉塞的微孔被打開[11];在800 ℃時低于原始活性炭AC0,這可能是溫度過高導致了微孔塌陷.總孔容為微孔孔容,中孔孔容,大孔孔容三者之和,從它們的相對含量可以看出,微孔孔容對總孔容的貢獻最多.
2.1.2表面基團
Boehm滴定結(jié)果見表2,由表可知:隨著溫度的升高,酸性基團、酚羥基和羧基的含量逐漸降低,800 °C時含量為零,這是由于在微波的高溫照射下酸性含氧基團不穩(wěn)定被分解[12];堿性基團的含量隨溫度升高逐漸增多.這表明,微波改性會使表面酸性基團減少,堿性基團增多,且溫度越高表面堿性基團越多.
活性炭的紅外光譜見圖2,由圖可見,AC0,AC600,AC700在3 550~3 200 cm-1處,形成一個寬而強的吸收峰,表明存在O-H的伸縮振動,羥基形成了氫鍵的締合峰,而AC800在3 500~3 300 cm-1處形成了中等強度的雙峰,是伯胺的N-H伸縮振動吸收峰,說明在800 ℃時O-H已不存在,這與Boehm滴定結(jié)果一致;1 250~1 020 cm-1處的吸收峰表明存在脂肪胺C-N的伸縮振動,在800 ℃時吸收峰強度較大,表明C-N含量較高.整體來看,AC600,AC700的圖譜峰形與AC0差別不大,但吸收特征峰的強度都在降低,表明在600 ℃,700 ℃時活性炭表面基團沒有被完全破壞,但含量都比原始活性炭少;AC800的峰強峰形都與AC0有較大差異,表明在800 ℃時活性炭表面基團被分解重組,O-H已被分解,C-N含量升高.
2.2等溫吸附線
圖3為10 ℃下活性炭對1,2二氯乙烷的等溫吸附線,由圖可知,在相同的吸附溫度下,不同活性炭的吸附量存在差異,飽和吸附量的大小順序為:AC800>AC700>AC600>AC0.說明微波改性可以提高活性炭對1,2二氯乙烷的吸附量,改性溫度越高,吸附量越大.
為了探究改性活性炭中影響吸附量的因素,以Langmuir方程擬合所得改性活性炭的qmax為母序列,改性活性炭的比表面積、微孔比表面積、總孔容、微孔孔容、中孔孔容、大孔孔容、酸性基團、酚羥基、羧基、堿性基團為10組子序列.選取AC600為參照數(shù)列,對原始數(shù)據(jù)序列初值化處理,將各個數(shù)量按照其參照數(shù)列的意義無量綱化,選取ρ為0.5[21],計算改性后活性炭物化性質(zhì)對平衡吸附量的灰色關聯(lián)度,計算結(jié)果如表4.
由表4可知,影響平衡吸附量的關聯(lián)度排序為:比表面積>總孔容>微孔比表面積>微孔孔容>大孔孔容>中孔孔容>堿性基團>羧基>酸性基團>酚羥基.由此可知,對吸附量的影響因素中,活性炭的物理結(jié)構(gòu)大于表面基團,故推斷該吸附過程主要為物理吸附,這與DR方程分析結(jié)果一致.
2.4吸附動力學
活性炭對1,2二氯乙烷的動態(tài)吸附曲線見圖4.分別用準一階動力學模型[22]和準二階動力學模型[23]對動態(tài)吸附數(shù)據(jù)進行模擬分析.
3結(jié)論
1)微波改性后活性炭表面酸性基團減少,堿性基團增多,且溫度越高表面堿性基團越多;比表面積、總孔容、中孔孔容、大孔孔容都有所減??;微孔比表面積增加;微孔孔容隨溫度升高逐漸減小.
2)微波改性后,活性炭對1,2二氯乙烷的吸附量都有所提高,且改性溫度越高,吸附量越大.Langmuir模型能很好地描述1,2二氯乙烷在活性炭上的吸附.
3)微波改性活性炭物理結(jié)構(gòu)對吸附量的影響大于表面基團,影響吸附量的因素排序為:比表面積>總孔容>微孔比表面積>微孔孔容>大孔孔容>中孔孔容>堿性基團>羧基>酸性基團>酚羥基.
4)活性炭對1,2二氯乙烷的吸附主要為物理吸附.
參考文獻
[1]趙新建, 邵紅霞, 李敏. 萬能膠中1, 2二氯乙烷的揮發(fā)性能及風險研究[J]. 中國膠粘劑, 2009, 8(6) :1-4.
ZHAO Xinjian, SHAO Hongxia, LI Min. Study on volatilization performance and risks of 1,2dichloroethane used for solvent adhesive[J]. China Adhesives, 2009, 8(6) :1-4. (In Chinese)
[2]DAS D, GAUR V, VERMA N. Removal of volatile organic compound by activated carbon fiber[J]. Carbon, 2004, 42(14): 2949-2962.
[3]TSAI J H, CHIANG H M, HUANG G Y, et al. Adsorption characteristics of acetone, chloroform and acetonitrile on sludgederived adsorbent, commercial granular activated carbon and activated carbon fibers[J]. Journal of Hazardous Materials, 2008, 154(1): 1183-1191.
[4]CARROTT P J M, NABAIS J M V, RIBEIRO CARROTT M M L, et al. Thermal treatments of activated carbon fibres using a microwave furnace[J]. Microporous and Mesoporous Materials, 2001, 47(2): 243-252.
[5]楊斌武, 蔣文舉, 常青. 微波改性活性炭及其脫硫性能研究[J]. 蘭州交通大學學報, 2006, 25(4): 51-54.
YANG Binwu, JIANG Wenju, CHANG Qing. Modification of activated carbon by microwave irradiation and its desulfurization capability [J]. Journal of Lanzhou Jiaotong University, 2006, 25(4): 51-54. (In Chinese)
[6]LIU Qingsong, ZHENG Tong, LI Nan, et al. Modification of bamboobased activated carbon using microwave radiation and its effects on the adsorption of methylene blue[J]. Applied Surface Science, 2010, 256(10): 3309-3315.
[7]HUANG Lihui, SUN Yuanyuan, WANG Weiliang, et al. Comparative study on characterization of activated carbons prepared by microwave and conventional heating methods and application in removal of oxytetracycline (OTC)[J]. Chemical Engineering Journal, 2011, 171(3): 1446-1453.
[8]HEJAZIFAR M, AZIZIAN S, SARIKHANI H, et al. Microwave assisted preparation of efficient activated carbon from grapevine rhytidome for the removal of methyl violet from aqueous solution[J]. Journal of Analytical and Applied Pyrolysis, 2011, 92(1): 258-266.
[9]李立清,石瑞,顧慶偉,等. 酸改性活性炭吸附甲苯的性能研究[J]. 湖南大學學報:自然科學版, 2013, 40(5): 92-98.
LI Liqing, SHI Rui, GU Qingwei, et al. Adsorption of toluene on activated carbons with acid modified[J]. Journal of Hunan University:Natural Sciences, 2013, 40(5): 92-98. (In Chinese)
[10]李立清,梁鑫,姚小龍,等. 微波改性對活性炭及其甲醇吸附的影響[J]. 湖南大學學報:自然科學版, 2014, 41(7):78-83.
LI Liqing, LIANG Xin, YAO Xiaolong,et al. Effects of microwave modification on activated carbon and its adsorption of methanol[J]. Journal of Hunan University:Natural Sciences, 2014, 41(7):78-83. (In Chinese)
[11]江霞,蔣文舉,朱曉帆,等. 微波改性活性炭的吸附性能[J]. 環(huán)境污染治理技術與設備,2004,5(1):43-46
JIANG Xia, JIANG Wenju, ZHU Xiaofan ,et al. Study on adsorptive properties of activated char modified by microwave [J]. Techniques and Equipment for Environmental Pollution Control, 2004, 5(1): 43-46. (In Chinese)
[12]CHINGOMBE P, SAHA B, WAKEMAN R J. Surface modification and characterisation of a coalbased activated carbon[J]. Carbon, 2005, 43(15): 3132-3143.
[13]LANGMUIR I. The adsorption of gases on plane surfaces of glass, mica and platinum[J]. Journal of the American Chemical society, 1918, 40(9): 1361-1403.
[14]FREUNDLICH H. ber die adsorption in lsungen[J]. Zeitschrift für Physikalische, 1906(57) : 385-470. (In German)
[15]ALBADARIN A B, MANGWANDI C, ALMUHTASEB A H, et al. Kinetic and thermodynamics of chromium ions adsorption onto lowcost dolomite adsorbent[J]. Chemical Engineering Journal, 2012, 179: 193-202.
[16]VIMONSES V, LEI S, JIN B, et al. Kinetic study and equilibrium isotherm analysis of Congo Red adsorption by clay materials[J]. Chemical Engineering Journal, 2009, 148(2): 354-364
[17]ARFAOUI S, FRINISRASRA N, SRASRA E. Modelling of the adsorption of the chromium ion by modified clays[J]. Desalination, 2008, 222(1): 474-481.
[18]SHEHA R R, METWALLY E. Equilibrium isotherm modeling of cesium adsorption onto magnetic materials[J]. Journal of Hazardous Materials, 2007, 143(1): 354-361.
[19]ELKAMASH A M, ELSAYED A A, ALY H F. Thermodynamics of uranium extraction from nitric acid solution by TBP loaded on inert supporting material[J]. Journal of Radioanalytical and Nuclear Chemistry, 2002, 253(3): 489-495.
[20]譚學瑞, 鄧聚龍. 灰色關聯(lián)分析:多因素統(tǒng)計分析新方法[J]. 統(tǒng)計研究, 1995,12 (3): 46-48.
TAN Xuerui,DENG Julong.Grey connected analysis:A new method of multifactor statistical analysis[J]. Statistical Research, 1995, 12(3): 46-48.(In Chinese)
[21]SRIDHAR R, NARASIMBA MURTHY H N, PATTAR N, et al. Parametric study of twin screw extrusion for dispersing MMT in vinylester using orthogonal array technique and grey relational analysis[J]. Composites Part B: Engineering, 2012, 43(2): 599-608.
[22]LAGERGREN S. Zur theorie der sogenannten adsorption gelster stoffe[J]. Kungliga Svenska Vetenskapsakademiens Handlingar, 1898, (24): 1-39. (In German)
[23]HO Y S, MCKAY G. Pseudosecond order model for sorption processes[J]. Process Biochemistry, 1999, 34(5): 451-465.
[24]BUNTIC A, PAVLOVIC M, MIHAJLOVSKI K, et al. Removal of a cationic dye from aqueous solution by microwave activated clinoptiloliteresponse surface methodology approach[J]. Water Air & Soil Pollution, 2014, 225(1): 1-13.